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Chapter 1

Introduction

Vehicle navigation, school timetabling, oil network design, risk management in
nuclear power plants, train scheduling, search engines, multimedia compression,
airline revenue management, weather forecast computation, DNA sequence align-
ment, community facility allocation, internet traffic routing, information retrieval,
text typesetting, insurance forecasts, automatic pilot assistance, music informa-
tion retrieval, face recognition and data encryption are just a few of the many
cornerstones of modern society that crucially depend on algorithms.

Example 1 — Primary School Integer Multiplication Algorithm

9 6 2 5 9 8 7 3 3
9 8 2 4 5 1 6 5 3

2 8 8 7 7 9 6 1 9 9
4 8 1 2 9 9 3 6 6 5

5 7 7 5 5 9 2 3 9 8
9 6 2 5 9 8 7 3 3

4 8 1 2 9 9 3 6 6 5
3 8 5 0 3 9 4 9 3 2

1 9 2 5 1 9 7 4 6 6
7 7 0 0 7 8 9 8 6 4

8 6 6 3 3 8 8 5 9 7
9 4 5 7 0 6 7 1 6 4 1 1 5 5 5 6 4 9

×

An algorithm is a list of strict instructions one should follow to solve a com-
putational task in the same way one should follow a recipe for a culinary task.
Consider for example the task of multiplying large integers. The algorithm that
children learn in primary school is the following: first memorize all the outcomes of
every multiplication of the single-digit integers (for example 9⋅7 = 63); then how to
multiply any integer with a single-digit number (9⋅286 = 18⋅100+72⋅10+54 = 2574,
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and yes even here we use an algorithm to add the numbers by remembering the
carry); and finally how to multiply two large numbers as in Example 1.

When we analyse the algorithm of Example 1, we see that if the two integers
both consist of n digits, we need about n2 multiplications and additions of single-
digit integers to compute their product. Interestingly, there are also much more
efficient algorithms. The first one, published in 1963 ([KO63]), runs in nlg 3 time,
while the current fastest ones use at most n ⋅ logn ⋅ log logn ⋅ 2c log∗ n additions and
multiplications [DKSS08, Für09] where c is a small constant and log∗ n is the
number of times one has to take the logarithm of n to get below 2.

Example 2 — Integer Factorization There is a now widely used encryption system
called RSA (named after its inventors Rivest, Shamir and Adleman [RSA78])
that relies on the hardness of the factoring problem: given an integer c, finding
integers a, b not equal to 1 such that a ⋅ b = c(1). When stated oversimplified,
b could be a message, and the following could be an encrypted message:
c =1230186684530117755130494958384962720772853569595334792197322452151726400507263657

5187452021997864693899564749427740638459251925573263034537315482685079170261221429

13461670429214311602221240479274737794080665351419597459856902143413.

Hence, to attack the encryption system we have to find the divisor b of the
given huge integer. Utilizing hundreds of machines for 2 years, a and b in this
specific case were found [KAF+10]:
c =3347807169895689878604416984821269081770479498371376856891243138898288379387800228

7614711652531743087737814467999489 ⋅ 3674604366679959042824463379962795263227915816

4343087642676032283815739666511279233373417143396810270092798736308917

Curiously, the computer can check whether the found integers are indeed
a solution to the problem asked in a fraction of a second, and even the (dedi-
cated) reader could verify this himself using pen and paper and the algorithm
for integer multiplication (although using this algorithm it will require about
50.000 single-digits additions and multiplications). How can we find divisors
a, b for any integer with an algorithm like we did with the multiplication
problem? Note that, if one finds a more efficient algorithm for this problem,
one could circumvent many (if not almost all) security systems. The first
approach would be brute force: if a ⋅ b = c, then we know that the smallest of
a and b is at most

√
c, so we try all integers i = 2, . . . ,

√
c and check each time

whether c/i is an integer. If so, we found our a and b. For computing c/i there
is another algorithm taught at primary school called ‘long division’ which is
about as fast as the multiplication algorithm. But, of course,

√
c operations

is still intractable.

(1)In this system c is the product of two primes, and hence a and b are unique.
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Even more interestingly, the inverse problem (the so-called factoring problem,
see Example 2) seems to be a lot harder. That is, suppose somebody gives us
the integer c = 945706716411555649 from Example 1, and asks whether we can
find integers a, b not equal to 1 such that a ⋅ b = c. Modern computers will still be
able to find such integers a, b in reasonable time in this specific example, but the
problem quickly becomes intractable when we go to a higher values.

In Example 2 a brute-force algorithm is given. The perhaps most prominent
subject in this thesis is the following: can we improve brute-force algorithms? For
example, in Example 2, does there exists some ’intuition’ such that we can make
educated guesses about the divisor of the given integer c? Is there an algorithm
for making such an educated guess for every large integer, or is the best algorithm
just trying all candidate divisors? This a fundamental question with far-reaching
consequences, but still only a humble special case of one of the big questions in
theoretical computer science.

1.1 Big Questions in Theoretical Computer Science
In this section we will very informally introduce some very famous open questions
in the field of theoretical computer science. Most research done in this thesis
should be seen as humble contributions to ‘smaller’ variants of these questions,
i.e., special cases or less fundamental variants.

Since, especially for the first problem discussed below, there has already been
a lot of philosophical discussion about the importance and about possible answers
to the problems, we will mainly state some interesting quotes from the theoretical
computer science community. The connection with this thesis will be discussed
in the next chapter.

P versus NP: can creativity be automated?
Informally, the class P (‘polynomial time’) is the set of all computational tasks
that can be solved ‘efficiently’, that is, we can find a solution efficiently. The class
NP (‘non-deterministic polynomial time’) is the set of all computational tasks
where a suggested solution can be verified efficiently. It is known that every
task in P is also in NP(2). The P versus NP problem is the converse: is every
problem in NP also in P? Without doubt, this is the most famous and appealing
open question in computer science. The question was, to our knowledge, first
informally asked by Gödel in a letter to Von Neumann in 1954 (this is only
known since the 1990’s, [Sip92]). The class P was introduced (implicitly) in
[Cob65, Edm65], and in [Edm65] the class NP was also (implicitly) introduced
and it was conjectured that P ≠ NP . Many interesting philosophical things have
been said about the P versus NP question, and we recommend several surveys

(2)For our oversimplified definitions this is not immediately true.
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[Wig09, Imp95, For09, Coo]. All computer scientists agree that someone proving
P = NP would be an astonishing event, two examples:

“ [On P versus NP ]In a very strong sense, this possibility is utopia for the
quest for knowledge and technological development by humans. (..)There
would be a short program which, given detailed constraints on any engi-
neering task, would quickly generate a design which meets the given cri-
teria, if one exists. The design of new drugs, cheap energy, better strains
of food, safer transportation, and robots that would release us from all
unpleasant chores, would become a triviality. ”— A. Wigderson [Wig09]

“ P = NP would also have big implications in mathematics. One could
find short fully logical proofs for theorems but these fully logical proofs
are usually extremely long. But we can use the Occam razor principle to
recognize and verify mathematical proofs as typically written in journals.
We can then find proofs of theorems that have reasonably length proofs
say in under 100 pages. A person who proves P = NP would walk home
from the Clay Institute not with one million-dollar check but with seven
(actually six since the Poincaré Conjecture appears solved).(3) ”— L. Fortnow [For09]

