
Utrecht University
Department of Information and Computer Science

Master of Science Thesis
Thesis number: INF/SCR-07-84

Inclusion exclusion for hard
problems

by

Jesper Nederlof

First supervisor: Dr. H. L. Bodlaender
Second supervisor: Dr. G. Tel

Preface

One of the most important ways of getting more insight in NP-complete problems is
the comparison of worst-case running times of efficient algorithms solving them. Why
can some problems be solved more efficiently than others?

In 2006, a surprisingly simple and efficient algorithm for one of the most famous
NP-complete problems was published: Björklund and Husfeldt, and independently
Koivisto [BH06b, Koi06] gave an algorithm for the graph coloring problem with a
worst-case running time bounded by O∗(2n), where n is the number of nodes of the
given graph. One year later, they showed that a strong generalization can be solved
within the same time bound too [BHK06].

The technique they used, named inclusion exclusion (IE), is the subject of this
master’s thesis. For which other problems can the technique be used, how could
one use additional techniques for obtaining algorithms with an even better worst-case
running time, and could the technique be useful in any practical situation? In this
thesis we will discuss these questions.

Moreover, we will discuss the concept of an IE-branch, which can be seen as the
antipole of a normal branch, and provide some examples. Our main results are an
o(1.5n) time algorithm for counting the number of dominating sets of size k and an
IE-branch & reduce algorithm for graph coloring.

Jesper Nederlof
jespernederlof@hotmail.com

August 2008

ii

Contents

Preface ii

Contents iii

1 Exact exponential algorithms 1
1.1 The notion of a problem . 2
1.2 Counting problems . 3
1.3 Techniques . 4
1.4 Outline thesis . 7

2 Inclusion exclusion 8
2.1 Introduction . 8
2.2 Algebraic interpretation . 11
2.3 Combinatorial interpretation . 12
2.4 Kirchhoff’s Matrix Tree Theorem 13
2.5 Context . 17

3 IE-Formulations 18
3.1 CNF Satisfiability . 19
3.2 Hamiltonian cycles and the travelling salesman problem 19
3.3 A scheduling problem . 20
3.4 Graph coloring . 22
3.5 Set cover and partition problems 22
3.6 Multi set cover and set partition problems 24
3.7 Cluster editing . 26

4 Additional techniques 28
4.1 Abstract tubes . 28
4.2 Adjusting the universe . 31
4.3 Inclusion-exclusion branch & reduce 32

iii

iv CONTENTS

4.4 Dynamic programming for the simplified problem 35
4.5 Rewriting . 36

5 A case study: dominating sets 38
5.1 Dominating set . 38
5.2 Algorithm . 39
5.3 Base case: path decomposition . 40
5.4 Memorization . 42
5.5 Measure & conquer analysis . 42

Conclusions and further research 48

Bibliography 50

Ik wil graag de volgende mensen bedanken voor hun bijdrage aan deze scriptie:
Hans Bodlaender voor zijn flexibele begeleiding en waardevolle inzicht als ik met
een idee langs kwam. Ruben van der Zwaan voor de talloze uitwisselingen van
ideeën en suggesties, die vaak hielpen als ik even vast zat. Thomas van Dijk en
Johan van Rooij voor de fijne samenwerking, maar ook voor de vele nuttige
gesprekken over mijn scriptie hierbuiten, en hun enthousiasme dat mij extra
gemotiveerd heeft. Hans, Thomas en Gerard Tel voor het nakijken van mijn
scriptie, het vinden van fouten en geven van suggesties.

Voor de rest wil ik nog bedanken: De mensen van ALGO-Lab, vanwege
inhoudelijke gesprekken danwel gezelligheid. Mijn vrienden, die voor afleiding
zorgden als ik dat nodig had. En vooral: mijn ouders en zus, omdat ze er altijd
voor me zijn.

Chapter 1

Exact exponential algorithms

Since their introduction by Cook in 1971, it is an open question how to tackle NP-
complete problems nicely. An important way of obtaining more insight in these prob-
lems is the study of exact exponential algorithms, which focuses on minimizing the
worst-case running time. By means of comparison of such running times, we hope to
clarify which problems are harder to solve than other ones, and which techniques do
work better on which problems. Because P is probably not equal to NP, the running
times of our algorithms will be super-polynomial. Furthermore, if T (n) is the running
time of an algorithm we say:

T (n) is

sub-exponential if ∃c : T (n) ∈ Θ∗(co(n))

exponential if ∃c : T (n) ∈ Θ∗(cn)

super-exponential otherwise

using the notation Θ∗(e(n)) for Θ(e(n) ∗ p(n)), where p(n) is polynomial and e(n)
is superpolynomial in n. Furthermore, recall that o(n) = O(n) \Θ(n).

Although some special cases of NP-complete problems can be solved in sub-
exponential time, for example many problems on planar graphs, most of them are
not known to be solvable that fast. Moreover, for some NP-complete problems,
only super-exponential algorithms are known. The Quadratic Assignment Problem is
such a problem, which is considered as one of the ’hardest‘ NP-complete problems,
for more information see [Com03] or [Woe03]. Another one of these problems, the
multicover problem, will be discussed briefly in Section 3.6. The remaining problems,
problems for which the fastest known algorithms have exponential running times, are
the main subject of this thesis.

Note that we study T (n) where n is a classical measure of complexity, such as the
number of nodes or edges of a graph or the number of given integers. The study of
T (n) where n is a less classical measure, such as the size of the subset to be found or

1

2 CHAPTER 1. EXACT EXPONENTIAL ALGORITHMS

the treewidth, is called parameterized complexity. Although this study has the same
goal as ours, it will not be discussed in this thesis.

1.1 The notion of a problem

Let us begin with some standard notation, extended with some we need for our
purposes.

Definition 1.1. A problem Prob is defined by a language L ⊆ {0, 1}∗. Mostly,
Prob will refer to its decision variant, which is: given any parameter k and a
measure function f : L → N, check whether there exists a word w ∈ L such that
f(w) ≤ k. Moreover, for a problem we say its

• optimization variant is to determine the minimum k such that there exists a
w ∈ L with f(w) = k.

• construction variant is to construct a word w ∈ L such that f(w) ≤ k, for a
given k.

• counting variant, denoted with #Prob, is to compute |L|.

• parameterized counting variant, denoted with #k-Prob, is to compute
|{w ∈ L | f(w) = k}|.

In this thesis, we will also use #Prob and #k-Prob for the actual corresponding
numbers. Similarly, we use Prob for a word of L.

Let us analyse the relationships between these variants. First we mention that
the optimization variant can be solved by iteratively solving decision variants. Using
binary search over the range of f , the worst-case number of calls will be logarithmic in
the maximum of f(w). Hence, the optimization variant can efficiently be reduced to
the decision variant. If we look at the construction variant, the general reducibility to
the decision variant is less clear. However, usually one could easily extend a decision
algorithm to a construction algorithm bounded by the same time within a polynomial
factor. Therefore, such extensions are left as exercise for the reader in this thesis.
Because of these considerations, it is quite common to focus on decision variants. For
instance, NP-completeness is only defined on this variant.

For the latter two variants of Definition 1.1, the counting problems, a clear
relation is that the decision variant can be solved with the parameterized counting
variant. Moreover, the counting variant can be reduced to the parameterized counting
variant. Because this thesis is strongly focused on counting problems, we will elaborate
more on these in the following section.

1.2. COUNTING PROBLEMS 3

1.2 Counting problems

Counting problems arise in a variety of fields, one of its most natural ones being
estimating probabilities. For many of these applications, we aim to find formulas
which can efficiently be computed. One of the most famous of these formulas is the
Matrix-Tree Theorem, discussed in Section 2.4. Unfortunately, as we will explain now,
for many counting problems such a formula is not likely to exist. We will use some
simplified definitions which will do the job for our needs, and for a more in-depth
discussion we refer to a standard book about computation complexity, for example
’Computational Complexity: A Modern Approach’ [AB07].

First, we need the following:

Definition 1.2. The complexity class #P consists of all (parametrized) counting
variants of decision problems in NP. A reduction is said to be a counting reduction
if it preserves the number of solutions. A problem is #P-complete if it is in #P
and every other #P problem can be reduced to it by a polynomial-time counting
reduction.

For NP-completeness, recall that the famous Cook-Levin theorem, which states
that Satisfiability is NP-complete, is proven by showing a reduction from any
problem in NP to Satisfiability. Analogously, #Satisfiability can be proven
to be #P-complete, because the reduction already is a counting reduction. For more
information about this, we refer to Chapter 9 of [AB07]. Unfortunately, for #P-
complete problems, the following holds:

Theorem 1.3. The existence of a polynomial algorithm for a #P-complete problem
implies P = NP.

Proof. Solving a #P-complete problem in polynomial time implies that all problems
in #P can be solved in polynomial time. For any problem Prob ∈ NP, its variant
#k-Prob is in #P. Because Prob can reduced to #k-Prob, we know P =
NP. �

Obviously, one may not hope for finding a polynomial algorithm for a problem
in #P which is associated with a NP-complete decision problem. However, some
problems which are associated with a decision problem in P, are also #P-complete.
We will discuss the first known and most famous one, #Perfect Matching: Given
a graph G = (V,E), a Perfect Matching is a subset M ⊆ E such that each
node of V is in exactly one edge of M . This is well-known to be in P. However,
Valiant proved the following in [Val79]:

Theorem 1.4. #Perfect Matching is #P-complete, even when restricted to
bipartite graphs.

Actually Valiant proved a similar problem #P-complete, which is computing
the permanent. We will only give a definition of the permanent, and show how

4 CHAPTER 1. EXACT EXPONENTIAL ALGORITHMS

#Perfect Matching can be reduced to it. Given a matrix A = [aij]1≤i,j≤n, its
permanent is defined as follows:

perm(A) =
∑

π∈Πn

n∏
i=1

ai,π(i) (1.1)

where Πn are all permutations of {1, . . . , n}. Now, suppose we have a bipartite graph
B with equal-sized partitions y1, . . . , yn and z1, . . . , zn, and edge set E. We construct
the matrix A = [aij]1≤i,j≤n:

aij =

{
1 if (yi, zj) ∈ E

0 otherwise

Because the product
∏n

i=1 ai,π(i) is 1 if π is a valid perfect matching, and else 0, it
follows that #Perfect Matching of B is equal to perm(A). For the proof of the
#P-completeness of computing perm(A), we refer to [Val79].

1.3 Techniques

In this section we briefly give an overview of some important techniques for designing
exact decision algorithms, that will be used throughout this thesis. For each technique
we will discuss the extension to counting algorithms.

1.3.1 Exhaustive search

A very basic technique is exhaustive branching, which iteratively takes a decision
variable, and goes in recursion with each possible assignment of this variable. If we
would interpret this process as building a tree, all leaves simply correspond to words
of the language {0, 1}∗. Because of this, we can achieve the same by exhaustive
enumeration, i.e. enumerate all leaves, and check if they actually are a solution.
Note that in this technique, automatically the number of solutions is counted.

1.3.2 Dynamic programming on subsets

Suppose we want to compute a function f(V) which is defined in terms f(X), where
X ⊂ V . Such a function can efficiently be computed using dynamic programming,
by iteratively computing f(X) for all subsets of increasing size: start with f(∅), then
compute f(X) for all subset of size 1, and proceed until f(V) is computed.

As an example we give the classical Held-Karp algorithm for the Traveling
Salesman Problem (TSP) from [HK62]. Given a graph with nodes V and a
distance function V × V → N, the TSP is to find a cycle that contains all nodes
exactly once and minimizes its total distance. Arbitrarily choose a vertex s. Define
O(R, t), for any t ∈ V, t 6= s and R ⊆ V \ {s, t}, as the minimum total distance

1.3. TECHNIQUES 5

among all simple paths from s to t that visit vertices R ∪ {s, t} and no other. Note
that O(V \ {s, t}, t) + d(t, s) is the distance of the best cycle that has node t before
node s, and we want to compute the minimum of O(V \ {s, t}, t) + d(t, s) over all
t ∈ V \ {s}. Now we can obtain an algorithm that uses O∗(2n) time and space1 ,
using dynamic programming in combination with the following recurrence:

O(R, t) =

{
d(s, t) if R = ∅
minv∈R d(v, t) + O(R \ {v}, v) otherwise

(1.2)

Note that this technique can be extended for computing counting variants too.

1.3.3 Branch & reduce

As its name already suggests, a branch & reduce-algorithm is obtained by extending
an exhaustive branching algorithm with reduction rules. A reduction rule converts
an instance of a problem to an easier one, if it is applicable.

For illustration, we discuss and analyse a very simple algorithm for Indepen-
dent Set. Given a graph G = (V,E) and an integer k, the decision variant of
Independent Set is to find a subset I ⊆ V with |I| ≥ k such that for each
u, v ∈ I : (u, v) /∈ E. We use the following reduction rule: if there exists a vertex v

with 0 neighbors, we remove it from the graph and lower k with one. This is valid
because each independent set which does not contain v, can always be converted to
an equal-sized one which does contain v. If such a vertex does not exist, we choose
a node w and use the following branching:

• discard w, i.e. we do not include it in I, proceed with the graph obtained by
removing w.

• take w, i.e. we do include it in I, proceed with the graph obtained by removing
w and all its neighbors.

Observe that w has at least one neighbor. Because of this, the running time T (n) of
the above algorithm is upper-bounded as follows, using n = |V |:

T (n) ≤ T (n− 1) + T (n− 2)

which implies our algorithm has a running time bounded by O(1.62n). Note that the
values of T (1) and T (2) do not matter for this time bound.

This technique can not always be used for computing counting variants: some-
times, reduction rules are used which make a choice based on knowledge that there
always exists at least one (optimal) solution which is not thrown away. Obviously, any
algorithm containing such reasoning does not count all solutions.

1Similar to Θ∗, the O∗ notation suppresses polynomial factors.

6 CHAPTER 1. EXACT EXPONENTIAL ALGORITHMS

1.3.4 Split and List

The following technique is due to Williams [Wil05], who named it the split and list
approach. In a nutshell, we split a set in 3 subsets and list the power sets of these
subsets. On this structure we do our computation, which can be done faster than
before if we use matrix multiplication.

