Exercise set 4 Algorithms and Complexity 2019

- You may collaborate and submit answers in groups of at most three. Good solutions are complete and concise. Please mail to j.nederlof@tue.nl on or before the day of the deadline.
 - 8. The knight's graph¹ is the graph on 64 vertices with a vertex for every square of a chess-board and two vertices being adjacent if they are a knight's move away from each other (formally, we have vertices $v_{i,j}$ for $1 \le i, j \le 8$ and an edge $(v_{i,j}, v_{i',j'})$ if either |i - i'| = 1 and |j - j'| = 2or |i - i'| = 2 and |j - j'| = 1). Show that the knight's graph has treewidth at most 16. If you choose to argue pictorially, you may use pen drawings (if it safes you time).
 - 9. The MAX-SCHEDULE problem is as follows: given are m machines, n jobs, and for every $1 \leq i \leq m$ and $1 \leq j \leq n$ an integer $p_{i,j} \in \mathbb{N}_{\geq 0}$ (given in binary representation) indicating the processing time used by machine i to process job j. Additionally given is a deadline D and an integer k. The question is whether one can allocate at least k jobs to the machines such that no machine uses more than D processing time.²
 - (a) Show how to solve this problem in polynomial time if m = 1.
 - (b) Give an algorithm for MAX-SCHEDULE that runs in time $O^*(m^k)$. Your algorithm may have constant one-sided error probability in the following sense:
 - if the instance is a NO-instance, your algorithm should return NO,
 - otherwise, your algorithm returns YES with probability at least 1/10.

¹See e.g. the page https://en.wikipedia.org/wiki/Knight%27s_graph on wikipedia.

²More formally stated, if we denote $M_i \subseteq \{1, \ldots, n\}$ for the set of jobs assigned to machine *i* in such an allocation, it is asked whether there exist disjoint subsets $M_1, \ldots, M_m \subseteq \{1, \ldots, n\}$ such that $\sum_{i=1}^m |M_i| \ge k$ and $\sum_{j \in M_i} p_{i,j} \le D$ for every *i*.