In [Coo71, Lev73], the notation of NP-completeness was introduced. In-
formally speaking, a computational task is NP-complete if the existence of an
efficient algorithm would imply that P = NP . Starting with [Kar72], numerous
computational problems are now known to be NP-complete (the perhaps most
basic 300 are given in [GJ79]), and mainly because of this the P versus NP
question is so important:

“ A keyword search in Melvyl, the University of California’s online library
reveals that about 6.000 papers each year have the term ‘NP-complete’
on their title, abstract, or list of keywords. This is more than each of
the terms ‘compiler’, ‘database’, ‘expert’, ‘neural network’ and ‘operating
system’. Even more surprising is the diversity of the disciplines with
papers referring to NP-completeness. They range from statistics and
artificial life to automatic control and nuclear engineering. ”— C. Papadimitriou [Pap98]

Nowadays thousands of completely different computational tasks are known
to be NP-complete. This has surprising consequences: for example, paraphrasing

(3)The P versus NP problem is one of the seven millenium prize problems [Coo]; a resolution
of such a problem will be rewarded with one million dollar.
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[Wig09], optimally packing a large set of suitcases in a big van optimally requires
the same kind of creativity as (dis-)proving a mathematical statement.

Although at this moment very little progress towards the direct resolution
has been made(4), it is often stated that the general belief is that P ≠ NP .
The main motivation often used is however very weak: many believe that P ≠
NP because nowadays thousands of completely different problems are known to
be NP-complete and nobody ever found an efficient algorithm for any of them
(since that person would prove P = NP). Let us also mention another possible
explanation for this general belief:

“ People have a strong sense that creativity was absolutely essential in [dis-
coveries like Wiles’ proof of Fermat, Einstein’s relativity, Darwin’s evolu-
tion, etc.], and will be essential for important future ones. While elusive
to define, people feel that creativity, ingenuity or leap-of-thought which
lead to discoveries are the domain of very singular, talented and well-
trained individuals, and that the process leading to discovery is anything
but the churning of a prespecified procedure or recipe. These few stand in
sharp contrast to the multitudes who can appreciate the discoveries after
they are made. ”— A. Wigderson [Wig09]

The most interesting reason in the context of this thesis is however stated in
our, perhaps more down to earth, final quotation on this subject:

“ The main argument in favor of P ≠ NP is the total lack of fundamental
progress in the area of exhaustive search. This is, in my opinion, a very
weak argument. The space of algorithms is very large and we are only at
the beginning of its exploration. ”— M. Vardi [Hem02]

In Chapter 2, we will discuss the “area of exhaustive search” and related
subjects, and weaker versions of the P versus NP problem. Naturally, proving
P = NP would have major consequences for the work in this thesis. On the other
hand, proving P ≠ NP would give more strength to the presented work.

P versus RP: how valuable is randomness for solving computational problems?
Apart from time, another resource that is perhaps less fundamental and intuitive
is randomness. At first sight it may be surprising that randomness helps to obtain
more efficient computation:

“ Anyone who considers arithmetic methods of producing random digits is,
of course, in a state of sin. ”— J. von Neumann [von51]

(4)for some strict definition of ‘direct’
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But at the current point in time, it really seems that randomization helps to get
some improvement: this could be in terms of less time or memory usage, but also
in terms of providing a much easier algorithm. The reader can convince himself
of the utility of randomization by reading Example 3.

Example 3 — Matrix product verification Suppose we are given three n×n matrices
A,B,C and we want to decide whether AB =C. One naive approach would
be to compute AB and compare it with C. The fastest known algorithm
for multiplying two n × n matrices uses O(n2.371) operations [CW82], so this
algorithm will be rather slow. Another naive approach would be to choose
some 1 ≤ i, j ≤ n at random, compute (AB)ij, and check whether it is equal
to Cij. However, in the worst-case, C differs only from AB in one entry
and then the probability that the algorithm detects the difference is only n−2.
Boosting this to constant probability by repeating the procedure n2 times
results in an algorithm using O(n3) operations.

There is a less natural but more efficient approach (we follow the descrip-
tion of [MR96, Section 7.1]). Choose a vector r ∈ {0,1}n uniformly at random
(that is, toss an unbiased coin n times and let ri be the ith outcome for
1 ≤ i ≤ n); compute A(Br), and Cr, return YES if the outcomes are equal,
and NO otherwise. This algorithm only requires O(n2) operations, and if it
returns NO, AB and C are different. On the other hand, the probability that
x = ABr and y = Cr are equal when AB and C are different is at most
1
2 . To see the latter claim, note that if AB ≠ C, then D = AB − C is a
matrix with non-zero entries. Then x = y if and only if Dr is the all-zero
vector. Since D has a non-zero entry, let Dij be a non-zero entry. Then the
probability that (Dr)i = 0 is at most 1

2 by the Principle of Deferred Deci-
sions (see also [MR96], Section 3.5), because after all elements of r except
the jth element are fixed, setting ri either to 1 or 0 will imply di ≠ 0. More
randomness-efficient variants of this were given in [KS93, CS93, NN93].

Informally, the P versus RP(5) problem is the following: if an algorithm could
be solved efficiently using randomization, could it also be solved efficiently deter-
ministically? Although this problem is not resolved yet, there is a strong general
opinion that the answer to this question is ‘yes’. There are some ‘reasonable’
complexity-theoretic assumptions (informally stated, that there exists exponen-
tial time constructible functions that require exponential size circuits to compute
[AB09, Theorem 20.7]) that directly imply that P =RP . On the other hand, it is
known that proving P = RP (or even giving 2no(1) time deterministic algorithms
for some problems in RP such as the Polynomial Identity Testing prob-
lem) will require proving some kind of circuit lower bounds, which is believed

(5)Usually, the slightly different P versus BPP problem is discussed.
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Figure 1.1 – Escher’s ´Relativity’, 1953.

to be a tough challenge by complexity theorists. Obviously this question is very
important for theoretical computer science in general, but a resolution either way
will not necessarily have direct consequences for the work presented in this thesis.

L versus NL: how valuable is memory for solving computational problems?
Suppose you are trapped in a huge building (see Figure 1.1 to get the feeling).
The building consists of many rooms that all have a different number written on
the floor, and in each room there are many doors numbered 1,2, . . .. Of course,
you want to determine whether there exists a way out, and if so, even escape.
This problem would be easy if you were given a (sufficiently large) piece of paper
and a pen: simply start making a map of the building, remembering unopened
doors, and keep exploring all rooms until you find an exit, or until you have
visited all the rooms. But suppose you are not given paper and pen. Can you
ever get out of the building? And if you do not manage to find the exit, can you
ever be sure that there actually exists an exit? In [AKL+79], this problem was
studied. It was shown that if you are given, instead of a paper and pen, a set of
dice, there is a way of finding the exit with constant probability (say, probability
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at least 1
2). The algorithm is very intuitive: every time you enter a new room,

use the dice to choose a new door to enter at random. In [AKL+79] it was shown,
using elementary linear algebra (see for example [AB09, Section 21.1]) that if
you do this, say, n4 times where n is the number of rooms in the building, then
you will find the exit with reasonable probability no matter how the building is
designed. Later, a surprising derandomization of this result was given in [Rei08],
although this algorithm applies to the current scenario under some mild technical
conditions.