We will illustrate the technique more precisely with an example, obtaining an
algorithm for #2-SAT which is also due to Williams. First we need the following
terminology:

Definition 1.5. Given a set of n boolean variables B, a literal is a variable b or its
negation b, with b ∈ B. A clause is a set of literals, and a Conjuctive Normal Form
(CNF) expression is a set of clauses. An assignment X ⊆ B is said to satisfy a
clause if the clause contains a literal b such that b ∈ X or it contains a literal b with
b /∈ X. X satisfies a CNF expression if it satisfies all clauses. The problem #2-SAT
is, given a CNF formula where each clause consists of at most 2 literals, to compute
the number of assignments that satisfy this formula.

We mention that, altough 2-SAT ∈ P, #2-SAT is #P-complete. We will
obtain an exponential algorithm, which is as follows: Given any instance of #2-SAT,
arbitrarily partition the set of variables B in 3 sets B0, B1 and B2. Construct the
following graph G = (V,E): for each subset of B0, B1 or B2 we create a node in V .
If u ⊆ Bi and v ⊆ Bj , then (u, v) ∈ E if and only if

• i 6= j

• The assignment u∪v satisfies all clauses which only contain variables of Bi and
Bj

Let #Triangles be the number of triangles in G, i.e. the number of cycles of 3
edges. Now the number of satisfying assignments is equal to #Triangles, and we
use the following lemma to compute #Triangles faster then the trivial |V |3.

Lemma 1.6 ([Wil05]). If there is an algorithm for multiplying n×n-sized matrices,
with running time O(nω), #Triangles of a graph G = (V,E) can be computed in
O(nω) time too.

Proof. If A is the adjacency matrix of G, and A′ = A3 with A′ = [auv]u,v∈V , then
the entry auv is 1 if and only if there is a path of exactly length 3 from node u to node
v. Because of this, avv is twice the number of triangles containing v. We conclude
with:

#Triangles =
∑

v∈V avv

6
�

Now, note that G has 3∗2n/3 nodes and at most 3∗22n/3 edges. Using the fastest
known algorithm for matrix multiplication (the Coppersmith-Winograd algorithm), we

1.4. OUTLINE THESIS 7

have ω = 2.376. Hence, we can compute #Triangles inO∗(2ωn/3) = O∗(1.7314n)
time. This also gives the value of #2-SAT.

In the same year of its publication, the running time of this algorithm was improved
by Dahllof et al. in [DJW05] and Furer et al. in [FK05], using branch & reduce.
However, we will see some applications of split and list which can not be improved
easily in similar manner. Furthermore, in this technique, automatically all solutions
are counted.

1.4 Outline thesis

This remainder of this thesis is organized as follows: In Chapter 2 we introduce
inclusion exclusion and IE-branching. Furthermore, we give a proof of a famous
theorem to count the number of spanning trees in polynomial time, using inclusion-
exclusion. We also give a simple combinatorial interpretation of the theorem, which
suggests some extensions.

In Chapter 3, we provide some applications of inclusion exclusion. We extend
Karp’s scheduling algorithm such that it is much more efficient for most instances.
Furthermore, we give the first non-trivial algorithm for the multicovering problem
(which for example contains multicoloring), and propose the first O∗(2n) algorithm
for Cluster editing.

In Chapter 4 we give an adjusted version of abstract tubes, and introduce the
important concept of IE-branch & reduce, and discuss how it can be combined with
recent approaches of Björklund et al. to compute the simplified problem fast, in the
context of cover formulations. As an example we give a branch & reduce algorithm
for graph coloring.

In Chapter 5, we do a case study, applying IE-branching to the well-studied dom-
inating set problem. Although we compute the counting variant, our algorithm also
solves the decision variant faster then the most efficient decision algorithm.

Chapter 2

Inclusion exclusion

In this chapter we give an introduction to the principle of inclusion exclusion. In
Section 2.1, we will give 2 examples and provide some important terminology. After
this, we will present 2 significantly different interpretations of the principle.

The first one is the algebraic interpretation in Section 2.2. We give a simplified
version which suffices for our purposes. A more in-depth discussion on this subject
might be useful, but unfortunately this is beyond the scope of this thesis. The study
will be briefly continued in Section 4.1.

The second one is the combinatorial interpretation in Section 2.3. Here we in-
troduce the important notion of an IE-branch, which is intuitive and appears to be
combined easily with the technique of Section 1.3.3.

In Section 2.4 we will discuss one of the few known non-trivial polynomial time
counting algorithms. This is interesting because it could inspire for other polynomial
time algorithms. We will first give a proof of a famous theorem, using inclusion
exclusion. After that, we will give a corresponding combinatorial algorithm on graphs.

We will conclude this chapter with a brief discussion of the role of inclusion ex-
clusion in the research area of designing algorithms.

2.1 Introduction

In a nutshell, inclusion exclusion is a way of computing a quantity through computing
its complement with respect to some universe of known size. In many applications,
computing the size of this complement appears to be a lot easier. Let us start with a
nice visual example:

8

2.1. INTRODUCTION 9

U

1

1

1

1

2

2

2 2

3

3

3

3

4

A1 A2

A3 A4

(a)
∑

i |Ai|

U

1

1

1

1

1

1

1 1

0

0

0

0

-2

A1 A2

A3 A4

(b) -
∑

i<j |Ai ∩Aj |

U

1

1

1

1

1

1

1 1

1

1

1

1

2

A1 A2

A3 A4

(c) +
∑

i<j<k |Ai ∩Aj ∩Ak|

U

1

1

1

1

1

1

1 1

1

1

1

1

1

A1 A2

A3 A4

(d) -
∑

i<j<k<l |Ai ∩Aj ∩Ak ∩Al|

Figure 2.1: An example of an inclusion-exclusion formula

2.1.1 Five sets in a Venn-diagram

Suppose we are given 5 subsets A1, . . . , A5 of a set U , illustrated in Venn-diagram
Figure 2.1. For notational ease, assume Ai = ∅ for i < 1 and i > 5. We want to
compute |

⋃
i Ai|, without using any union operator.

First, in (a), we sum over all subsets, counting elements of frequency i exactly i

times. To compensate, we subtract the sizes of the intersections between each pair
of sets in (b), subtracting elements of frequency i exactly i∗(i−1)

2 times. After adding
all intersections of 3 sets and subtracting the elements in all 4 sets, every element in
one of the sets is counted exactly once. Concluding, we obtain the following identity:

|
⋃
i

Ai| =
∑

i

|Ai|−
∑
i<j

|Ai∩Aj |+
∑

i<j<k

|Ai∩Aj ∩Ak|−
∑

i<j<k<l

|Ai∩Aj ∩Ak∩Al|

10 CHAPTER 2. INCLUSION EXCLUSION

2.1.2 IE-terminology

The approach of the example of above, can used in many different settings. Moreover,
as we shall see, for a given problem, there does not exist one distinct way of applying
the technique. Therefore, we will extensively use the following terminology:

Definition 2.1. In the context of inclusion exclusion for computing #Prob defined
by a language L, we use the following notions and definitions:

• U is a superset of L, called the universe.

• A requirement A is a subset of U , whose elements are said to meet A.

• A = {Ai}i∈R denotes the set of requirements, indexed with the requirement
space R. An element u ∈ U is said to meet A if it meets all of its requirements.

• The complement of a requirement A = U \A

•
⋂

i∈∅ Ai = U .

• The simplified problem is to compute |
⋂

i∈X Ai|, for a given X ⊆ R.

2.1.3 Counting derangements

A classical exercise for inclusion exclusion is counting derangements. Given a re-
quirement space R, a derangement is a permutation π : R → R such that for all
i ∈ R : π(i) 6= i. Define the universe U to be all permutations of R, and the
requirements Ai are all permutations π such that π(i) = i. Note that |Ai| = (n− 1)!

Like the previous example, we compute
∑

i |Ai| =
∑

i(n − 1)!, counting permu-
tations which map i values into themselves i times. To compensate, we subtract∑

i<j(n− 2)!, achieving that permutations mapping no more than two elements into
themselves are counted exactly once. If we keep going on, we get the following
equality, of which the correctness will be proven later for a more general case.

|
⋃
i∈R

Ai| =
∑
X⊆R
X 6=∅

(−1)|X|−1(n− |X|)! (2.1)

Observe that |U | − |
⋃

i∈R Ai| is the number of permutations without fixed elements,
i.e. the number of derangements. Hence, if we denote d(n) for the number of
derangements of a n-sized set R, Equation 2.1, can be rewritten into

d(n) =
∑
X⊆R

(−1)|X|(n− |X|)!

Note that it is not efficient to compute this formula directly, since we have to sum
over all 2n subsets. Fortunately all subsets of the same size are symmetric, that is,
they contribute exactly the same to the summation. Because of this the contribution

2.2. ALGEBRAIC INTERPRETATION 11

of all i-sized subsets is (−1)i
(
n
i

)
(n − 1)!, which suggests the following much more

efficiently computable formula:

d(n) =
n∑

i=0

(−1)i

(
n

i

)
(n− 1)!

2.2 Algebraic interpretation

In this section we give an algebraic interpretation of inclusion exclusion. More specif-
icaly, we prove a generalization of Equation 2.1, using a basic concept from topology.

Definition 2.2. A sumspace on a requirement space R is a family of non-empty
subsets. A simple sumspace S is sumspace which is closed under inclusion, that is,
if X ∈ S and ∅ ⊂ X ′ ⊆ X, then X ′ ∈ S.

Note that a simple sumspace S is uniquely defined by its maximal sets M, i.e. the
sets which are not a subset of other sets. We say S is induced by M. For the more
interested reader, we mention that the notion of simple sumspace is called ’abstract
simplicial complex‘ in mathematics.

Definition 2.3. Given a sumspace S the Euler characteristic χ(S) is defined as:

χ(S) =
∑
X∈S

(−1)|X|−1

In this section, we only need the following property of the Euler characteristic:

Lemma 2.4. Let S be the simple sumspace induced by a set S, then:

χ(S) =

{
0 if S = ∅
1 otherwise

Proof. First, we rewrite the left-hand side:

χ(S) =
|S|∑
i=1

(
|S|
i

)
(−1)i−1 = 1−

|S|∑
i=0

(
|S|
i

)
(−1)i

Now substituting S = ∅ immediately boils down to 0, while using S 6= ∅ gives 1,
because

∑|S|
i=0

(|S|
i

)
(−1)i = 0 by the binomial theorem. �

The latter equality in the proof can be also be proven with the following bijection
between even and odd subsets of a non-empty set S: Choose an element of v, and
given an X ⊆ S, change v’s membership of X.

With Lemma 2.4, we are ready to prove the inclusion exclusion identity:

12 CHAPTER 2. INCLUSION EXCLUSION

Theorem 2.5.

|
n⋃

i=1

Ai| =
∑
X⊆R
X 6=∅

(−1)|X|−1|
⋂
i∈X

Ai|

Proof. For each u ∈ U , we use R[u] = {i ∈ R | u ∈ Ai} for all requirements which
are met by u. Furthermore, we define S[u] = {I ∈ S | I ⊆ R[u]}, i.e. all subsets of
requirements in R which are met by u . Now, we rewrite the right-hand side of the
equation:

|
n⋃

i=1

Ai| =
∑
u∈U

χ(S[u])

and the theorem follows from Lemma 2.4. �

Actually, the following variant of Theorem 2.5 is more usual:

Corollary 2.6.

|
n⋂

i=1

Ai| =
∑
X⊆R

(−1)|X||
⋂
i∈X

Ai|

Proof. We use the equation of Theorem 2.5, multiply both sides with −1, and after
that, add |U |. We obtain the equation from the corollary. �

2.3 Combinatorial interpretation

In this section we will introduce the concept of Inclusion Exclusion-branching (IE-
branching). Though the technique is quite fundamental, there are barely any publi-
cations using it. We use a formalization which is due to Bax [Bax96].

Definition 2.7. Given a universe U and two sets of requirements A = {Ai}i∈R and
B = { Aj }j∈S , where Ai ⊆, for each i, we define:

N(R,S) = |(
⋂
i∈R,

Ai) ∩ (
⋂
j∈S,

Aj)|

In other words: N(R, S) is the number of elements of U that satisfy both A and
B. Note that, due to Definition 2.1, N(∅, ∅) = |U |. The definition is an extension
of the notion N(S) of Karp in [Kar82]. However, the use of the extra parameter R

allows the following recurrence:

Theorem 2.8. For all elements v ∈ R:

N(R,S) = N(R \ {v}, S)−N(R \ {v}, S ∪ {v})

Proof. N(R \ {v}, S) is the number of elements which satisfy A \ Av and B. Sub-
tracting number N(R \ {v}, S ∪{v}) of such elements that also satisfy Av, leaves us
with the number of elements that meet both A and B. �

2.4. KIRCHHOFF’S MATRIX TREE THEOREM 13

Any application of this theorem is said to be an IE-branch. In the context of
counting algorithms, a classical branch is on something which could be taken, and if
we simplify things a bit, it uses the following equation:

Optional = Required + Forbidden

Similarly, an IE-Branch is on something which is required and hence uses the following
equation:

Required = Optional − Forbidden

Similarly to exhaustive branching, any application of Corollary 2.5 would be exhaustive
IE-branching: Suppose if we want to compute N(R, ∅). If we keep rewriting this using
Theorem 2.8, until R = ∅, we arrive at Corollary 2.6.

Finding an efficient exhaustive branching algorithm is not always trivial. As will
appear, this is certainly also the case with exhaustive IE-branching. We mention that
it is possible to interleave both branching strategies and for an example we refer to
Chapter 5.

2.4 Kirchhoff’s Matrix Tree Theorem

In 1847, Gustav Kirchhoff published a theorem which relates the number of rooted
spanning trees of a directed graph to the determinant of a variant of its adjacency
matrix. First, we will prove this theorem by showing that the determinant of this
matrix is equivalent to an inclusion exclusion formula. After the counting of the
derangements, this is the second inclusion exlusion formula which can be computed
efficiently. After this, we will also give a more straight forward proof which uses Gauss
elimination.