To explain the L versus NL problem informally, we change the above scenario
a little. Suppose now that in the building there are also doors that are one-way
in the sense that once we go through them we cannot go back (as for example the
doors at the exit of the tax-free zone in an airport). Also, we know that in any
room there is a ‘trapdoor’ you can choose to jump in that brings you back to the
starting room (this is to prevent you from ever getting stuck). Again, if you are
given a (sufficiently large) piece of paper and pen, this problem is easy to solve
by making a map of the building. But suppose you are not given these items, do
you have a chance of finding the exit, even if you are given a set of dice? Can
you ever be sure there is no exit?

Let it be clear that in the above, the ‘you’ represents the computer that has
to solve the computational task of solving the maze, and the absence of the piece
of paper represents the absence of a significant amount of working memory. Also,
let it be clear that the above description of the L versus NL problem is still
somewhat oversimplified. See Section 1.2 for a more detailed description.

It is not clear what the general opinion about the L versus NL question is,
but it is clear that it is the most important problem concerning space-efficiency.
In contrary to the P versus NP problem, little guesses have been made on its
outcome. One of the few:

“ We believe that NL differs from L, but not with the same depth of con-
viction as for the other complexity classes. Also, the resolution of the L
versus NL problem may not give real insights about the higher complex-
ity classes under consideration. Still, the separation of L from P, NP or
PH would be a major achievement as would be the separation of P from
PH or PSPACE , even if not rewarded by a million dollars(3). ”— J. Hartmanis [Har03]

A proof of L = NL would have major consequences for the work presented in
this thesis. The main reason is that the result could be used to make basically
any algorithm as space-efficient as it could possible be: a natural lower bound on
the space requirement is obtained by noticing that to execute an algorithm, the
computer has to memorize where in the code it is). On the other hand, a proof
of L ≠ NL would only strengthen the results.
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1.2 Big Questions more Detailed
The Model of Computation
Now we will revisit the questions from Section 1.1, but discuss them in a more
formal way. Our definitions will only be as formal as necessary, rather following
terminology from textbooks on algorithms such as [CLRS01] than from textbooks
on computational complexity ([AB09, Sip97]). An algorithm is (as discussed in
the beginning of this chapter) any step-by-step approach that accepts some data
as input, given at some block of read-only memory and writes some data, called
the output, to another block of write-only memory. Besides that, the algorithm is
also allowed to use a block of working memory. Usually, we will call an algorithm
A a t(n)-time s(n)-space algorithm if it is guaranteed to require at most t(n)
steps and s(n) units of working memory for every possible number n of bits of
the input (the so-called input size). As we will see, n does not always need to
stand for the number of bits of the input. If A is a nc-time algorithm where n
is the number of bits of the input and c is some constant, then A is called a
polynomial time algorithm. If A is a nc-space algorithm where n is the number
of bits of the input and c is some constant, then A is called a polynomial space
algorithm.

An important nuance throughout this thesis lies in the definition of a ‘step’ and
‘memory units’ as mentioned above. For example, the definition that is often used
(for example in [CLRS01]) is that a step is any basic arithmetic operations such
as ∨,∧,+,∗, /. However, if the arguments are very big, for example large integers
or even infinite-precision complex numbers, this is not very realistic. For example
in [Sha79] it is showed that the integer factoring problem from Example 2 can
be solved in polynomial time if infinite precision is allowed. This model, where
storing any integer in the working memory also is assumed to take a constant
number of bits, is sometimes referred to as the unit cost model (see also [FK10]).
The motivation for this model is that it is a simpler model, and that the above
complication occurs very seldomly. In the alternative model, the log-cost model,
arithmetic operations and storing data is assumed to take a constant number
of steps and space only if the data is represented by a constant number of bits.
Although occasionally some very simple arguments will be skipped, most results
given in this thesis hold in the latter model (often exactly and occasionally up to
lower-order terms).

A computational task (often simply called problem) consists of an unambi-
giously defined input/output relation; it is called a decision problem if the output
consists of one bit, and an instance is called a YES-instance if the relation indicates
that the output is 1, and a NO-instance otherwise. A parameterized problem(6) is a
computational task together with a complexity parameter. If k is the complexity
parameter, we will aim for running times of the type f(k)nc, where f ∶ N→ N, n

(6)This concept stems from the field of Fixed Parameter Tractability (Section 1.3).
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is the input size and c is a constant. A complexity class is a set of computational
classes, and they are always written in calligraphic fonts.

P versus NP
The class P is the class of all decision problems that can be solved in polynomial
time. The class NP is the class of all problems of the following type: given an
integer n and f ∶ {0,1}∗ → {0,1} such that evaluating f at a given y is in P, find
an x ∈ {0,1}n such that f(x) = 1. Note that this corresponds with the informal
definition from Section 1.1. The construction we used to obtain the definition of
NP from the definition of P is also called adding non-determinism.

A problem is called NP-complete if giving an algorithm that solves it in poly-
nomial time would imply that every problem in NP can be solved in polynomial
time. We will now describe the most fundamental, and first known to be an,
NP-complete problem.

Definition 1.1 A boolean circuit C is a pair C = (D,λ) where D = (V,A) is a
directed acyclic graph with maximum in-degree 2 and one sink. Elements of
V are refered to as gates. All gates with in-degree 0 (also called sources) are
called input gates. If g ∈ V is not an input gate, then λ(g) ∈ {∨,∧,¬}. The size
of C is defined to be ∣V ∣.

If C is a boolean circuit with n sources and x ∈ {0,1}n, we will slightly
abuse notation by denoting a boolean variable for every gate in the following
natural way: if si is the ith source gate, si = xi, and for other gates the value
is defined recursively as the result of applying the logical operation the gate is
labeled with on the values given by the in-neighbors. The output C(x) is the
value of the output gate.

It is worth mentioning that in Section 4.6 we will see a simple but for this
thesis very important more general notion of a circuit.

CKT-Sat Parameter: n
Input: A Boolean circuit with n input gates.
Question: Is there x ∈ {0,1}n such that C(x) = 1?

Theorem 1.1 — [Coo71, Lev73] CKT-Sat is NP-complete.

There are several subfields of theoretical computer science that indirectly try
to cope with the P versusNP problem such as approximation algorithms, average
case complexity, Fixed Parameter Tractability (FPT), heuristics, lower bounds in
the restricted computational models, restricted instances, but we will not further
elaborate on them in this thesis. It should be mentioned that in practice, the
subfield developing heuristics seems to be the most successful. We will discuss
the subfield of exact complexity (and a bit of FPT), which is most relevant for
this thesis, in Chapter 2.
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P versus RP
The complexity class RP consists of all decision problems that can be solved by
a polynomial time algorithm with bounded one-sided error probability, that is,
if the algorithm states that the problem is a YES-instance it is correct, and if
the problem is a YES instance, the algorithm will detect this with constant error
probability. If an algorithm has one-sided constant error probability, the error-
probability can be made very small (e.g. O(2−n)) by repeating the algorithm n
times and returning YES if and only if one of the executions resulted in a YES-
answer. If the original algorithm uses O(k) random bits the new algorithm uses
O(nk) random bits. A more randomness-efficient fast construction is possible
with only O(n + k) random bits using expander graphs (see for example [AB09,
Subsection 21.2.5]).

L versus NL
The class L is the class of all problems that can be solved in logarithmic space.
The class NL is obtained from the class L by adding non-determinism.

The most notable recent breakthrough in the field of space bounded compu-
tation is that the following problem, that we already saw in disguised form in
Section 1.1, is proven to be in L [Rei08].

U-Reach
Input: An undirected graph G = (V,E) and vertices s, t ∈ V .
Question: Is there a path from s to t?

At first sight the difference with the following problem (which we also saw in
disguised form in Section 1.1) looks rather innocent:

Short D-Reach Parameter: n, k
Input: A directed graph D = (V,A), integer k and vertices s, t ∈ V .
Question: Is there a path from s to t of length at most k?

However, whereas U-Reach ∈ L, Short D-Reach is NL-complete meaning
that proving that is in L would imply that L =NL. Unfortunately, very little
significant(7) progress has been made on the L versus NL problem, since the most
recent significant space-efficient algorithm is a rather naive (but very important)
one from the 1970’s:

Theorem 1.2 — [Sav70] There is an algorithm solving the Short D-Reach prob-
lem in O((2n)log k) time and O(lgn ⋅ lg k) space.

(7)For a sufficiently strict definition of ‘significant’, many interesting papers on the subject
have been appeared, see [Kin10] for a recent overview.
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Proof The proof is a direct application of the Divide&Conquer technique: if k = 1
the problem is trivial. If k > 1, there exists a path from s to t of length at most k if
and only if there exists a vertex v such that there exists a path from s to v of length
at most ⌊k/2⌋ and a path from v to t of length at most ⌈k/2⌉, so we can try all
v ∈ V and proceed independently with the two subproblems. The running time of
this algorithm T (n, k) satisfies the recurrence T (n, k) = 2n ⋅T (n, k/2) = 2nlg k and
it is easy to see that the space usage of this algorithm is bounded by O(lgn⋅lg k).∎
It is worth mentioning that with exactly the same proof, it is usually (see [Sav70,
AB09, Sip97]) stated that

NSPACE(f(n)) ⊆ SPACE(f(n)2),

where SPACE(f(n)) are all problems that have f(n)-algorithms solving them
and NSPACE is obtained from PSPACE by adding non-determinism. This
second variant might look a lot more general, but the main reason that the
Short D-Reach is so important is that for any algorithm, the directed config-
uration graph of all its possible states in fact implies a reachability problem (see
for example [Sip97, Section 8.1]). Finally let us mention that it is not known
whether there exists a faster space-efficient algorithm than the one from 1.2;
stated in hypothesis form:

Hypothesis 1 The Short D-Reach problem cannot be solved in polynomial
time and O(k ⋅ logc n) space for some constant c.

1.3 Notation and Preliminaries
Sets, Sequences, Functions, Logic
We use the convention that sets are denoted by capital letters. Sometimes, sets are
given as unordered lists {..}, while sequences (= row-vectors) are given as ordered
lists between parentheses (..). Let A,B be two sets. Then A × B denotes the
Cartesian product of A and B; AB denotes the set of all ∣B∣-dimensional vectors
indexed by elements from B with elements from A; we also use the shorthand An
for denoting the (n − 1)-fold Cartesian product of A. If C is another set, AB×C
denotes the set of all ∣B∣× ∣C ∣ matrices with elements from A, where the rows are
indexed by elements from B and columns are indexed by elements from C; we
also use the shorthand Am×n for the set of m×n matrices with elements from A.

If f ∶ A→ B then A is called the domain of f and B is called the codomain of
f . If X ⊆ A, e ∈ B, and Y ⊆ B, then f(X) = ∪x∈Xf(x), f−1(e) = {a ∈X ∶ f(a) = e}
and f−1(Y ) = ∪a∈Y f−1(a). If f ∶ A→ N, and X ⊆ A, f(X) also denotes ∑e∈X f(e).
As usual A ∪B denotes the union of A and B, A ∩B denotes the intersection of
A and B and A∆B denotes the symmetric difference of A and B. Boolean values
will be denoted by true or false, and 1 or 0, interchangeably. The usual logical
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operations of disjunction, conjunction and negation are denoted respectively by
∨,∧,¬. Additionally we will use ⊍ which is the operation {0,1} × {0,1} → {0,1}
defined by a ⊍ b = a ∨ b if a ∧ b ≠ 1, and undefined otherwise.

We let 2A denote the power set of A (that is, the set consisting of all subsets
of A). A subset of 2A is usually called a set family and is denoted by calligraphic
letters. For every A ⊆ U we will occasionally interpret A as an element of {0,1}n;
hence extending the ⊍ operation in the natural way, it denotes the disjoint union
of A and B, that is A ⊍ B is defined to be A ∪ B if A ∩ B = ∅ and undefined
otherwise.

We will use Iverson’s bracket notation [Ive62]: for a predicate or boolean p,
we let [p] denote 1 if p is true and 0 otherwise. This notation extends naturally
in the context of other algebraic structures than the integers. The congruence
symbol ≡, if not specified with (modm), denotes congruence modulo 2. In this
thesis log, lg, and ln denote the logarithms with respectively base 10,2 and e.

Graphs
An undirected graph G = (V,E) consists of a set V of vertices and a set E of
unordered pairs of distinct vertices (i.e. there are no so-called ‘self-loops’). Edges
are interchangeably denoted by {u, v}, (u, v) and uv, where u, v ∈ V . The (open)
neighborhood N(v) ∶ V → 2V is the function that gives all vertices with which
v occurs in an unordered pair, the closed neighborhood N[v] = N(v) ∪ {v} and
∣N(v)∣ is the degree of v.

A directed graph (or: digraph) D = (V,A) consists of a set V of vertices and a
set A ⊆ V ×V of arcs consisting of ordered pairs of distinct vertices (i.e., there are
no so-called ‘self-loops’). Arcs are interchangeably denoted by (u, v) and uv. The
set N−(v) of in-neighbors of a vertex v ∈ V are all vertices u such that (u, v) ∈ A
and the set N+(v) of out-neighbors of a vertex v ∈ V are all vertices u such that
(v, u) ∈ A. The in-degree (or fan-in) and out-degree (or fan-out) of v are defined
as ∣N−(v)∣ and ∣N+(v)∣, respectively. A vertex with in-degree 0 is called a source
and a vertex with out-degree 0 is called a sink.

A walk of length k in an (un)directed graph G is a sequence (v1, . . . , vk) such
that (vi, vi+1) ∈ E for every 1 ≤ i < k. A path of length k in an (un)directed graph
G is a sequence (v1, . . . , vk) such that vi ≠ vj for i < j and (vi, vi+1) ∈ E for every
1 ≤ i < k. A cycle of length k is a path (v1, . . . , vk) such that (vk, v1) ∈ E. A
(di)graph is called acyclic if it doesn’t contain any cycles.

Matrices and Vectors
In this thesis, boldface lower-case characters (like a) always denote vectors while
boldface upper-case characters (like A) will always denote matrices. If a is a
vector, ai denotes the element of a indexed by i. Similarly, if A is a matrix,
A(i) denotes the column of A indexed by i. The vectors 0,1 are defined to
be the all-zero and all-one vectors, respectively. The inner-product of two row-
vectors a,b of equal dimension is defined as a ⋅bT (where ⋅ refers to the standard
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matrix multiplication). The Hadamard product, denoted as ○ is just point-wise
multiplication, that is if A ○B =C then for every i, j it holds that Cij = AijBij.