2.4.1 A proof with inclusion exclusion

We assume a digraph D = (V,A), and a root r ∈ V are given. We abbreviate
V ′ = V \ {r}. A rooted spanning tree of D with root r is an arc set X ⊆ A such
that each v ∈ V ′ has one path to r. In this subsection we will prove the following:

Theorem 2.9. Write d+(v) for the out degree of v. The reduced Laplacian matrix
L of D is defined as L = [lvw]v,w∈V ′ , with:

lvw =

d+(v) if v = w

−1 if v 6= w and (v, w) ∈ A

0 else

Now, the number of spanning trees rooted at r of D is equal to the determinant
|L|.

14 CHAPTER 2. INCLUSION EXCLUSION

We will rewrite |L| into a valid inclusion exclusion formulation. Our starting point
is the following definition of the determinant:

|L| =
∑

π∈ΠV ′

sgn(π)
∏

v∈V ′

Lvπ(v) (2.2)

where ΠV ′ are all permutations of V ′, and sgn(π) is 1 if π is an even permutation,
that is, it is obtained by an even number of interchangements, and −1 else.

We distinguish the permutations of ΠV ′ from each other based on their fixed part
F , which are all elements mapped into themselves. If we write F for the non-fixed
part V ′ \ F and ∆F for all derangements of F , we obtain the following:∑

F⊆V ′

(∑
δ∈∆F

sgn(δ)
∏
v∈F

Lvδ(v)

)∏
v∈F

Lvv (2.3)

Now, we obtain a combinatorial insight of this equation for a given fixed part:

Lemma 2.10. A cycle partition is a set of cycles of D such that each node is in
exactly one cycle. A cycle partition is called even (odd) if it consists of an even (odd)
number of cycles. Given any non-fixed part F ,∑

δ∈∆F

sgn(δ)
∏
v∈F

Lvδ(v) (2.4)

is the number of even cycle partitions minus the number of odd cycle partitions of F .

Proof. First notice that if
∏

v∈F Lvδ(v) 6= 0, the arc set { (v, δ(v)) | v ∈ F } is a
cycle partition of F . Therefore, we only have to look at derangements corresponding
to cycle partitions.

A cycle σ with vertices σ1, . . . , σk can be obtained by iteratively interchange σi

with σi+1 for 1 ≤ i < k. Hence it will inverse the sign of sgn(δ) if and only if it
is even. However, such a cycle also contains k edges, so the sign will be multiplied
k times by −1, because L′ij is negative. Because of this every cycle, even or odd,
will inverse the sign of its cycle partition. Now the lemma follows from the fact that
(−1)k is 1 if k is even, and is −1 if k is odd. �

Now we will use this lemma to rewrite Equation 2.3 into an inclusion exclusion
expression, and show that the latter indeed counts the number of spanning trees. To
this end, we first need the following definition:

Definition 2.11. A parent assignment is a subset P ⊆ A such that for each v ∈ V ′

there is one w ∈ V such that (v, w) ∈ P , and there is no w ∈ V such that (r, w) ∈ P .

Lemma 2.12. Let Σ be the set of cycles consisting of at least 2 arcs, Σ ⊂ 2A. More-
over, given a set of cycles X ⊆ Σ, define c(X) as the number of parent assigments
P such that for all cycles σ ∈ X , σ ⊆ P . Now, Equation 2.3 is equal to∑

X⊆Σ

(−1)|X |c(X) (2.5)

2.4. KIRCHHOFF’S MATRIX TREE THEOREM 15

Proof. In a parent assignment all nodes can be in at most one cycle, so c(X) = 0 if
X consists of 2 cycles share that a node. Therefore, we assume that X consists of
disjoint cycles. Thus, X is a cycle partition of exactly one node set F . By Lemma
2.10, we know that the contribution of X to Equation 2.3 is

∏
v∈F Lvv if X consists

of an even number of cycles and otherwise, its contribution is −
∏

v∈F Lvv. Looking
at Equation 2.5, the contribution of X is exactly the same, because for all v ∈ F

every outgoing edge can be chosen, which results in
∏

v∈F d+(v) possibilities. �

Now we are finally ready to prove the Matrix Tree Theorem:

Proof of Theorem 2.9. Define U as the set of all parent assignments. For each
cycle σ, Aσ are all P ∈ U such that σ ⊆ P . Now we have that c(X) = |

⋂
σ∈X Aσ|

and the number of spanning trees is equal to |
⋂

σ∈X Aσ|. Hence Equation 2.5 is
equal to the number of spanning trees of D, by the inclusion exclusion identity. Due
to Lemma 2.12 this is equal to the determinant |L|. �

We mention that the number of unrooted spanning trees of an undirected graph
can also be computed the same way, since every node can be seen as root of a tree.

2.4.2 Gauss elimination on the reduced Laplacian

Keeping in mind that Gauss elimination has the determinant of the matrix as its
invariant, the following question arises: Is there a combinatorial interpretation of
Gauss elimination on the reduced Laplacian? In this section we sketch a proof of a
generalization of Theorem 2.9, using a more combinatorial interpretation:

Theorem 2.13. Given a directed multigraph D with root r, nodeset V = {v1, . . . , vn}∪
{r} and edge multiplicity function m : (V ′×V) → Q1 , we define its reduced laplacian
L = [lij]vi,vj∈V ′ as:

lij =

{∑
u∈V m(vi, u) if vi = vj

−m(vi, vj) else

Define the multiplicity of a spanning tree is the product of the multiplicity of its arcs.
Now, the sum of the multiplicity of all spanning trees of D is equal to |L|.

First suppose that L is an upper triangle matrix. That is, all elements below the
diagonal are zero. Then, G is a directed acyclic multigraph. Observe that every parent
assignment is a spanning tree since it does not contain any cycles. Now the number
of parent assignments, with respect to m, is

∏
i∈V ′ Lii, which is equal to |L|.

If L is not upper triangle, Gauss elimination performs an elementary row op-
eration: Take a row and add it a constant times to another row. Note that Gauss
elimination has the determinant as variant and makes a matrix upper triangle with
elemenary row operations. Hence, for proving Theorem 2.13, it only remains to proof
the following lemma:

1Q denotes all numbers which be written as a ratio of 2 integers

16 CHAPTER 2. INCLUSION EXCLUSION

v1 v2 v3 r
v1 v2 v3

v1 1 −1 0
v2 −1 3 −1
v3 −1 −1 3

v1 v2 v3 r
v1 v2 v3

v1 1 −1 0
v2 0 2 −1
v3 −1 −1 3

v1 v2 v3 r

v1 v2 v3

v1 1 −1 0
v2 0 2 −1
v3 0 −2 3

v1 v2 v3 r

v1 v2 v3

v1 1 −1 0
v2 0 2 −1
v3 0 0 2

Figure 2.2: An example of gauss elimination on the reduced laplacian obtaining
the number of spanning trees rooted at r.

Lemma 2.14. Any elementary row operation, adding a row i a constant c times to
another row j, on L preserves on the number of spanning trees of the associated
directed multigraph.

Proof. In the multigraph, such an operation corresponds to redirecting arcs (vi, vj):
We remove c ∗ Lii arcs (vj , vi) and adjust other values to compensate. If we would
have chosen one of the removed arcs in our spanning tree, all arcs (vi, vj) cannot
be chosen anymore. Therefore, we compensate by lowering the degree of vj with
c ∗ (vi, vj). Moreover, using one of the removed arcs, there have been c ∗ (vj , vk)
possibilities to assign vk as (indirect) parent of vi. Therefore m(vi, vk) is raised with
c ∗ (vj , vk). �

Proof of Theorem 2.13. As mentioned above, the theorem holds if L is upper tri-
angle. Otherwise, we can use elementary row operations to make it upper triangle.
Now the theorem follows from Lemma 2.14. �

2.5. CONTEXT 17

2.5 Context

The first explicit occurrences of inclusion exclusion are dated in the beginning of the
17th century. In 1708, Pierre Rémond de Montmort (1678-1719) used the principle
to solve "le problème des recontres", which basically boils down to the counting of
derangements from Section 2.1.3. In 1718 Abraham Demoivre published the first
textbook about probability theory, "Doctrine of chances", which contained a more
set-theoretic approach of the technique. Sometimes, the principle is also attributed
to James Joseph Sylvester (1814-1897).

The first inclusion exclusion formulation of a NP-hard problem is probably due
to Whitney [Whi32] and will be discussed in Section 3.4. The next publication which
is worth mentioning is a 3-page note of Karp [Kar82], in which he applies inclusion
exclusion to a small selection of well-known NP-complete problems. Curiously, this
note did not get many attention, and the technique was still a little bit unknown in
the field of exact exponential algorithms. In 1996 [Bax96] published a way to break
down inclusion exclusion, and gives some experimental results of applications. In 2006,
inclusion exclusion received new attention: Börklund and Husfeldt, and independently
Koivisto [BH06a, Koi06] gave an O∗(2n) algorithm for graph coloring and some other
problems. After this, they decide to collaborate and achieved more similar interesting
results. Takacs provides more historical information about the principle and some
classical applications [Tak67].

We mention that inclusion exclusion is also used in many other areas of research.
Most of these areas are concerned with probability theory, such as network reliability
and data mining. For network reliability applications we refer to [Doh03], and inclusion
exclusion for data mining we refer to [CG05].

Inclusion exclusion is discussed in many (under)graduate textbooks about discrete
mathematics: For example [Tuc94] and [Gri94] devote an entire chapter to inclusion
exclusion, and [And04] gives a briefer overview.

Chapter 3

IE-Formulations

In this chapter we will give a number of applications of inclusion exclusion. With each
application, we provide a brief discussion of its efficiency. In this way, we illustrate
how one should use inclusion exclusion. Moreover, we will give some optimizations if
they are not too complicated. For more involved optimizations we refer to Chapter 4.

We will extensively use the equation

|
⋂
r∈R

Ai| =
∑
X⊆R

(−1)|X||
⋂
i∈X

Ai|

of Corollary 2.6. Because of this, we call such an application an (IE)-formulation
and shorthand it with the following notation:

#Prob
Instance Input of #Prob
U The universe U⋂

r∈R Ar #Prob
Ar The requirements Ar

In Section 3.1 we give a straightforward formulation for #Satisfiability, with
a new optimization. After this, we will review the formulations of Karp for Hamil-
tonian cycle and TSP in Section 3.2. In Section 3.3 we discuss a formulation
for a scheduling problem, which is again due to Karp, and give a new optimization.
Section 3.4 will be about an old formulation of Whitney for Graph Coloring. In
Section 3.5 we will review the formulation of Björklund et al. for the generic Set
Cover. In the next section we will study an even more generic problem, Multi
Covering and give a new efficient algorithm. In Section 3.7 we will show how the
Cluster Editing problem can be solved with our framework, obtaining the fastest
known algorithm.

18

3.1. CNF SATISFIABILITY 19

3.1 CNF Satisfiability

For the definition of a CNF formula, we refer to Definition 1.5. #Satisfiability is
to count the number of satisfying assignments of a given CNF formula. The following
IE-formulation is a straightforward one:

#Satisfiability
Instance A CNF formula
U Variable assigments⋂

C∈R AC Satisfying variable assignments
AC Variable assignments such that C is not satisfied, for each clause

C

Given a set of clauses C, a variable is said to be free if it does not occur in any 2
clauses of C. A variable v is said to be conflicting if both literals v and v occur in
any clause of C. C is called conflicting if it contains a conflicting variable. Now the
simplified problem of the above formulation is as follows: given a set of clauses C,
compute v(C), the number of variable assignments such that all clauses of C are not
satisfied. This can be computed in polynomial time, using:

v(C) =

{
0 if C is conflicting

2F (C) else

where F (C) is the number of free variables induced by C.
The sumspace S could be reduced by only considering non-conflicting clause sets.

Such sets can be enumerated, using an independent set1 enumeration algorithm: a
non-conflicting clause set corresponds to an independent set in the graph G = (V,E),
where V are all clauses of the CNF formula and vertices u, v ∈ V share an edge if
{u, v} is conflicting. Although this is a very dense graph, S would still be exponential
in the number of clauses, while a straightforward exhaustive branching algorithm would
be exponential in the number of variables, which is more efficient for most instances.

3.2 Hamiltonian cycles and the travelling salesman prob-
lem

A walk in a graph G = (V,E) is a sequence of vertices W = (w1, . . . , wk) such that
(wi, wi+1) ∈ E, for each 1 ≤ i < k. W is said to be a cycle if (wk, w1) ∈ E. The
length of W is k. An Hamiltonian cycle is a cycle of length n that contains
each vertex exactly once. We use the following IE-formulation for solving its counting
variant, which is originally due to Karp [Kar82]:

1For the definition of an independent set, we refer to Section 1.3

20 CHAPTER 3. IE-FORMULATIONS

#Hamiltonian cycles
Instance A graph G = (V,E)
U All cycles of length n, containing an arbitrarily chosen node s⋂

v∈R Av All cycles that contain each vertex exactly once
Av All cycles containing s of length n such that v is avoided

The simplified problem is to compute the number of cycles of length n that contain
s, avoiding a certain node set X. This can be computed in O(|V |2 ∗ |E|) time with
dynamic programming. We mention that this can be improved slightly: Let B be the
adjacency matrix of the graph obtained by removing vertices X, and their adjacent
edges. Then, if Bn = [bvw]v,w∈V , then |

⋂
v∈X Ai| = bss. Bn can be computed with

lg(n) matrix multiplications, hence the time bound of O(lg(n) ∗ |V |ω) .
In 1996, Bax presented a branch and reduce algorithm, corresponding with the

above formulation, but does not improve the worst-case running time. For information
on the reduction rules and some experimental results, we refer to [Bax96].

The previous formulation can easily be extended to solve TSP, defined in Sub-
section 1.3.2:

#Travelling salesman
Instance A node set V a distance function d : V ×V → N and a decision

parameter k

U All loops of length n of distance ≤ k⋂
v∈R Av All Hamiltonian cycles of G of total distance ≤ k

Av All cycles of length n such that v is avoided, for each v ∈ V

The simplified problem of this formulation can be computed in O(|V |3 ∗ C) with
dynamic programming too, where C is maximum value of d. The actual recurrence
is left as exercise for the reader. If we compare this formulation with the dynamic
programming algorithm of Subsection 1.3.2, the most important difference is that the
IE-formulation uses polynomial space, in contrary to dynamic programming. The
only very small advantage of dynamic programming is that it does not have a factor
C in its running time.