If A is an m × n matrix and B is a p × q matrix, then the Kronecker product
A⊗B is the mp × nq block matrix defined as follows:

A⊗B =
⎛
⎜
⎝

A11B ⋯ A1nB
⋮ ⋱ ⋮

Am1B ⋯ AmnB

⎞
⎟
⎠
.

It is easy to see that the following, so-called mixed product property, holds:

(A⊗B)(C ⊗D) =AC ⊗BD (1.1)

The rank of a matrix A, rk(A), is the maximum number of linearly independent
columns (or equivalently, rows (see [Ant94, Theorem 5.6.1])) vectors of A.

Theorem 1.3 — [Ant94],Theorem 5.6.8. If A is an m×n matrix, then the following are
equivalent:

1. Ax=0 has only the trivial solution (that is, x = 0),

2. the column vectors of A are linearly independent,

3. Ax = b has at most one solution (none or one) for every 1 ×m matrix b.

Moreover, if the column vectors of A are linearly independent, it can be
decided whether x with Ax = b exists and if so it can be found in polynomial
time, using Gauss elimination.

Other algebraic notation
Given a function (also called operation) ● ∶ V × V →W , we say it

1. is closed, if a ● b ∈ V for every a, b ∈ V ,
2. is associative, if (a ● b) ● c = a ● (b ● c) for every a, b, c ∈ V ,
3. has an identity, if there exists 1 ∈ V (called the identity) such that a ● 1 =
a = 1 ● a for every a ∈ V ,

4. has an inverse, if for every a ∈ V there exists a unique a−1 ∈ V such that
a ● a−1 = 1 = a−1 ● a.

The pair (V, ●) is called a group if it satisfies all of the above properties, and
a semigroup if it is at least closed and associative. The pair (V, ●) is called
commutative if for every a, b ∈ V it holds that a●b = b●a. A commutative group is
sometimes also referred to as an Abelian group. If we are given another operation
⊕ ∶ V × V → V , we say that ⊕ and ● distribute if for every a, b, c ∈ V it holds
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that a ● (b ⊕ c) = a ● b ⊕ a ● c. The triple (V,⊕, ●) is called a ring if (V,⊕) is an
Abelian group and (V, ●) is a semigroup. A ring (V,⊕, ●) is called a commutative
ring if (V, ●) is a commutative semigroup. In a triple (V,⊕, ●) the identity of ⊕ is
referred to as 0 (or, the zero) and the identity of ● is referred to as 1 (the one), if
they exist. A field is a commutative ring (V,⊕, ●) such that (V ∖ 0, ●) is a group.
The notion of a semiring is equivalent to the notion of a ring, except that for
the first operator ⊕ every element must have an inverse. The first operator is
usually referred as addition while the second one is referred to as multiplication.
For two groups G1 = (V1, ●1), G2 = (V2, ●2), the direct product of G1 and G2 is the
group G1⊕G2 = (V1 ×V2, ●3) where (a1, a2) ●3 (b1, b2) = (a1 ●1 b1, a2 ●2 b2) for every
a1, b2 ∈ V1 and a2, b2 ∈ V2.

For a semiring R and a finite set G, we write RG for the ring consisting of the
set RG (the set of all vectors over R with coordinates indexed by elements of G),
equipped with coordinate-wise addition + and multiplication ○ (the Hadamard
product). That is, for a,b ∈ RG and a + b = d, a ○ b = c we set azbz = cz
and az + bz = dz for each z ∈ R, where the juxtaposition and + denote addition
and multiplication in R, respectively. Rm×n refers to all m × n matrices with
elements from R. For v ∈ RG denote by supp(v) ⊆ G the support of v, that is,
supp(v) = {z ∈ G ∣ vz ≠ 0}, where 0 is the additive identity element of R. A vector
v is called singleton if ∣ supp(v)∣ = 1. We denote by ⟨w, z⟩ the singleton with
value w on index z (that is, ⟨w, z⟩y = w[y = z] for all y ∈ G).

The natural numbers,real numbers, positive real numbers, rational numbers,
integers, and the integers modulo m are denoted by N,R,R+Q,Z,Zm (sometimes
they also refer to the appropriate algebraic structures with the natural addition
and multiplication). In this thesis, D and U refer to the group-like structures
consisting of the set {0,1} and respectively equipped with ⊍ and ∨ as group
operations. The boolean semiring B consists of the set {0,1} and ∨ and ∧ as
operators. The min-sum semiring M− and the max-sum semiring M+ are the
semirings consisting of N∪∞ (respectively N∪−∞) with min (respectively max)
as addition operation and integer addition as multiplication operator.

The field of complex numbers is denoted by C, and its elements are written as
x = a + bı where a is the real part and b is the imaginary part; the absolute value
of x, denoted ∣X ∣ is defined as

√
x2 + y2. The mth root of unity of the complex

field is denoted by ωm; in this thesis we will fix ωm = e2πı/m where e is the Euler
constant. For a precision integer `, the trun`(c) operation accepts a (infinite
precision) (complex) number as argument an removes all bits after the decimal
point except the ` most significant ones.

Partially Ordered Sets
A partial order is a binary relation ≤ over a set P which is reflexive, antisymmetric,
and transitive, i.e., for all a, b, c ∈ P we have that:

• a ≤ a (reflexivity),
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• if a ≤ b and b ≤ a, then a ≤ b (antisymmetry),

• if a ≤ b and b ≤ c then a ≤ c (transitivity).
A partially ordered set (poset) is a pair (P,≤) where ≤ is a partial order. An

element c ∈ P is said to be an upper bound of a set X ⊆ P if x ≤ c holds for all
x ∈ X. The set X is said to have a join in P if there exists an upper bound
c ∈ P (called the join) of X such that, for all upper bounds d of X, it holds that
c ≤ d. For X ⊆ P , let us write ⋁X for the join of X; for the join of X = {a, b}
we write simply a ∨ b. The open interval (x, y) is the poset induced by the set
{e ∈ P ∶ x < e < y} ⊆ P . We write [x, y), (x, y] and [x, y] for the analogous
(half-)closed interval. A chain is a set C = {c1, . . . , cl} ⊆ P where c1 < ⋯ < cl. A
chain C is odd if ∣C ∣ is odd and even otherwise.

Asymptotic Notation
Formally, for every integer δ and function f ∶ Nδ → N, O(f(n)) denotes the set
of all functions g ∶ Nδ → N such that there exists c ∈ N and n0 such that for
every n ≥ n0 (that is, it is bigger in every coordinate): g(n) ≤ c ⋅f(n). Similarly,
Õ(f(n)) denotes the set of all g such that g(n) ∈ O(f(n) ⋅ logc f(n)) for some
c (that is, Õ suppresses terms that are polylogarithmic in leading terms). In the
context of given problem instance of input sizem, we also letO⋆(f(n)) denote the
set ∪cO(f(n) ⋅mc) (that is, O⋆ suppresses term that are polynomial in the input
size). As is common, we will abuse notation by saying that an algorithm runs in
O(n) time, 2O(c) time or a function is O(n2). To the author’s best knowledge
the definition of O⋆ has been introduced for the first time in [Woe01a].

Complexity Classes
As discussed before, P is the class of all decision problems that can be solved by
a deterministic algorithm in time bounded by a polynomial in the input size and
NP are all decision problems solvable by a non-deterministic algorithm running
in time bounded by a polynomial in the input size. Informally, non-determinism
means that the algorithm can split itself into two copies that run independently
without any further cost in time. The class consisting of all problems that can be
solved in polynomial time with two-sided (respectively, one-sided) error probabil-
ity at most 2/3 is denoted by BPP (RP). The class EXP is the class of problems
solvable in polynomial time and the class NEXP is the class of all problems
solvable in non-deterministic exponential time. The class P/poly is the class of
problems solvable in polynomial time by polynomial sized non-uniform circuits,
or equivalently, solvable by an algorithm that takes a polynomial amount of ad-
vice in polynomial time: there exists an advice function a ∶ N→ {0,1}∗ such that
the algorithm gets along with the usual input of n bits the advice string a(n)
of O⋆(1) length. It is worth mentioning that it is known that BPP ⊆ P/poly
by Adleman’s theorem [Adl78]. For more background on complexity theory and
more thorough definitions we refer to [Sip97].
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Parameterized Complexity
An instance of a parameterized problem is a pair consisting of a normal problem
instance and a parameter, often denoted by an integer k. A parameterized prob-
lem is Fixed Parameter Tractable (equivalently, it is in FPT ) if there exists a
function f ∶ N → N and an algorithm that solves the problem in O⋆(f(k)) time.
The class W[P ] is the class of all parameterized problems that are in FPT if the
following problem is in FPT . For more information and more through definitions
on this subjects we refer to the textbooks [DF99, FG06, Nie06]

Weighted Circuit Sat Parameter: k
Input: A boolean circuit C on n variables and integer k.
Question: Is there x ∈ {0,1}n with supp(x) = k and C(x) = true?

Treewidth
The definition of treewidth is as follows:

Definition 1.2 — Tree Decomposition, [RS84] A tree decomposition of a (undirected or
directed) graph G = (V,E) is a tree T in which each vertex x ∈ T has an assigned
set of vertices Bx ⊆ V (called a bag) such that ⋃x∈TBx = V with the following
properties:

• for any uv ∈ E, there exists an x ∈ T such that u, v ∈ Bx,

• if v ∈ Bx and v ∈ By, then v ∈ Bz for all z on the path from x to y in T.

Dynamic programming algorithms on tree decompositions are often presented
on nice tree decompositions introduced by Kloks [Klo94]. We refer to the tree
decomposition definition given by Kloks as to a standard nice tree decomposition.

Definition 1.3 — Standard Nice Tree Decomposition A standard nice tree decomposi-
tion is a tree decomposition where:

• every bag has at most two children,

• if a bag x has two children l, r, then Bx = Bl = Br,

• if a bag x has one child y, then either ∣Bx∣ = ∣By ∣ + 1 and By ⊆ Bx or
∣Bx∣ + 1 = ∣By ∣ and Bx ⊆ By.

We present a slightly different definition of a nice tree decomposition.
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Definition 1.4 — Nice Tree Decomposition A nice tree decomposition is a tree decom-
position with one special bag z called the root with Bz = ∅ and in which each
bag is one of the following types:

• Leaf bag: a leaf x of T with Bx = ∅.

• Introduce vertex bag: an internal vertex x of T with one child vertex y
for which Bx = By ∪ {v} for some v ∉ By. This bag is said to introduce v.

• Introduce edge bag: an internal vertex x of T labeled with an edge
uv ∈ E with one child bag y for which u, v ∈ Bx = By. This bag is said to
introduce uv.

• Forget bag: an internal vertex x of T with one child bag y for which
Bx = By ∖ {v} for some v ∈ By. This bag is said to forget v.

• Join bag: an internal vertex x with two child vertices l and r with
Bx = Br = Bl.

We additionally require that every edge in E is introduced exactly once.

We note that this definition is slightly different than usual. In our definition
we have the extra requirements that bags associated with the leafs and the root
are empty. Moreover, we added the introduce edge bags.

The width of a tree decomposition T is the size of the largest bag of T minus
one, and the treewidth, tw(T), of a graph G is the minimum width over all
possible tree decompositions of G.

Given a tree decomposition, a standard nice tree decomposition of equal width
can be found in polynomial time [Klo94] and in the same running time, it can
easily be modified to meet our extra requirements, as follows: add a series of
forget bags to the old root, and add a series of introduce vertex bags below old
leaf bags that are nonempty; Finally, for every edge uv ∈ E add an introduce edge
bag above the first bag with respect to the in-order traversal of T that contains
u and v.

A path decomposition is a tree decomposition that is a path. The pathwidth of
a graph is the minimum width of all path decompositions. Path decompositions
can, similarly as above, be transformed into nice path decompositions, and it is
easy to see that these contain no join bags.

Observation 1.1 For every graph it holds that its treewidth is at most its path-
width.

Finding a path or tree decomposition of width at most t, or determining that
none exists, can be done in O⋆(2O(t3)) [Bod96] (see also [DF99, Section 6.3]).
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By fixing the root of T, we associate with each bag x in a tree decomposition
T a vertex set Vx ⊆ V where a vertex v belongs to Vx if and only if there is a bag y
which is a descendant of x in T with v ∈ By (recall that x is its own descendant).
We also associate with each bag x of T a subgraph of G as follows:

Gx = (Vx,Ex = {e∣e is introduced in a descendant of x })

For an overview of tree decompositions see [BK08, HKK05].



Chapter 2

Exact Algorithms for NP-hard
Problems

Let us recall two of the possible viewpoints mentioned in Section 1.1 arguing for
P ≠ NP (let us emphasize that the persons quoted do not necessarily share these
viewpoints):

1. creativity cannot be automated. Creativity, ingenuity or leap-of-thought
can only be achieved by very talented people and cannot be simulated on
a brainless computer with a prescribed recipe (mentioned in Wigderson’s
quote),

2. for the last 50 years, there has been a total lack of fundamental progress in
the area of exhaustive search (mentioned in Vardi’s quote).

The last statement can be justified since it is known that scientists were already
thinking about improving exhaustive search from the 1950’s, as can be read from
the following (famous) quote:

“ It would be interesting to know, for example, what the situation is in the
case of determining whether a number is a prime number, and in the case
of finite combinatorial problems, how strongly in general the number of
steps vis-à-vis the blossen Probieren(1) can be reduced. ”— K. Gödel, in a letter to Von Neumann from 1956 [Har89, Sip92]

And indeed, while the first question has been resolved (see [AKS04] for a deter-
ministic algorithm), we still seem to have little clue for the second more general
question.

The question ‘Can exhaustive search be improved?’ is arguably not much
less fundamental than the P versus NP problem: if there would exist a generic

(1)the “simple testing”, “trying out”, or “exhaustive search”
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recipe to ignore a very large part of the search space would this not simulate
‘creativity’? If not, exactly how much must exhaustive search be improved in
order to be able to conclude that ‘creativity can be automated’? It seems like
any non-trivial improvement could be called ‘an astonishing event’. In hypothesis
form, the question is formalised as follows:

Hypothesis 2 For every δ < 1, CKT-Sat can not be solved in O⋆(2δn) time.

Note that proving Hypothesis 2 seems to be harder than disproving it, since
it is (a lot more) stronger than the statement P ≠ NP .