Actually, before paper of Karp [Kar82], Kohn et at. [KGK77] already proposed a
similar algorithm for TSP, using generating functions, which is somewhat similar with
inclusion exclusion. Very recently [BHKK08b] presented an O∗((2 − ε)n) algorithm
on graphs with bounded degree, for a small ε. This was achieved using techniques of
Chapter 4.

3.3 A scheduling problem

Definition 3.1. An interval [a . . . b] is the set of all integers between a and b, in-
cluding a and b.

3.3. A SCHEDULING PROBLEM 21

Consider the following scheduling problem: Given are n jobs J = {J1, . . . , Jn},
each with an interval Wi = [ri . . . di] and production time pi. We assume pi > 0. A
schedule S is a set of tuples (Ji, s) such that [s . . . s + pi] ⊆ Wi, and for each pair
(Ji, s1) and (Jj , s2): [s1 . . . s1 + pi] ∩ [s2 . . . s2 + pj] = ∅. Moreover, a schedule S

is called valid if for each Ji ∈ J there exists a s and (Ji, s) ∈ S. For counting the
number of valid schedules, we use the following IE-formulation of Karp from [Kar82]:

#Scheduling with release times and deadlines
Instance Jobs J = {J1, . . . , Jn}, each with an interval Wi = [ri . . . di]

and processing times pi

U All schedules⋂
i∈R Ai All valid schedules

Ai Schedules that do not contain Ji

The simplified problem can be computed in O(n ∗maxi di) time, using dynamic
programming. We omit the recurrence.

Now we will discuss an optimization of this algorithm for the decision variant
which could be useful in practice. We use the technique of adjusting the universe,
which will be discussed more explicitly in Section 4.2. The improvement is based on
the following concept:

Definition 3.2. Given J = {J1, . . . , Jn}, with intervals Wi = [ri . . . di] and produc-
tion times pi, we construct the scheduling graph as follows: first, we add the jobs
Js with rs = ds = −1, ps = 0 and Jt with rt = dt = maxi dt + 1, ps = 0. Now
we make a node for each pair (Ji, x) such that x ∈ [ri . . . di − pi]. Furthermore, we
construct an arc between two nodes with pairs (Ji, x1) and (Jj , x2) when none of the
following conditions hold:

1. Overlap: x1 + pi ≥ x2

2. Impossible job: There exists a job Jk such that rk > x1 and dk < x2 + pj

3. Same jobs: i = j

4. Earlier possible time: There exists a node with pair (Jj , x3) such that x1+pi <

x3 and x2 < x3

5. Job in between: There exists a node with pair (Jk, x3), i 6= k, such that
s1 + pi < x3 and x3 + pk < x2

We say a schedule S contains an arc ((J1, s1), (J2, s2)) if (J1, s1), (J2, s2) ⊆ S and,
there does not exist a (J3, s3) ∈ S such that s1 ≤ s3 ≤ s2.

The following lemma illustrates the use of the scheduling graph:

Lemma 3.3. For each valid schedule S that contains an arc which is not in the
scheduling graph, there exists a valid schedule that does.

22 CHAPTER 3. IE-FORMULATIONS

Proof. Note that a set containing an arc satisfying condition 1 is not a schedule, while
a schedule containing an arc satisfying condition 2 implies invalidness. Therefore, they
can safely be ignored. Moreover, if S contains an arc (u, v) that satisfies condition 3
or 4, and (v, w) ∈ S is the other arc that contains v, they can safely be replaced with
the arc (u, w) preserving the validness. Similarly, if (u, v) satisfies condition 5, it can
be replaced with (u, (Jk, x3)) and ((Jk, x3), v). �

Hence we can restrict ourselves to finding a path in the scheduling graph such
that for each job Ji, the path contains at least one (Ji, s), for some s. While we
still branch on these requirements, we could for example use the following reduction
rule: if the deletion of all nodes labeled with one job Ji form a separator, make its
requirement optional.

We note that the proposed branching strategy can safely be interleaved with
other kind of branching strategies. Moreover more reduction rules can be formulated.
the disadvantage is that making a requirement optional usually does not make our
problem that much easier. However, potentially this could be an efficient formulation.
We mention that this algorithm could also be used if we extend the problem with a
cost function on arcs, and the sum of the costs of all arcs has to be minimized.

3.4 Graph coloring

The following IE-formulation was already published in 1931 by Whitney in [Whi32]:

#Graph coloring
Instance A graph G = (V,E), an integer k

U All functions φ : V → {1, . . . , k}⋂
e∈R Ae For each edge (y, z) ∈ E, φ(y) 6= φ(z)

Ae φ(y) = φ(z), if the edge v = (y, z)

Given an edge set X, define cc(X) as the number of connected components of the
graph induced by the edge set X. Now, the simplified problem is as follows: Given
any edge set X ⊆ E, compute kcc(X). Obviously, the formulation is not very efficient.
Using IE-branching in combination with reduction rules, would be a little bit better:
if we branch on meeting a requirement Ae, where e = (x, y), the nodes x and y can
be merged.

Let us mention the similarity with the more classical branching strategy, which is
as follows: Take a pair which does not share an edge. Either this pair has the same
number assigned (contract), or they do not (create an edge).

3.5 Set cover and partition problems

The results of this section are due to Björklund et al. [BHK06]. Let us consider
the #k-Set Cover problem: Given a set R and a family of sets F , compute the

3.5. SET COVER AND PARTITION PROBLEMS 23

number of tuples (F1, . . . , Fk) ∈ Fk such that
⋃k

i=1 Fi = R. We use the following
IE-Formulation:

#k-Set Cover
Instance A set R, a family of sets F
U All k-tuples (F1, . . . , Fk) ∈ Fk⋂

r∈R Ar All elements of U such that each element of R is in at least one
set Fi

Ar Element r is not contained in any set

Notice that the simplified problem is to compute |{F ∈ F | F ∩X = ∅}|k, for some
given X ⊆ R. If this can be solved in polynomial time, this formulation gives an
algorithm with a running time bounded by O∗(2n), with polynomial space. If the
simplified problem is #P-complete, achieving the same time bound is not obvious.
However, if we make the assumption that given any subset X ⊆ R, membership of
F can be decided in polynomial time, we can use dynamic programming to achieve
the same time bound with exponential space. Let R = {r1, . . . , rn}. Define gj(X)
as follows:

gj(X) =
∣∣∣{F ∈ F

∣∣∣ F ⊆ X, F ∩ {rj+1, . . . , rn} = X ∩ {rj+1, . . . , rn}
}∣∣∣

or in words, gj(X) is the number of sets F which must contain all ri ∈ X, for i > j,
and possibly contain ri ∈ X, for i ≤ j. Using this notation, the simplified problem is
to compute gn(R \X), which can be done simultaneously for all X in O∗(2n) using
dynamic programming in combination with the following recurrence:

gj(X) =

b(X) if j = 0

gj−1(X \ {rj}) + gj−1(X) if rj ∈ X

gj−1(X) if rj /∈ X

(3.1)

Where b(X) is the indicator function of F , that is, b(X) = 1 if X ∈ F and b(X) = 0
if X /∈ F .

This formulation can easily be extended for additional constraints on solutions:
The #k-Set Partition problem asks to compute the number of words of k-Set
Cover which contain each element of R exactly once. This can be solved by adjusting
the universe, using the following observation: A k-Set Partition is a k-Set Cover
if and only if the sum of the sizes of the sets are exactly n. So we can use the following
formulation:

#k-Set Partition
Instance A set R, a family of sets F
U All k-tuples (F1, . . . , Fk) ∈ Fk such that

∑k
i=1 |Fi| = n⋂

r∈R Ar All elements of U such that each element of R is in at least one
set Fi

Ar Element r is not contained in any set

24 CHAPTER 3. IE-FORMULATIONS

The simplified problem can be solved as follows: Let gn(s,X) be the number of
elements F ∈ F such that F ⊆ X and |F | = s. We compute gn(s,X), for each
X ⊆ R, using Equation 3.1 extended with the parameter s, and with the addition
of the base case g0(s,X) = 0, if |X| 6= s. Now denote t(k, s, X) for the number
of k-tuples (F1, . . . , Fk) ∈ Fk such that

∑k
i=1 |Fi| = s and Fi ∩ X = ∅, for each

1 ≤ i ≤ k. The simplified problem is to compute t(k, n, V \X) for each X ⊆ R and
can be computed using the following recurrence:

t(k, s, X) =

{
gn(s,X) if k = 1∑s

i=0 gn(i,X) ∗ t(k − 1, s− i,X) else

Further pushing the envelope, suppose a cost function c : 2R → N is given, and
we want to find a partition (F1, . . . , Fk) ∈ Fk such that

∑k
i=1 Fi is minimized. By

further adjusting the universe, this problem can be solved too. We omit the details.
We conclude this section by mentioning that in [BHKK07], Björklund et al. gave

an O∗(2n) algorithm for the following even more generic problem: Given 2 polynomial
time computable function f, g : 2R → N, compute their subset convolution (f ∗ g)
for all R′ ⊆ R, where (f ∗ g) is defined as follows:

(f ∗ g)(R) =
∑
X⊆R

f(X) ∗ g(R \X)

For more similar algorithms and their applications we refer to [BHKK07].

3.6 Multi set cover and set partition problems

To state the problem that we will solve in this section, we need to introduce the
following:

Definition 3.4. A multiplicity function of R is a function m : R → N. We use the
following notation:

• Given 2 multiplicity functions x and m of R, we write x � m if for all r ∈ R,
x(r) ≤ m(r)

• The length |x|, is defined as
∑

v∈V x(v).

• The elements R[x] of x, are all r ∈ R for which x(r) > 0.

• m− x is the component wise subtraction (as in vector subtraction).

Now, the problem #k-Multi Set Cover is defined as follows: Given a set R

with multiplicity function m and a family of sets F , #k-Multi Set Cover is to
compute the number of tuples (F1, . . . , Fk) ∈ Fk such that for each r ∈ R, r is in
contained in at least m(v) sets.

3.6. MULTI SET COVER AND SET PARTITION PROBLEMS 25

This problem could be solved using a Set Cover formulation: Our requirement
space R′ consists of m(r) copies of each r ∈ R, and hence F ′ consists of

∏
r∈F m(r)

copies, for each F ∈ F . Unfortunately this gives an algorithm using O∗(2|m|) time,
which is not very efficient. Somewhat inspired by the efficient formula for counting
derangements of Subsection 2.1.3, we will give a more efficiently computable formula
by exploiting symmetries. Denote s(x) for the simplified of the Set Cover formulation
above, corresponding to a subset of R′ consisting of x(r) copies of r, for each r ∈
R. Note that this is equal to s(x) =

∑
F∈F

∏
r∈F m(x). Now we can obtain the

following:

Theorem 3.5.

#k-Multi Set Cover =
∑
x�m

(−1)|x|
(∏

r∈R[x]

(
m(v)
x(v)

))
s(m− x)k

Proof. For each multiplicity function x � m, there are
∏

r∈R(m)

(m(v)
x(v)

)
subsets of

R′ where each vertex r has m(r)− x(r) copies. All subsets of R′ have an associated
multiplicity x for which x � m. Moreover, there are exactly

∏
r∈F m(x) copies of

F in F ′. Therefore, the contribution of a subset with multiplicity function x to the
#Set Cover formulation is exactly s(m− x). Hence the equation is equivalent to
the covering formulation with R′ and F ′ �

As an example, this theorem can be used for solving the multicoloring problem,
which is a special case of #k-Multi Set Cover where F are all independent sets1

of a given graph G = (V,E), and the node set has to be covered, hence R = V .
The simplified problem, computing s(x), can be computed simultaneously for all
x � m within the same time bound, using dynamic programming with the following
recurrence:

s(x) =

{
1 if x(v) = 0 for each v ∈ V

s(x{v}→0) + x(v) ∗ s(xN [v]→0)) otherwise

where xB→0 is the multiplicity function obtained by setting x(v) = 0 for each v ∈ B.

We mention that, similarly to the concept of an IE-branch, one could also use
multi IE-branching: suppose an element has to be covered c times, then imagine
there are c-copies. We can branch in the following way, where Forbiddeni means
that i copies are forbidden.

Requiredc =
c∑

i=0

(−1)i

(
c

i

)
Forbiddeni

1For the definition of an independent set, see Section 1.3

26 CHAPTER 3. IE-FORMULATIONS

We conclude, by mentioning that in fact, one could formulate equations which strongly
generalize the classical inclusion exclusion. We refer to Narushima [Nar82] for inclusion
exclusion on partially ordered sets.

3.7 Cluster editing

If G = (V,E) is a graph, a clique is a subset X ⊆ V such that for each u, v ∈ X,
(u, v) ∈ E. An edge edit is removing an edge, or adding one. The problem c-
Cluster Editing is defined as follows: can we obtain a graph where each connected
component is a clique, using c edge edits?

Definition 3.6. Given a subset X ⊆ V , an edge is said to be intern if both adjacent
vertices are in X. An edge is said to be outward if exactly one adjacent node is in
X. Denote the number of intern and outward edges as respectively i(x) and o(X).
The edit costs of X, e(X), is defined as follows:

e(X) =
o(X)

2
+
(|X| ∗ (|X| − 1)

2
− i(X)

)
Now, each c-Cluster Editing corresponds to a partition (S1, . . . , Sk), for some

k, such that
∑k

i=1 e(Si) = c: We construct a clique with nodes Si for each i. The
costs of adding a missing intern edge is counted in the costs of the containing set Si,
while removing a redundant outward edge is counted half in both endpoints.

Solving the simplified problem boils down to computing #(c, s)-Clique Editing,
which is the number of X ⊆ V of size s, such that, e(X) = c. We obtain the
following negative result:

Lemma 3.7. #(c, s)-Clique editing is #P-complete.

Proof. A subset X ⊆ V is a clique if it induces a complete subgraph. We use
a reduction from the problem #d-Regular Clique: Given a graph G = (V,E)
where each node has the same degree d, compute the number of cliques X ⊆ V .
This problem was proven to be #P-complete by Vadhan in [Vad01]. Note that in
a regular graph for each clique X, o(X) = |X| ∗ (d − (|X| − 1)), and there are no
missing intern edges. Moreover, if X is not a clique, e(X) > |X| ∗ (d − (|X| − 1)).
Hence for the number of cliques we have:

#d-Regular Clique =
n∑

i=0

#
(i ∗ (d− (i− 1))

2
, i
)
-Clique editing �

Note that, due to Section 3.5, we can already obtain an O∗(2n) time algorithm
with exponential space, using dynamic programming: we can decide in polynomial
time whether a certain subset is indeed a clique editing of size s and edit costs c, for
any s and c. However, what should we do if only polynomial space is available? A
naive approach would be exhaustive branching for each instance of #(c, s)-Clique

3.7. CLUSTER EDITING 27

editing. However, we present a slightly faster algorithm, using the technique of
Williams from Subsection 1.3.4:

Lemma 3.8. #(c, s)-Clique editing can be computed in O∗(1.7314n) time.

Proof. Arbitrarily partition V in V0, V1 and V2. Define eij(X) as e(X), ignoring
edges adjacent to vertices not in Vi ∪ Vj . For each c01 + c12 + c20 = c and s0 +
s1 + s2 = s, create the following graph: Construct nodes for each subset of some Vi,
for each i. Construct an edge between nodes Xi ⊆ Vi and Xj ⊆ Vj , if i 6= j, and
eij(Xi ∪ Xj) = cij . Now each triangle corresponds to a (c, s)-Clique editing, and
vice versa. Concluding, we sum over all possible values for cij and si (note that this
is a polynomial amount), and compute the number of triangles in the corresponding
graph using matrix multiplication. �

Because we have to use the above algorithm for each subset of V , we obtain an im-
provement of the running time fromO∗(3n) to

∑n
i=1

(
n
i

)
O∗(1.7314i) = O∗(2.7314n),

for the polynomial space variant.

Chapter 4

Additional techniques

After finding an IE-formulation, one may wonder how it can be used for an efficient
algorithm. Is it necessary to compute all terms of the summation, or can we find
more efficiently computable formulas? In this chapter we will discuss techniques that
provide these smaller algorithms. The first three sections will be about reducing the
sumspace: is it necessary to sum over the entire powerset of the requirement space,
or can some subsets be ignored? In Section 4.4, we give an example of how to handle
hard simplified problems, once we have obtained a reduced sumspace. The last section
is about an interesting way algebraically rewriting an inclusion exclusion formula.

4.1 Abstract tubes

Denote R[u] = {r ∈ R | u ∈ Ar}, for any requirement space R and element u ∈ U .
Using this notation, recall from the proof of Theorem 2.5 we defined S[u] as {S ∈
S | S ⊆ R[u]} for any sumspace S. Assuming S is the simple sumspace induced by
R, we obtained the equality:

|
n⋃

i=1

Ai| =
∑
X⊆R
X 6=∅

(−1)|X|−1|
⋂
i∈X

Ai| =
∑
u∈U

χ(S[u]) (4.1)

where χ denotes the Euler characteristic from Definition 2.3. Now, the following
question arises: is there any smaller sumspace S, such that Equation 4.1 still holds?
In some cases this is obviously true. For example, zero-valued terms of S can always
be left out.

Abstract tubes were introduced by Naimann and Wynn in [NW92]. In [NW97]
a generalization was obtained along with examples such as computing the volume of
a convex polyhedron. In this brief overview, we will discuss a simplified version of

28

4.1. ABSTRACT TUBES 29

v1 v2 v3

v4

v6

v5

v7 v8

Figure 4.1: An example of a contractible sumspace visualized with a hypergraph
where only the maximal hyperedges/sets are shown.

the abstract tubes of [NW97]. For more information and an application to network
reliability we also refer to the book of Dohmen [Doh03].

Definition 4.1. A contraction of a simple sumspace S on R is removing a set S ∈ S
and simultaneously removing a set S′ ∈ S, such that S = S′ ∪ {r}, for some r ∈ R.
A simple sumspace is said to be contractible if we can obtain the sumspace {{r}}, for
some r ∈ R, only using contractions. An abstract tube is a pair (A,S) consisting
of requirements A = {Ar}r∈R and a simple sumspace S on R such that for each
u ∈

⋃
r∈R Ar, the sumspace S[u] is contractible.

Sometimes we will interchange the notion of a simple sumspace with a hyper-
graph, where the edge set of the hypergraph are the maximal sets of the simple
sumspace, and vice versa. In this manner, contractibility is defined on hypergraphs
too. In Figure 4.1 we give an example of such a contractible hypergraph. The reason
of the definition of abstract tubes is the following theorem:

Theorem 4.2. Suppose ({Ar}r∈R,S) is an abstract tube, then:

n⋃
i=1

Ai =
∑
X∈S

(−1)|X|−1|
⋂
i∈X

Ai|

Proof. As before, rewrite the right-hand side to
∑

u∈U χ(S[u]). Obviously, if u /∈⋃n
i=1 Ai, we have χ(S[u]) = 0. Hence, the only thing left to prove is that χ(S[u]) = 1

for each u ∈
⋃n

i=1 Ai. To this end, note that a contraction preserves the Euler
characteristic χ(S[u]). Now the equality follows from the fact that χ({{v}}) = 1, for
any v. �

In fact, we could even use a weaker notion of contractibility. However, in this brief
overview this notion will suffice.

4.1.1 Tree-shaped requirements

The following example is due to [NW97].

30 CHAPTER 4. ADDITIONAL TECHNIQUES

U

1 2 3 4 3 2 1

1

1

2

2

1

1

A1 A2 A3 A4

Figure 4.2: The origin of the name abstract tubes is due to this example. After
computing

∑4
i=1 |Ai|, each part is counted as indicated in the diagram. Subtract-

ing
∑3

i=1 |Ai ∩Ai+1| gives us |
⋃4

i=1 Ai|.

Lemma 4.3. Suppose we are given a set of requirements A = ({Ar}r∈R), and a tree
T = (R,E) such that for each x, y, z ∈ R, where y is on the unique path between x

and z in T , the following holds:

Ax ∩Az ⊆ Ay

Then, (A, T) is an abstract tube.

Proof. For each u ∈
⋃

i∈R Ai, T [u] is a tree. Note that a tree is a single vertex, or
we can obtain a smaller tree using a contraction. Hence T [u] is contractible. �

The name ’abstract tube’ is due to the visual example of Figure 4.2. Let S be the
simple sumspace induces by the edge set {(A1, A2), (A2, A3), (A3, A4)}. Note that
S[u] is a path, for each u ∈

⋃4
i=1 Ai, hence contractible. Because of this, ({A1,4 },S)

is an abstract tubes, implying that
⋃4

i=1 Ai =
∑4

i=1 |Ai| −
∑4

i=3 |Ai ∩Ai+1|.

4.1.2 Whitney’s broken circuits

As mentioned in [Doh03], we can prove an old theorem of Whitney from [Whi32],
using the theory of abstract tubes. Actually, we will slightly improve the efficiency
of the IE-formulation of Section 3.4 for computing #Graph Coloring. Suppose
we are given a graph G = (V,E), then recall from the IE-formulation: our universe
U = {φ : V → {1, . . . , k}}, and the requirements A = {A}(v,w)∈E with A(v,w) =
{φ ∈ U | φ(v) = φ(w) }.

4.2. ADJUSTING THE UNIVERSE 31

Definition 4.4 ([Doh03]). Assume the edge set E is endowed with a linear ordering
relation. A broken circuit of G is obtained from the edge set of a cycle of G by
removing its maximum edge. The broken circuit complex of G, abbreviated to
BC(G), is the simple sumspace consisting of all non-empty subsets of E that do not
include any broken circuit of G as subset.

Although the following theorem is due to [Doh03], we give simpler proof.

Theorem 4.5. For any k ∈ N, the following is an abstract tube:(
A,BC(G)

)
Proof. We have to prove for any u ∈

⋃
e∈E Ae, that BC[u] is contractible. We use

induction on the number of cycles of R[u]. In the base case, R[u] has no cycles. Note
that, due to the definition of A, R[u] also has no broken circuits. Because of this,
BC[u] is equal to the sumspace induced by R[u], which is trivially contractible.

Now suppose R[u] consists of at least one cycle. Define m as the maximum edge
of such a cycle, and define m′ as some other edge on the same cycle. Note that
for each S ∈ BC[u] such that m′ ∈ S and m /∈ S, S ∪ {m} is also an element of
BC[u]. Hence, all sets containg m can be removed with contractions, consisting of
simulateously removing S and S ∪ {m}. Note that we can not create any broken
circuit. Using the induction hypothesis, we may conclude BC[u] is also contractible
in this case. �

4.2 Adjusting the universe

Suppose we want to solve a decision problem. Using inclusion exclusion, we have to
solve a counting problem to which the decision problem can efficiently be reduced.
Obviously, there can be more than one of such a counting problem. Therefore, it is
important to choose one that can be solved efficiently. The technique that will be
discussed now was already used Section 3.3, although not mentioned explicitly.

We give an example for the decision variant of Graph Coloring. This study
will be continued in the following two sections. First we need the following definition:

Definition 4.6. Let G = (V,E) be graph. A node u dominates v if (u, v) ∈ E or
u = v. Similarly, a node set X dominates X ′ if for each v ∈ X ′, there exists a u ∈ X

such that u dominates v. A maximal independent set of G is an independent set
of G that dominates V .

k-Graph coloring can be reduced to a problem named k-IS-cover, which is
defined as follows: given a graph G = (V,E), can V be covered with k independent
sets of G? Using the set cover formulation of Section 3.5, this problem can be solved
in O∗(2n). In this formulation the universe consists of all k-tuples of independent sets
of G. Now observe the following: if a k-tuple covers V and contains an independent

32 CHAPTER 4. ADDITIONAL TECHNIQUES

set which is not maximal, this independent set can always safely be extended to a
maximal one. Because of this we are allowed to adjust the universe to tuples of
maximal independent sets of G. With this new universe, we can predict zero-valued
terms of the sumspace, using the following: if X does not dominate V , it can not
contain a maximal independent set of G. Hence, we can reduce the sumspace to all
dominating sets of G.

This technique was used by Björklund et al. in [BHKK08a] to obtain an algorithm
with running time O∗((2 − ε)n), for a small ε, for a graph coloring and some other
problems on graphs of bounded degree. For graph coloring, they further adjusted the
universe to all 1

2k tuples of maximal bipartite (i.e. 2-colorable) subgraphs. Note that,
with this universe, an element of the sumspace can only be non-zero if it contains at
least 2 neighbors of each node.

4.3 Inclusion-exclusion branch & reduce

In contrast with the two techniques of the previous sections, the method we discuss
in this section reduces the sumspace in a more dynamic manner.

Similar to branch & reduce, this technique uses reduction rules on top of exhaustive
IE-branching. Actually, we already saw some applications of this technique in Chapter
3. Usually, reduction rules are used with the purpose of proving a better upper bound
of the running time of the algorithm. Unfortunately, for our applications such an upper
bound can probably only be achieved using advanced techniques such as measure &
conquer, which will be discussed in Chapter 5. In this case, such an analysis is beyond
the scope of the thesis. Moreover, it is clear that some algorithms still use O∗(2n)
time on worst-case inputs.

Designing an IE-branch & reduce algorithm, is almost the same as designing
a normal branch & reduce algorithm. Moreover, IE-branching also can easily be
combined with other branching strategies. For an example we refer to Chapter 5.

For the other part of the algorithm, the reduction rules, the effect of IE-branching
seems less clear. Instead of the old problem, we have to solve the simplified problem
which is some counting variant. As mentioned in Section 1.3, some reduction rules
for decision problems can not be used for their counting variants.

For illustration, we proceed by studying the IE-formulation of the previous section.
Recall we use a maximal independent set cover formulation. Hence, using the notation
#k-MIS-C(V) for the number of ways to cover V with k maximal independent sets
of k, we obtain:

#k-MIS-C(V) =
∑
X⊆V

(−1)|X|#MIS(V \X, X)k

where MIS(O,S) is the number of maximal independent sets that are a subset of O

and dominate all nodes O ∪ S, defined for O ∩ S = ∅. Because the summation only

4.3. INCLUSION-EXCLUSION BRANCH & REDUCE 33

depends on the simplified problem, the following question arises: can reduction rules
for the simplified problem also be used for reducing the sumspace?

In Algorithm 1, we give an algorithm for the #MIS(O,S) problem, only consisting
of reduction rules which are due to Gaspers et al. [GKL08]. We use the following
notation:

Definition 4.7. Given a graph G = (V,E), we denote N(v) for the set of all neigh-
bors of v and N [v] = N(v) ∪ {v}. Similarly we denote NX(v) = N(v) ∩ X and
NX [v] = (N(v) ∪ {v}) ∩ X. Moreover, d(v) = |N(v)| and dX(V) = |NX(v)|.

Algorithm 1 #MIS(O,S)
1: if there exists u ∈ S s.t. dO(u) = 0 then
2: return 0
3: else if ∃u ∈ S s.t. NO(u) = {v} then
4: return #MIS(O \N [v], S \N(v))
5: else if ∃u ∈ S and v ∈ NO(u) s.t. NO[u] ⊆ N [v] then
6: return #MIS(O,S \ {u})
7: else if ∃u, v ∈ S s.t. NO(u) = NO(v) then
8: return #MIS(O,S \ {v})
9: else if ∃u ∈ O ∪ S and v ∈ O s.t. u 6= v and NO(u) = NO(v) then

10: return #MIS(O \ {v}, S)
11: end if

We give a brief explanation of the reduction rules of Algorithm 1:

Line 1 Halt: u can not be dominated.

Line 3 Unique element: u can only be dominated by choosing its neighbor.

Line 5 Subsumption: If v is dominated, u will be dominated too.

Line 7 Identical elements: If v is dominated, u will be dominated too.

Line 9 Mirroring: If v is chosen, u will be chosen too.

Notice that for the corresponding decision variant, maximum independent set,
many powerful reduction rules are applicable, for examples we refer to [FGK06].

Now, we use the reduction rules for an IE-Branch algorithm to solve #k-MIS-C(V),
displayed in Algorithm 2. We compute #k-MIS-C(R, O, S), which is the number of
k-tuples of maximal independent sets (M1, . . . ,Mk) such that for each i : Mi ⊆
R ∪ O and R ⊆

⋃k
i=1 Mi. Similar to the IE-branching terminology, we say R are

the required, S are the forbidden and O are the optional nodes. We also use
A = R ∪ O for all active nodes.