Exact algorithms for NP-hard problems
The CKT-Sat problem seems to be the most fundamental NP-complete prob-
lem, but of course we do not need to restrict ourselves to this problem: for many
other problems optimal solutions are often required (see also Papadimitriou’s
quote from Chapter 1) and it makes sense to ask for an NP-complete problem,
what the largest input size is such that we can solve all instances up to that
size. From the positive perspective, it is plausible that the techniques we have
to develop for these problems will be helpful to attack Hypothesis 2. From the
negative perspective, we could use Hypothesis 2 and show for other problems
that there is some lower bound on the computation time needed. Note that here,
the NP-completeness framework initiated by Karp [Kar72, Coo71, Lev73] only
tells us that all the problems are equivalent with respect to whether they can be
solved in polynomial time, so in some sense we are trying to refine this framework
when concerning ourselves with strong lower bounds.

The field in theoretical computer science studying these kind of questions
is the field of exact algorithms for hard problems. Early exponential time al-
gorithms were already explicitly(2) given in the 1960’s: for example an O⋆(2n)-
time algorithm for the Traveling Salesman Problem [HK62]. The field
received not much attention in the next thirty years, but since then it has
grown tremendously. See [vR11, Section 1.2] for a recent more detailed historical
account. Several surveys [Sch05, Woe01a, Woe04, Woe08], recent PhD theses
[Gas08, Mni10, vR11, Sau08, Sch11, Tra10], and a book [FK10] are devoted or
highly related to the subject. Also worth mentioning is a recent breakthrough
that improves an almost 50 years algorithm for Hamiltonian Path [Bjö10b].

Back to Satisfiability
Although we said that not much significant progress has been made on resolving
Hypothesis 2, we would like to briefly mention two results: first is a connection
to circuit lower bounds:

(2)More implicit but earlier examples that could be mentioned are the algorithm for the
Subset Sum problem [Bel54] from the 1950’s, or even the more than two thousand years old
sieve of Erosthanes that was called “brute force” in Example 2.
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Theorem 2.1 — [Wil10] Suppose there is a superpolynomial function s(n) such that
CKT-Sat can be solved in 2nnO(1)/s(n) time by a deterministic algorithm, then
NEXP ⊆ P/poly

Thus, this even increases the stakes concerning Hypothesis 2. In this thesis
we will not elaborate much more on circuit lower bounds. Another recent result
more related to this thesis is the following result:

Theorem 2.2 — [PP10] If there exists a randomized algorithm that, given an in-
stance of the CKT-Sat problem, runs in O(∣C ∣k) time and outputs

• NO if the given instance is a NO-instance,

• YES with probability at least 2−δn for some δ < 1 if the given instance is a
YES-instance,

then there exists a µ < 1 depending on δ and k such that CKT-Sat can be
solved in O(2O(nµ lg1−µm)) time.

The authors call an algorithm of the type required in Theorem 2.2, i.e., an
algorithm running in polynomial time that has exponentially small one-sided
success probability, an OPP algorithm. The conclusion of Theorem 2.2 seems
very strong (Theorem 2.3 gives an implication), so the theorem can be interpreted
as an upper bound on the power of OPP algorithms. Many exponential time
algorithms can be easily turned into OPP algorithms where the error probability
is the inverse of the running time of the original algorithm, most notably the
Davis-Putnam procedure (see for example [FK10, Chapter 3]) and local search
(see [FK10, Chapter 8] or [Sch99]), so one could interpret Theorem 2.2 as an
indication that these technique on their own are not powerful enough(3). For the
big majority of techniques in this thesis, it seems very hard to turn it into an
OPP technique.

The following interesting connection with Fixed Parameter Tractability is
known:

Theorem 2.3 — [ADF95], see also [FG06], Theorem 3.25.

CKT-Sat can be solved in O⋆(2δn) for some δ < 1↔ FPT =W[P ]

There is an important special case of the CKT-Sat problem, that has been
well-studied and has been the basis for two well-known hypotheses that are similar
to Hypothesis 2. A k-CNF-formula over n variables v = (v1, . . . , nv) is a logical

(3)Indeed, a recent algorithm for a variant of the CKT-Sat uses non-OPP techniques [Wil11].
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formula that is a conjunction of clauses φ = C1 ∧ . . . ∧Cm where every clause is a
disjunction of literals Ci = li,1 ∨ li2 ∨ . . .∨ li,` where ` ≤ k and every literal is either
vj or ¬vj for some 1 ≤ j ≤ n. The formula φ is said to be satisfied by a variable
assignment v ∈ {true,false}n if substituting it makes φ true.

k-CNF-Sat Parameter: n
Input: A k-CNF formula φ of n variables.
Question: Does there exists a v ∈ {true,false}n that satisfies φ?

For convenience, let σk be the smallest constant such that the k-CNF-Sat
problem can be solved in O⋆(2σkn) time. The following hypotheses our well-
known and used as assumptions for obtaining several lower bounds. We will also
use them in Chapters 7 and 8.

Exponential Time Hypothesis (ETH) [IP01]. For every k, σk(CNF-Sat) > 0.

Strong Exponential Time Hypothesis (SETH) [IP01]. limk→∞ σk(CNF-Sat) = 1.

The following lemma is also useful in proving lower bounds and was used to
prove that solving many problems in O⋆(2o(n)) time is not possible under the
ETH in [IP01].

Lemma 2.1 — Sparsification Lemma,[IPZ01, CIP06] There is an algorithm that accepts
an integer k ≥ 2, a real 0 < ε ≤ 1, a k-CNF formula φ as input, and outputs a
sequence φ1, . . . , φs of k-CNF formulas in s ⋅O⋆(1) time such that

• s ≤ 2εn,

• sol(φ) = ∪isol(φi), where sol(φ) is the set of satisfying assignments of φ,

• for every 1 ≤ i ≤ s, each literal occurs at most O(kε )3k times in a clause.

It is worth mentioning that again there is a known connection with Fixed
Parameter Tractability:

Theorem 2.4 — See for example [FG06],Chapter 16. The ETH fails ↔ FPT =M[1](4).

(4)For a definition ofM[1] we refer to [FG06].
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Exact Algorithms versus Fixed Parameter Tractability
Due to historical reasons, it is common to distinguish two different types of areas
of study concerning exact algorithms forNP-hard problems that are actually very
similar: “Fixed Parameter Tractability (FPT)” (see also Section 1.3) and “exact
exponential algorithms”. The main difference is that the complexity parameter
in problems in the FPT area need not be related to the input size at all (note
that this is even a necessary condition to make the typical FPT question “is this
problem in FPT ?” non-trivial). On the other hand, there are many problems
(including all those studied in this thesis) that are known to be (often trivially)
in FPT , but where we are interested in obtaining space/time bounds of the type
O⋆(f(k)) where f(k) grows as slowly as possible. Clearly these questions are
in the intersection of both areas, so this thesis is about both “FPT” and “exact
exponential algorithms”, and results from both areas of study will appear to be
useful.

The remainder of this chapter is organized as follows: in Section 2.1 we will
give an introduction to the dynamic programming technique that is central in
this thesis and give some example applications, and in Section 2.2 we will give
an overview of the thesis and give a first brief description of what the role of
dynamic programming in the thesis will exactly be.