On Line 1 we have the Halt reduction rule, which does not change. For the
Unique element rule on Line 3, we have that u can only be dominated by choosing its
neighbor, hence each Mi has to contain v. The Subsumption rule on Line 9 and the

34 CHAPTER 4. ADDITIONAL TECHNIQUES

Algorithm 2 #k-MIS-C(R,O, S)
Input: Integer k, required nodes R, optional nodes O and forbidden nodes S

Output: The number of k-tuples of maximal independent sets (M1, . . . ,Mk) s.t.
for each i : Mi ⊆ R ∪O and R ⊆

⋃k
i=1 Mi

1: if there exists u ∈ S s.t. dA(u) = 0 then
2: return 0
3: else if R = ∅ then
4: return #MIS(O,S)k

5: else if ∃u ∈ S s.t. NA(u) = {v} then
6: if dR(v) = 0 then
7: return #k-MIS-C(R \ {v}, O \N [v], S \N(v))
8: else
9: return 0

10: end if
11: else if ∃u ∈ S and v ∈ NA(u) s.t. NA[u] ⊆ N [v] then
12: return #k-MIS-C(R,O, S \ {u})
13: else if ∃u, v ∈ S s.t. u 6= v and NA(u) = NA(v) then
14: return #k-MIS-C(R,O, S \ {v})
15: else if ∃u ∈ S ∪A and v ∈ A s.t. u 6= v and N(u) = N(v) then
16: if u ∈ S and v ∈ R then
17: return 0
18: else if u ∈ O and v ∈ R then
19: return #k-MIS-C(R,O \ {u}, S)
20: else
21: return #k-MIS-C(R,O \ {v}, S)
22: end if
23: else
24: Take some u ∈ R

25: noptional = #k-MIS-C(R \ {u}, O ∪ {u}, S)
26: nforbidden = #k-MIS-C(R \ {u}, O, S ∪ {u})
27: return noptional − nforbidden

28: end if

4.4. DYNAMIC PROGRAMMING FOR THE SIMPLIFIED PROBLEM 35

Identical elements rule on Line 11 also do not change. The mirroring rule becomes
a bit more involved: if u is forbidden (but has to be dominated) and v is required,
we return 0 because v can not be in any. If u is optional and v is required, we can
remove u without changing the number of indepedent sets. In all other cases, v is
required and u is optional, both are required or both are optional, v can be removed.

The reduction rules of above are just given as example and these are not the
only ones that are applicable. Furthermore, it might be interesting to look at which
reduction rules can be used with 1

2k-tuples of maximal bipartite subgraphs. This is
left as further research.

4.4 Dynamic programming for the simplified problem

As discussed in Section 3.5, we can use dynamic programming to compute all simplified
problems simultaneously in the context of set cover formulation. If we can decide in
polynomial time whether X ∈ F , for a given X ⊆ R, the inclusion exclusion formula
can still be evaluated in O∗(2n) time. Now the following question suggests itself: can
this technique be combined with the techniques of the previous section? The answer
is positive:

Lemma 4.8. Given are a branching tree and a set of simplified problems #MIS(O,S),
for some O ⊆ V , S ⊆ V and O ∩ V = ∅, obtained by an execution of Algorithm 2.
Now all simplified problems can be computed simultaneously in time bounded by the
branching tree.

Proof. We will only give a sketch of a proof. Extend Algorithm 1 with the following
branching rule:

#MIS(O,S) = #MIS(O \N [v], S \N(v)) + #MIS(O \ {v}, S ∪ {v})

i.e. count maximal independent sets that contain v (the take branch), and maximal
independent sets do not contain v (the discard branch), and return the sum of both. In
the take branch, all neighbors can’t be chosen anymore. Use this extended algorithm
in combination with memorization to compute all simplified problems.

Now we have, that the number of terms #MIS(O,S) that will be evaluated is
bounded by the number of terms #k-MIS-C(R,O, S) that are evaluated because
the take branch is equivalent to making N [v] forbidden, while the discard branch is
equivalent to making v forbidden. Because these will both occur too in the branch
tree, the lemma follows. �

We mention that the algorithm of Björklund et al [BHKK08a] follows if we only
use the reduction rule on Line 3 from Algorithm 1.

36 CHAPTER 4. ADDITIONAL TECHNIQUES

4.5 Rewriting

Recall from Section that given a graph G = (V,E), a Perfect Matching is a
subset M ⊆ E such that each node of V is in exactly one edge of M . Notice that this
is a special case of k-Set Partition: Each edge is a set containing its to adjacent
nodes, and we have to partition the entire node set, hence using exactly n/2 edges.
Using the considerations of Section 3.5 about k-Set Partition, we obtain:

#Perfect Matching =
∑
X⊆V

(−1)|V \X|e(V \X)n/2 (4.2)

where e(V \X) is the number of edges in the subgraph induced by node set V \X.
Björklund et al. published an interesting way of improving this algorithm in [BH06a]:

Lemma 4.9. Define a0(i) (a1(i)) as the number of even (odd) subsets of V contain-
ing exactly i edges. Now the following holds:

#Perfect Matching =
|E|∑
i=0

(a0(i)− a1(i))in/2

Proof. We rewrite the right-hand side of Equation 4.2, by grouping all even and odd
subsets which have the same number of edges in it. �

This lemma is already interesting on its own. For example it implies that computing
ab(i) is #P-complete. However, it appears that ab(i) can be computed faster than the
O∗(2n) time bound, using the technique of Williams (see Subsection 1.3.4). We sketch
the algorithm and refer to [BH06a] for more details: To compute ab(i), construct the
graph H with nodes Xi for each subset of each Xi ⊆ Vi. Create edges such that each
subgraph induced by X ⊂ V containing exactly i edges corresponds with a triangle
(X0, X1, X2) in H, such that X = X0 ∪X1 ∪X2. Now use matrix multiplication to
compute the number of triangles. This results in an algorithm with a O∗(1.7314n)
time bound.

Lemma 4.10. Given a graph G with an independent set I, #Perfect Matching
can be computed in O∗(2n−|I|)

Proof. Adjust the universe of the above formulation, each node of the independent
set chooses an adjacent edge. The other edges are chosen arbitrarily. Now, the
requirement space can be reduced to V \ I. �

#Perfect Matching can also be computed faster than Ω ∗ (2n) using abstract
tubes. We refer to [Doh99].

The rewriting step of Lemma 4.9 can obviously be used on any (improved) IE-
formula. For example, the IE-formulation of Section 3.4 implies:

#Graph Coloring =
|V |∑
i=0

(a0(i)− a1(i))ki

4.5. REWRITING 37

where a0(i) (a1(i)) is the number of even (odd) subsets of E induced exactly i

connected components. Note that computing ab(i) is necessarily #P-complete, due
to the #P-completeness of #Colorings.

Chapter 5

A case study: dominating sets

This chapter is joint work with Thomas C. van Dijk and Johan M.M. van Rooij, and
will also appear as technical report. We use IE-branching on a well-studied problem
and improve the fastest known algorithm. We combine a branching algorithm with
dynamic programming on a path decomposition, following Fomin et al. [FS07], and
extend it with IE-branching.

In this brief discussion we will simplify things a bit. This chapter is still work in
progress. For a more detailed and complete discussion, we refer to the technical report
that will appear shortly on http://www.cs.uu.nl/research/techreps/.

5.1 Dominating set

Recall the following terminology of Section 4.3:

Definition 5.1. Given a graph G = (V,E), we denote N(v) for the set of all neigh-
bors of v and N [v] = N(v) ∪ {v}. Moreover, d(v) = |N(v)|.

Given a graph G = (V,E), #k-Dominating set is to compute the number of
subsets X ⊆ V such that |X| = k and for each v ∈ V , N [v] ∩X 6= ∅.

A transformation from #k-Dominating set to #k-Set Cover is straightfor-
ward: for every v ∈ V in the dominating set instance, make an element in R and a set
in F containing the elements corresponding to the vertices in N [v]. Its decision vari-
ant Dominating set, is a well studied problem: in 2004, an O(1.93782n) time was
published by Fomin et al. [FKW04] and independently Randerath and Schiermeyer
gave an O(1.8899n) time algorithm [RS04]. A publication of Grandoni improved the
upper bound to O(1.81n) [Gra06]. However, in 2005, Fomin et al. [FGK04] used the
technique of measure & conquer to obtain an O(1.5137n) algorithm. This was later
improved by van Rooij in [vR06, vRB08] to O(1.5086n) and O(1.5063n) respectively.

38

5.2. ALGORITHM 39

In this case study, we will give an extended version of the algorithm from Fomin
et al. [FS07], which computes #k-Dominating set. We improve their worst-case
running time of O(1.5535n) to o(1.5n), hence also obtaining the fastest algorithm
for the decision variant. Our improvement is due to the use of IE-branching, and the
addition of memorization.

5.2 Algorithm

Algorithm 3 k-SC(F ,R)
Input: A set R, a family F of subsets of R, an integer k

Output: The number of subsets S ⊆ F s.t. |S| = k and
⋃

S∈S S = R

1: if ∃u ∈ R : freq(u) = 1 then //unique elements
2: Let S 3 u

3: return
∑k

i=1 k-SC({ S′ \ S | S′ ∈ F} , R \ S)
4: else if ∃∅ ⊂ C ⊂ F : {F [u] | u ∈ S ∈ C} = C then //connected components
5: Let R[C] =

⋃
S∈C S

6: Let n(k, C) = k-SC(C, R[C])
7: Let n(k, C) = k-SC(F \ C, R[F \ C])
8: return

∑k
i=0 n(i, C) ∗ n(k − i, C)

9: else if ∃u, v ∈ R : F [u] ⊆ F [v] then //subsumption
10: return k-SC({S \ {v} | S ∈ F}, R \ {v}))
11: end if
12:

13: //branching or path decomposition
14: Let e ∈ R be an element of maximum frequency
15: Let S ∈ F be a set of maximum size that is not an exceptional case1

16: Preference list P: S4 < S5 < S6 < e5 < e6 < S7 < e7 < S≥8 < e≥8

17: if S|S| is in the list P and S|S| ≮ efreq(e) then //set branch
18: ntake =

∑k−1
i=1 i-SC({S′ \ S | S′ ∈ F}, R \ S)

19: ndiscard = k-SC(F \ S,R)
20: return ntake + ndiscard

21: else if efreq(e) is in the list P and efreq(e) ≮ S|S| then //element branch
22: noptional = k-SC({ S′ \{e} | S′ ∈ F} , R \ {e})
23: nforbidden = k-SC(F \ F [e], R \ {e})
24: return noptional − nforbidden

25: else //path decomposition
26: return SC-PW(F , R)
27: end if
1 There are 14 exceptional combinations of frequencies of the elements of a set of cardi-
nality 5 we prefer to handle in the path decomposition phase.

40 CHAPTER 5. A CASE STUDY: DOMINATING SETS

Our algorithm is listed in Algorithm 3. We denote k-SC(F ,R) for #k-Set Cover
with sets F and nodes R to be covered. F [u] is the set of all elements of F that
contain u, and freq(e) = |F [u]|.

Let us start with discussing the reduction rules: if there exists a unique element,
that is, an element which is contained in only one set, this set has to be at least
once chosen. If there is a part which can be solved independently, that is, there is
a (non-trivial) connected component, solves this independently. Moreover, if there
are two elements u, v ∈ R such that if u is covered, v is covered, we can safely remove
v.

If the reduction rules are not applicable, we find an element of maximum frequency
and a set of maximum size, and choose on which we branch using the preference list
P. If both are not in the list, we use algorithm SC-PW, which is discussed in Subsection
5.3.

5.3 Base case: path decomposition

If an efficient branch is not possible, that is, there do not exist any large sets or large
frequency elements, Algorithm 3 calls the procedure SC-PW, which will be discussed
in this section. Note that we solve the same problem as Algorithm 3, with the extra
information that the element of maximum frequency and the set of maximum size
are too small to be in the preference list P. To exploit this information, we use the
following notion:

Definition 5.2. A path decomposition of a graph G = (V,E) is a sequence of sets
of vertices P = 〈P1, . . . , Pr〉 such that:

• ∪r
i=1Pi = V

• For each (u, v) ∈ E, there exists a Xi such that {u, v} ⊆ Pi

• if v ∈ Pi and v ∈ Pk then v ∈ Pj , for each i ≤ j ≤ k

Pi is said to introduce v /∈ Pi−1 if Pi = Pi−1 ∪ {v} and said to forget v ∈
Pi−1 if Pi = Pi−1 \ {v}. If |P1| = 1 and for 2 ≤ i ≤ r, Pi either introduces or
forgets a node v, then P is called a nice path decomposition. The width of P is
max1≤i≤rPi − 1 and the pathwidth pw(G) of G is the minimum over the width of
all its path decompositions.

It is well known that any path decomposition can be converted to a nice path
decomposition of equal width. We implement SC-PW by dynamic programming on a
path decomposition. However, we first have to convert the set-cover instance to a
graph:

Definition 5.3. Given sets F and a set R, the incidence graph GF is the bipartite
graph with red vertices VRed = F and blue vertices VBlue = R. Vertices S ∈ VRed

5.4. MEMORIZATION 41

and u ∈ VBlue are adjacent if and only if u ∈ S. A Red-Blue Dominating Set is a
set D ⊆ VRed such that each node of VBlue is adjacent to a vertex of D.

Note that each Red-Blue Dominating Set of GF corresponds directly to an equal-
sized set cover of S. Now, suppose we have a nice path decomposition 〈P1, . . . , Pr〉
of GF . Denote Yi for ∪i

j=1Pj \ Pi, i.e. all nodes in the previous bags and not in the
current one. Given subsets XRed and XBlue of the red and blue vertices of bag Pi,
we define A(XRed, XBlue, k, i) as the number of k-sized Red-Blue Dominating Sets
S of the graph induced by Yi ∪XRed ∪XBlue such that S ∩ Pi = XRed. All possible
terms of A can be computed with Algorithm 4.

Lemma 5.4. If we are given GS with a path decomposition P of width at most p,
the number of Red-Blue Dominating Sets of given size k can be counted in O∗(2p)
time.

Proof. Note that the following is equal to the number of Red-Blue Dominating Sets:∑
XRed⊆Pr∩VRed

A(XRed, VBlue ∩ Pi, k, r)

If we convert P to nice path decomposition, all terms A(XRed, VBlue∩Xi, k, i) can be
computed in O∗(2p) using Algorithm 4 in combination with dynamic programming.
Now the sum can be computed within the same time bound. �

5.4 Memorization

On top of Algorithm 3, we use memorization: Fix a parameter h′. Create a database
with all instances that can be generated from the original problem, with complexity
smaller or equal to h′, for some measure of complexity. Now the time need to solve all
of these problems simultaneously is polynomially bounded by their amount. To upper
bound this quantity, we use the following lemma of Robson [Rob86]:

Lemma 5.5. Let G be a graph of maximum degree d ≥ 3. Then we can bound the
number of connected induced subgraphs sh of G on h vertices by:

sh = O

((
(d− 1)d−1

(d− 2)d−2

)h

nO(1)

)

5.5 Measure & conquer analysis

Theorem 5.6. Algorithm 3 computes the number of dominating sets of given size in
an n vertex graph G in O(1.4890n) when it is applied to a set cover formulation of
this problem.

42 CHAPTER 5. A CASE STUDY: DOMINATING SETS

Algorithm 4 A(XRed, XBlue, k, i)
Input: Integers 1 ≤ i ≤ r and k, subsets XRed and XBlue of the red and blue

nodes of Xi.
Output: The number of k-sized Red-Blue Dominating Sets S of the graph in-

duced by Yi ∪XRed ∪XBlue such that S ∩ Pi = XRed

1: if i = 1 then
2: //the only two non-zero base cases, using |Pi| = 1
3: if (k = 1 and |XRed| = 1) or (k = 0 and |XBlue| = 0) then
4: return 1
5: end if
6: else if Xi introduces v ∈ VRed then
7: //if v ∈ XRed,it is not allowed to dominate vertices not in XBlue

8: if v ∈ XRed and N(v) ∩ Pi ⊆ XBlue then
9: //take v at least once, dominate a subset of its neighbors

10: return
∑k

j=1

∑
B⊆N(v)∩Xi

A(XRed \ {v}, XBlue \B, k − j, i− 1)
11: else if v /∈ XRed then
12: //we do not take v

13: return A(XRed, XBlue, k, i− 1)
14: end if
15: else if Xi introduces v ∈ VBlue then
16: //detects whether v is actually dominated
17: if v ∈ XBlue and N(v) ∩XRed 6= ∅ then
18: return A(XRed, XBlue \ {v}, k, i− 1)
19: else if v /∈ XBlue and N(v) ∩XRed = ∅ then
20: return A(XRed, XBlue \ {v}, k, i− 1)
21: end if
22: else if Xi forgets v ∈ Vred then
23: //v can be taken or discarded
24: return A(XRed ∪ {v}, XBlue, k, i− 1) + A(XRed, XBlue, k, i− 1)
25: else if Xi forgets v ∈ Vblue then
26: //v still has to be dominated
27: return A(XRed, XBlue ∪ {v}, k, i− 1)
28: end if
29: //if none of the above applies
30: return 0

5.5. MEASURE & CONQUER ANALYSIS 43

Proof. We will prove that the algorithm counts the number of set covers of given
size in a set cover instance with sets F and elements R in time O(1.2204d), where d

is the maximum of the number of sets and the number of elements. This results in a
running time of O(1.220242n) < O(1.4890n) for counting the number of dominating
sets.

We analyze the algorithm using measure and conquer from [FGK04], i.e. we
introduce a non standard complexity measure k(F , R) on problem instances. To this
end, we introduce weight functions v, w : N → [0, 1] giving weight v(i) to an element
of frequency i and weight w(i) to a set of cardinality i, respectively. This gives us the
following complexity measure:

k(F , R) =
∑
S∈F

w(|S|) +
∑
e∈R

v(freq(e))

This measure is also used in some other publications [FGK04, vRB08]. From the fact
that k ≤ d follows that a proven running time of O(αk) also proves a running of
O(αd). For convenience reasons we let ∆v(i) = v(i) − v(i − 1), ∆w(i) = w(i) −
w(i− 1) be the complexity reduction gained by reducing the frequency of an element
or the cardinality of a set by one.

We first prove the following lemma analyzing the branching phase.

Lemma 5.7. Let Nh(k) be number of subproblems of measured complexity h gen-
erated by Algorithm 3 on an input of measured complexity k. Then: Nh(k) <

1.22770k−h.

Proof. Before analyzing the actual branching, we need some constraints on the
weights. Firstly, we observe that elements of frequency one are removed by the reduc-
tion rules and sets of cardinality zero are ignored in the branching phase. Therefore,
we set their measured complexity to zero: v(0) = v(1) = w(0) = 0. Secondly, we do
not want the complexity of our instance to increase when decreasing the frequency of
an element or the cardinality of a set and impose the restrictions ∆v(i),∆w(i) ≥ 0.
Finally we impose the restrictions ∆v(i) ≥ ∆v(i + 1) and ∆w(i) ≥ ∆w(i + 1) for
i ≥ 1, and 2∆v(5) ≥ v(2). The functions of these last constraints will become clear
from the analysis.

Consider branching on an element e contained in si sets of cardinality i. In
the branch where e is optional, the element e is removed and all sets containing
e are reduced in cardinality by one. And in the branch where e is forbidden, e is
removed together with all sets containing e. The removal of these sets also results
in the frequency of all other elements in these sets to be reduced. This leads to
two subproblems which are reduced in complexity by ∆koptional and ∆kforbidden,

44 CHAPTER 5. A CASE STUDY: DOMINATING SETS

respectively.

∆koptional = v(freq(e)) +
∞∑
i=1

si∆w(i)

∆kforbidden = v(freq(e)) +
∞∑
i=1

siw(i) + ∆v(freq(e))
∞∑
i=1

(i− 1)si

Here we bound each extra reduction of the frequency an element because of the
removal of a set by ∆v(freq(e)). Notice that we branch on an element of highest
frequency which is at least five and we have the constraints ∆v(i) ≥ ∆v(i + 1) and
2∆v(5) ≥ v(2). The first one assures that each time we reduce the cardinality of a
set more than one time, the ∆v(i) for i < freq(e) are large enough. And the second
one compensates for the fact that an element can be completely removed if it occurs
only in removed sets while v(1) = 0. Without this constraint we could have taken all
the weight from this element already, leaving none for its final occurrence.

Now consider branching on a set S containing ei elements of frequency i. The
behaviour is similar to an element branch with the words element and set interchanged.
In the branch where S is discarded, the set S is removed and all its elements have
their frequency reduced by one. And in the branch where we take S, the set S is
removed together with all its elements which leads to the reduction in cardinality of
other sets. However, the similarity ends when elements of frequency two are involved.
When discarding S, these elements occur uniquely in the instance and hence some set
is included in the solution by the unique elements rule. These elements cannot have
their second occurrence in the same sets for that would have triggered the subsumption
rule before branching. Hence in this case we remove an additional set of cardinality
at least one for each such element.

Using the constraints ∆w(i) ≥ ∆w(i + 1), this leads to the following values for
∆kdiscard, ∆ktake:

∆kdiscard = w(|S|) +
∞∑
i=2

ei∆v(i) + e2w(1)

∆ktake = w(|S|) +
∞∑
i=2

eiv(i) + ∆w(|S|)
∞∑
i=2

(i− 1)ei

By the above considerations we have:

Nh(k) ≤ Nh(k −∆k1) + Nh(k −∆k2)

with ∆k1 and ∆k2 being ∆koptional and ∆kforbidden for every possible element branch,
and ∆kdiscard and ∆ktake for every possible set branch. The solution of this set of
recurrence relations is a function of the form αk−h where α is the largest positive real
root of the corresponding set of equations:

1 = α−∆k1 + α−∆k2

5.5. MEASURE & CONQUER ANALYSIS 45

for all |S| =
∑∞

i=2 ei and freq(e) =
∑∞

i=1 si agreeing with the preference order of
branching:

S4 < S5 < S6 < E5 < E6 < S7 < E7 < S≥8 < E≥8

Furthermore, we have the following considerations when branching on an element: it
can be in at most one set of size one, and the element can not be in any of the 14
exceptional cases. These 14 exceptional cases are all elements of frequency five that:

1. only occurs in sets of size at most three with at least one occurrence is a set of
size at most two. (10 cases)

2. four other cases containing elements of frequency at most four denoted by the
4-tupples (e1, e2, e3, e4):

(1, 3, 0, 1) (1, 2, 1, 1) (0, 4, 0, 1) (0, 3, 1, 1)

The weight functions will converge to 1 at some point p resulting in w(p) =
v(p) = w(p + 1) = v(p + 1) = 1 and ∆w(p + 1) = ∆v(p + 1). Therefore the
recurrence relations corresponding to |S| > p + 1 and freq(e) > p + 1 are dominated
by those corresponding to |S| > p and freq(e) = p, respectively. This leads to a
large, but finite, numerical optimisation problem (quasi-convex program [Epp04]) of
choosing the optimal weights. We solve this by computer obtaining an upper bound
on the number of subproblems of measured complexity h generated of 1.22770k−h

and the following set of weights:

i 1 2 3 4 5 6 ≥ 7
v(i) 0.403961 0.773268 0.987570 0.996364 1 1
w(i) 0.410162 0.657131 0.805891 0.890186 0.974481 0.997053 1

This concludes the analysis of the branching phase. �

The next thing we need is a bound on the running time of SC-PW(S, R). We use
the following lemma:

Lemma 5.8. For any ε > 0, there exists and integer n such that for every graph G

with n > nε vertices,

pw(G) ≤ 1
6
n3 +

1
3
n4 +

13
30

n5 +
23
45

n6 + n≥7 + n

where ni is the number of vertices of degree i in G for any i ∈ {3, . . . , 6} and n≥7 is
the number of vertices of degree at least 7. Moreover, a path decomposition of the
corresponding width can be constructed in polynomial time.

Lemma 5.9. SC-PW(S, R) runs in time O(1.2111k) when called by Algorithm 3 on
a set cover instance of measured complexity k.

46 CHAPTER 5. A CASE STUDY: DOMINATING SETS

Proof. By considerations from Section 5.3, we know that the running time of this
part of the algorithm is O∗(2p), where p is the pathwidth of the incidence graph of a
generated subproblem. Therefore we will now prove an upper bound on the pathwidth
of the incidence graph of a set cover instance of measured complexity k that remains
after the branching phase. To this end we formulate a linear program in which all
variables have the domain [0, 1]. In a simpler form this was also done in [FS07].

max z =
1
6
(x3 + y3) +

1
3
(x4 + y4) +

13
30

y5 such that: (5.1)

1 =
4∑

i=1

w(i)xi +
5∑

i=2

v(i)yi (5.2)

4∑
i=1

ixi =
5∑

i=2

iyi (5.3)

Using Lemma 5.8 we compute the maximum pathwidth of a graph per unit of its
measured complexity z: see Formula 5.1. Although the lemma only applies to graphs
of size at least nε, this is correct because we consider all smaller graphs to be handled
in constant time. Here xk and yk represent the number of sets of cardinality k and
elements of frequency k per unit of measured complexity in a worst case instance,
respectively. Notice that Constraint 5.2 guarantees that these xk and yk use exactly
one unit of measured complexity. And, notice that a subproblem on which SC-PW(F ,R)
is called can have sets of cardinality at most four and elements of frequency at most
five. Additionally, we know that both partitions of the bipartite incidence graph must
have an equal number of edges, which we guarantee by Constraint 5.3. As a result a
dynamic program on this path decomposition runs in time O∗(2zk).

Finally, we have to add additional constraints because elements of frequency five
can only occur in the instance if these are one of the 14 exceptional cases and cardinal-
ity four sets can only exist if these contain these exceptional frequency five elements.
Therefore we add variables pi representing the number of elements of frequency 5 per
unit of measured complexity of exceptional case i (1 ≤ i ≤ 14). Naturally, their sum
should equal y5 which is forced by Equation 5.4. We now use these pi by observing
that whenever pi > 0 for some i we have further restrictions on the instance. Namely,
given an exceptional case of a frequency five element we know the cardinalities of the
sets in which it occurs. So, we let [si]j be the number of occurrences of a exceptional
case i frequency five element in a set of cardinality j. Now we can lower bound the
number of sets of cardinalities one, two and three in the instance using Constraint
5.5. Furthermore we can upper bound the number of sets of cardinality four since
there can be at most one of these per exceptional frequency five elements contained

5.5. MEASURE & CONQUER ANALYSIS 47

in it. This is done in Constraint 5.6

y5 =
14∑
i=1

pi (5.4)

xj ≥
14∑
i=1

[si]j
pi

j
for i ∈ {1, 2, 3} (5.5)

x4 ≤
14∑
i=1

[si]4 (5.6)

The solution to this linear program is z = 0.27624 with all variables equal to zero,
except:

x2 = 0.386443 x3 = 0.085876 x4 = 0.257629
y4 = 0.193222 y5 = 0.257629 p14 = 0.257629

This results in a running time of O(1.2111k) and completes the proof of the lemma.
�

What remains to be done is to combine the results of Lemmas 5.7, 5.9 also using
memorization. Let T (k) be the total time spend to solve a problem of measured com-
plexity k and let h′ be the measured complexity of the largest precomputed instance.
We divide the analysis in two parts using T (k) = T>h′(k) + T≤h′(k), where T>h′(k)
and T≤h′(k) denote the total time spend solving instances generated by branching
of measured complexity greater than h′ and smaller or equal to h′, respectively. I.e.,
T≤h′(k) is the total time used to generate the precomputed instances, and T>h′(k) is
the total time spend in all calls to SC-PW(S). Also, let Hk be the set of all possible
measured complexities of subproblems generated by branching on a problem of mea-
sured complexity k. Notice that |Hk| is polynomially bounded because there are only
a finite number of distinct weights involved.

T (k) = T>h′ + T≤h′ ≤
∑

h∈Hk,h>h′

1.22770k−h1.2111h +
∑

h∈Hk,h≤h′

(
66

55

) h
w

< |H|1.22770k−h′
+ |H|

(
66

55

)h′
w

(5.7)

In the above equations we use Lemmas 5.7 and 5.9 to bound T>h′ . Denoting the
smallest positive weight by w, the maximum number of vertices in an incidence graph
of complexity h′ is h′

w . We use this together with Lemma 5.5 to bound T≤h′ .
What remains is to find the optimal value of h′. Hereto we let h′ = αk and

compute α such that both parts of Equation 5.7 are in balance, i.e.:

1.227701−α =
(

66

55

) α
w

48 CHAPTER 5. A CASE STUDY: DOMINATING SETS

Solving this equation we obtain α = 0.029742 and 1.227701−α = 1.22024. Hence:

T (k) < 1.22770(1−α)k =
(

66

55

)(α
w

)k

< 1.22024knO(1)

This completes the proof. �

Notice that a lot of effort has been spent to properly balance this algorithm.
The asymmetry between sets and elements due to the reduction rules requires a
carefully balanced branching preference order. Moreover, branching on some elements
of frequency five gives very bad branches, especially when many small sets are involved.
These cases can, however, be treated quite efficiently in the path decomposition phase
since any size one or two sets do not contribute to the pathwidth of the incidence
graph while they do have an amount of measured complexity. Carefully selecting
cases to be handled in either way resulted in the 14 exceptional cases mentioned in
the description of the algorithm.

Conclusions and further
research

We have seen that there are little non-trivial polynomial counting algorithms, indi-
cating that, in general, counting problems are particularly difficult. Unfortunately,
inclusion exclusion can only solve counting problems. This is the main reason why the
practical use of inclusion-exclusion for decision problems is still questionable, because
it is not clear how to be combined with heuristics and techniques such as branch-and-
bound.

However, IE-branch & reduce will be much more efficient in practice than exhaus-
tive IE-branching. Its main advantage is the possibility to branch on requirements
instead of variables. Although we can adjust the universe to improve the running
time, at this moment this does not outweigh the additional techniques that can be
used in normal branches i.e. branch & bound combined with heuristics.

IE-branch & reduce can easily be used to extend a branch & reduce algorithm.
Moreover, for a decision problem, it may even make sense to extend it a counting
problem such that efficient IE-branching can be used. This is also illustrated with the
dominating set algorithm.

The set cover problem is a particularly interesting application of inclusion exclusion.
Many set cover problems can be solved with the set cover formulation. We can also
use this for an IE-branch & reduce algorithm which is similar to one of the simplified
problem, i.e. many reduction rules for the simplified problem can be used.

If the simplified problem is #P-complete we can often use dynamic programming
to compute all simplified problems simultaneously. For a set cover formulation, we
have seen that this can also be combined with a IE-branch & reduce algorithm.

The most appealing open question is: Can IE-branch & reduce be used to obtain
an o∗(2n) algoritme voor graph coloring? The difference with other set-cover formu-
lations, such as the one of dominating set, is the exponential amount of sets. For this
exponential number, one should achieve recurrences for the running time that reduce

49

50 CHAPTER 5. A CASE STUDY: DOMINATING SETS

the number of sets with a multiplicative factor.
Can IE-branch & reduce be used to improve other branching algorithms? There

exist many branching algorithms for problems similar to dominating set, and one could
extend such an algorithm with IE-branching, using the set cover formulation.

Can inclusion-exclusion be used to obtain better combinatorial upper bounds, for
example the number of minimal dominating sets [FGPS05]. Note that if we use the
equation

Required = Optional−Forbidden

we can obtain an upper bound for Required by subtracting a lower bound of Forbidden

from an upper bound of Optional. A lower bound for Required can be achieved sim-
ilarly.

Can the number of elements that meet exactly k requirements be computed ef-
ficiently, given any IE-branch & reduce algorithm? In the textbook [Gri94], Grimaldi
gave a simple formula if we use the trivial sumspace. However, it is not clear how this
can be combined with the techniques of Chapter 4.

Bibliography

[AB07] S. Arora and B. Barak. Computational Complexity: A Modern Approach. to
appear: http://www.cs.princeton.edu/theory/complexity, 2007. [cited at p. 3]

[And04] J.A. Anderson. Discrete mathematics with combinatorics. Pearson Education
Upper Saddle River, NJ, 2004. [cited at p. 17]

[Bax96] E. Bax. Recurrence-Based Reductions for Inclusion and Exclusion Algorithms
Applied to #P Problems. 1996. [cited at p. 12, 17, 20]

[BH06a] A. Björklund and T. Husfeldt. Exact algorithms for exact satisfiability and
number of perfect matchings. Lecture Notes in Computer Science, 4051:548–
559, 2006. [cited at p. 17, 36]

[BH06b] A. Björklund and T. Husfeldt. Inclusion–exclusion algorithms for counting set
partitions. In FOCS [DBL06], pages 575–582. [cited at p. ii]

[BHK06] A. Björklund, T. Husfeldt, and M. Koivisto. Set partitioning via inclusion-
exclusion. Special Issue for [DBL06], October 2006. [cited at p. ii, 22]

[BHKK07] A. Björklund, T. Husfeldt, P. Kaski, and M. Koivisto. Fourier meets möbius:
fast subset convolution. Proceedings of the thirty-ninth annual ACM symposium
on Theory of computing, pages 67–74, 2007. [cited at p. 24]

[BHKK08a] A. Björklund, T. Husfeldt, P. Kaski, and M. Koivisto. Trimmed Moebius In-
version and Graphs of Bounded Degree. Arxiv preprint arXiv:0802.2834, 2008.
[cited at p. 32, 35]

[BHKK08b] A. Björklund, T. Husfeldt, P. Kaski, and M. Koivisto. The travelling salesman
problem in bounded degree graphs. In Luca Aceto et al., editor, ICALP (1),
volume 5125 of Lecture Notes in Computer Science, pages 198–209. Springer,
2008. [cited at p. 20]

[CG05] T. Calders and B. Goethals. Quick inclusion-exclusion. Proceedings ECML-
PKDD 2005 Workshop Knowledge Discovery in Inductive Databases, 3933,
2005. [cited at p. 17]

[Com03] C.W. Commander. A survey of the quadratic assignment problem, with appli-
cations. PhD thesis, University of Florida, 2003. [cited at p. 1]

51

52 BIBLIOGRAPHY

[DBL06] 47th Annual IEEE Symposium on Foundations of Computer Science (FOCS
2006), 21-24 October 2006, Berkeley, California, USA, Proceedings. IEEE Com-
puter Society, 2006. [cited at p. 50, 52]

[DJW05] V. Dahllöf, P. Jonsson, and M. Wahlström. Counting models for 2SAT and 3SAT
formulae. Theoretical Computer Science, 332(1-3):265–291, 2005. [cited at p. 7]

[Doh99] K. Dohmen. An improvement of the inclusion-exclusion principle. Arch. Math.,
72, 1999. [cited at p. 36]

[Doh03] K. Dohmen. Improved Bonferroni Inequalities Via Abstract Tubes: Inequalities
and Identities of Inclusion-Exclusion Type. Springer, 2003. [cited at p. 17, 29, 30,

31]

[Epp04] D. Eppstein. Quasiconvex analysis of backtracking algorithms. Proceedings of
the 15th Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2004,
pages 781–790, 2004. [cited at p. 45]

[FGK04] F.V. Fomin, F. Grandoni, and D. Kratsch. Measure and conquer: Domination —
a case study. Proceedings of the 32nd International Colloquium on Automata,
Languages and Programming, ICALP 2005, 3580:191–203, 2004. [cited at p. 38,

42, 43]

[FGK06] F.V. Fomin, F. Grandoni, and D. Kratsch. Measure and conquer: a simple O
(2 0.288n) independent set algorithm. Proceedings of the seventeenth annual
ACM-SIAM symposium on Discrete algorithm, pages 18–25, 2006. [cited at p. 33]

[FGPS05] F.V. Fomin, F. Grandoni, A. Pyatkin, and A Stepanov. Bounding the Number
of Minimal Dominating Sets: A Measure and Conquer Approach. Algorithms
and Computation, pages 573–582, 2005. [cited at p. 49]

[FK05] M. Furer and S.P. Kasiviswanathan. Algorithms for counting 2-SAT solutions and
colorings with applications. Electronic Colloquium on Computational Complexity
(ECCC), 33:1, 2005. [cited at p. 7]

[FKW04] F.V. Fomin, D. Kratsch, and G.J. Woeginger. Exact (exponential) algorithms
for the dominating set problem. In in Proceedings of the 30th Workshop on
Graph Theoretic Concepts in Computer Science (WG 2004), pages 245–256.
Springer, 2004. [cited at p. 38]

[FS07] F.V. Fomin and A.A Stepanov. Counting minimum weighted dominating sets.
In Guohui Lin, editor, COCOON, volume 4598 of Lecture Notes in Computer
Science, pages 165–175. Springer, 2007. [cited at p. 38, 39, 45]

[GKL08] S. Gaspers, D. Kratsch, and M. Liedloff. On independent sets and bicliques
in graphs. The 34th International Workshop on Graph-Theoretic Concepts in
Computer Science WG 2008, 2008. [cited at p. 33]

[Gra06] F. Grandoni. A note on the complexity of minimum dominating set. Journal of
Discrete Algorithms, 4(2):209–214, 2006. [cited at p. 38]

[Gri94] R.P. Grimaldi. Discrete and combinatorial mathematics. Addison-Wesley Read-
ing, Mass, 1994. [cited at p. 17, 49]

BIBLIOGRAPHY 53

[HK62] M. Held and R. M. Karp. A dynamic programming approach to sequencing prob-
lems. Journal of the Society for Industrial and Applied Mathematics, 10(1):196–
210, 1962. [cited at p. 4]

[Kar82] R. M. Karp. Dynamic programming meets the principle of inclusion and exclu-
sion. Oper. Res. Lett., 1:49–51, 1982. [cited at p. 12, 17, 19, 20, 21]

[KGK77] S. Kohn, A. Gottlieb, and M. Kohn. A generating function approach to the
traveling salesman problem. In ACM ’77: Proceedings of the 1977 annual
conference, pages 294–300, New York, NY, USA, 1977. ACM. [cited at p. 20]

[Koi06] M. Koivisto. An O∗(2n) algorithm for graph coloring and other partitioning
problems via inclusion–exclusion. In FOCS [DBL06], pages 583–590. [cited at p. ii,

17]

[Nar82] H. Narushima. Principle of inclusion-exclusion on partially ordered sets. Discrete
Math, 42:243–250, 1982. [cited at p. 26]

[NW92] D.Q. Naiman and H.P. Wynn. Inclusion-Exclusion-Bonferroni Identities and In-
equalities for Discrete Tube-Like Problems via Euler Characteristics. The Annals
of Statistics, 20(1):43–76, 1992. [cited at p. 28]

[NW97] D.Q. Naiman and H.P. Wynn. Abstract Tubes, Improved Inclusion-Exclusion
Identities and Inequalities and Importance Sampling. The Annals of Statistics,
25(5):1954–1983, 1997. [cited at p. 28, 29]

[Rob86] J.M. Robson. algorithms for maximum independent sets. Journal of algo-
rithms(Print), 7(3):425–440, 1986. [cited at p. 42]

[RS04] B. Randerath and I. Schiermeyer. Exact algorithms for minimum dominating
set. Technical report, April 2004. [cited at p. 38]

[Tak67] L. Takacs. On the method of inclusion and exclusion. Journal of the American
Statistical Association, 62(317):102–13, 1967. [cited at p. 17]

[Tuc94] A. Tucker. Applied combinatorics. John Wiley & Sons, Inc. New York, NY,
USA, 1994. [cited at p. 17]

[Vad01] S. Vadhan. The complexity of counting in sparse, regular, and planar graphs.
SIAM J. Comput., 31(2):398–427, 2001. [cited at p. 26]

[Val79] L.G. Valiant. The complexity of computing the permanent. Theoretical Com-
puter Science, 8(2):189–201, 1979. [cited at p. 3, 4]

[vR06] J. M. M. van Rooij. Design by measure and conquer: An o(1.5086n) algorithm
for minimum dominating set and similar problems. Master’s thesis, Institute for
Information and Computing Sciences, Utrecht University, 2006. [cited at p. 38]

[vRB08] J. M. M. van Rooij and H. L. Bodlaender. Design by measure and conquer: a
faster exact algorithm for dominating set. Proc. 25th Symp. Theoretical Aspects
of Computer Science, STACS 2008, pages 657–668., 2008. [cited at p. 38, 43]

[Whi32] H. Whitney. A logical expansion in mathematics. Bull. Amer. Math. Soc,
38:572–579, 1932. [cited at p. 17, 22, 30]

54 BIBLIOGRAPHY

[Wil05] R. Williams. A new algorithm for optimal 2-constraint satisfaction and its impli-
cations. Theoretical Computer Science, 348(2-3):357–365, 2005. [cited at p. 6]

[Woe03] G.J. Woeginger. Exact algorithms for NP-hard problems: A survey. Combinato-
rial Optimization: "Eureka, you shrink", LNCS 2570, 2003. [cited at p. 1]

	Preface
	Contents
	1 Exact exponential algorithms
	1.1 The notion of a problem
	1.2 Counting problems
	1.3 Techniques
	1.4 Outline thesis

	2 Inclusion exclusion
	2.1 Introduction
	2.2 Algebraic interpretation
	2.3 Combinatorial interpretation
	2.4 Kirchhoff's Matrix Tree Theorem
	2.5 Context

	3 IE-Formulations
	3.1 CNF Satisfiability
	3.2 Hamiltonian cycles and the travelling salesman problem
	3.3 A scheduling problem
	3.4 Graph coloring
	3.5 Set cover and partition problems
	3.6 Multi set cover and set partition problems
	3.7 Cluster editing

	4 Additional techniques
	4.1 Abstract tubes
	4.2 Adjusting the universe
	4.3 Inclusion-exclusion branch & reduce
	4.4 Dynamic programming for the simplified problem
	4.5 Rewriting

	5 A case study: dominating sets
	5.1 Dominating set
	5.2 Algorithm
	5.3 Base case: path decomposition
	5.4 Memorization
	5.5 Measure & conquer analysis

	Conclusions and further research
	Bibliography