2.1 Dynamic Programming
Dynamic programming is, together with exhaustive search, one of the most basic
techniques for designing algorithms, and in particular exact algorithms for NP-
hard problems. The idea of dynamic programming is the following: to solve a
given problem, we have to solve different parts of the problem (subproblems), and
afterwards combine the solutions of the subproblems (subsolutions) to obtain a
global solution. The naive way to do this would be to enumerate all subsolutions,
try every combination and see which combine to a global solution. Dynamic
programming seeks to implement this step in a more efficient way by identifying
all relevant properties and treating all subsolutions with the same properties as
one, by tabulating for each property whether there is a solution exhibiting it.

Hence basically, dynamic programming algorithms work with a very large
table of data stored in memory, and iteratively compute table entries out of pre-
viously computed table entries. The procedure that computes new table entries
from old ones is often very easy and that is why it is convenient to formalize a
dynamic programming algorithm with a recurrence. Let us proceed with the per-
haps easiest application of the technique to the Subset Sum problem, defined
as follows:
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Subset Sum Parameter: t
Input: Set S = {1, . . . , n} and function ω ∶ S → N and an integer t.
Question: Does there exist a subset X ⊆ S such that ω(X) = t?

We first define the table entries: for 0 ≤ i ≤ n and 0 ≤ j ≤ t, define A(i, j) =
∃X ⊆ {1, . . . , i} ∶ ω(X) = j. It is easy to see that the following recurrence holds:

A(i, j) = {
true if i = 0, (2.1a)
A(i − 1, j) ∨A(i − 1, j − ai) otherwise. (2.1b)

Now, we can use (2.1) to compute A(n, t) and it is easy to see that the given
instance of Subset Sum is a YES-instance if and only if A(n, t) = true. To
compute A(i, t) for every 1 ≤ i ≤ n and 0 ≤ j ≤ t, simply (a) create an array A[i, j]
(b) set A[0, j] according to (2.1a) (c) for every 1 ≤ i ≤ n compute the entries
A[i, j] using the stored entries A[i − 1, j] (d) remove the entries A[i − 1, j] from
the working memory. This gives an algorithm solving the Subset Sum problem
in O(nt) time and O(t) space (note that this is not polynomial time since t could
be exponential in the input size).

To clarify the discussion after Theorem 2.2, let us note that it is unclear
how to turn this algorithm into an OPP algorithm: it is not known how to
solve Subset Sum in polynomial time with one-sided error probability at most
O⋆(1 − t−1).

Another easy application of dynamic programming is to the Short D-Reach
problem defined in Chapter 1. Suppose we are given an instance consisting of a
digraph D = (V,A), integer k ≤ ∣V ∣ and vertices s, t. For every 1 ≤ i ≤ k and v ∈ V ,
we define A(i, v) to be true if and only if there is a path from s to v of length at
most i.

A(i, v) =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

[s = v] if i = 1, (2.2a)
⋁

u∈N−(v)
A(i − 1, u) otherwise, (2.2b)

and this can easily be turned into an algorithm solving the problem in O(nk) time
(note that this is not optimal since a simple breadth-first search also suffices).
Of course, the Short D-Reach problem is not NP-hard; indeed the above
algorithm is polynomial time. It is however easily turned into an NP-complete
problem by studying succinct variants. Early work studying such variants is
given in [PY86, GW84, FKVV98, Wag86], and they are the canonical way to
define NEXP-complete problems.

With a boolean circuit or formula C with 2n variables we can associate a
digraph D = ({0,1}n,A) where (u,v) ∈ A if and only if (u1, . . . , un, v1, . . . , vn)
satisfies C. We call D the graph represented by C.
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Circuit-Succinct Short D-Reach Parameter: n
Input: A boolean circuit C on 2n variables, integer k ∈ O⋆(1) and s, t ∈ {0,1}n.
Question: Is there a path of length at most k in the graph represented by C?

Formula-Succinct Short D-Reach Parameter: n
Input: A CNF-formula C on 2n variables, integer k ∈ O⋆(1) and s, t ∈ {0,1}n.
Question: Is there a path of length at most k in the graph represented by C?

It would be interesting to know whether Savitch’s theorem can be improved
here, or to show that such an improvement would either imply an improvement
of Savitch’s theorem in the general case or has some complexity theoretic con-
sequences. In other words, can we exploit the fact that the graph is given by a
succinct representation? It seems that, for example, improving over Savitch’s the-
orem by giving a faster polynomial space algorithm for the Circuit-Succinct
Short D-Reach implies a faster polynomial space algorithm for a large class
of dynamic programming algorithms: informally, if an exponential time dynamic
programming algorithm stores only boolean values in the table and only dis-
junctions of recursive entries occur, then evaluating a table entry can straight-
forwardly and efficiently be formulated as an instance of Circuit-Succinct
Short D-Reach.

Concerning time, there are simple reductions to show that an O⋆(2δ2n)-time
algorithm for Circuit-Succinct Short D-Reach or Formula-Succinct
Short D-Reach would contradict Hypothesis 2 or the SETH, respectively: ob-
tain C ′ from C by adding four variables w1, . . . ,wn and add clauses in order to
make sure that (w1, . . . ,w4, v1, . . . , vn) is satisfying assignment of C ′ if and only
if

(w1, . . . ,w4) ∈ {{true,true,true,false} ∪ {false,true,false,false}} ∨
((w1, . . . ,w4) = {true,false,false,true} ∧ (v1, . . . , vn) satisfies C.)

As vertices s, t ∈ {0,1}n taking s = 1 and t = 0 suffices.

Dynamic Programming on Graph Decompositions
A very important and widely used application of dynamic programming is for
problems on graphs that are decomposed in a specific way, for example by a tree
decomposition: we now proceed by giving an example for the following problem:

Independent Set
Input: An undirected graph G = (V,E) and integer k.
Question: Is there a subset X ⊆ V with ∣X ∣ = k and u, v ∈X → uv ∉ E?
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Theorem 2.5 — Folkore, see for example [Nie06],Theorem 10.14. There exists an algo-
rithm that given a tree decomposition of G of width t solves Independent
Set in O⋆(2t) time.

Proof We first define the table entries of the dynamic programming algorithm we
will give: for every bag x ∈ T, 0 ≤ i ≤ k and S ⊆ Bx,

Ax(i, S) = true↔ ∃X ⊆ Vx ∶ ∣X ∣ = i ∧ u, v ∈X → uv ∉ Ex,

or less formally, Ax(i, S) indicates whether Gx has an independent set of size k.
The algorithm computes Ax(i, S) for all bags x ∈ T in a bottom-up fashion for all
values 0 ≤ i ≤ k and S ⊆ Bx. We now give the recurrence for Ax(i, S) that is used
by the dynamic programming algorithm. In order to simplify notation let v the
vertex introduced and contained in an introduce bag, uv the edge introduced in
an introduce edge bag, and let y, z stand for the left and right child of x in T if
present.

• Leaf bag:

Ax(i,∅) = [i = 0]

• Introduce vertex bag:

Ax(i, S) = (v ∈ S ∧Ay(i − 1, S ∖ v)) ∨ (v ∉ S ∧Ay(i, S))

If v ∈ S, it contributes with 1 to the size of the independent set in Gy,
otherwise it does not.

• Introduce edge bag:

Ax(i, S) = (u ∉ S ∨ v ∉ S) ∧Ay(i, S)

Here we check whether the introduced edge violates the independent set.

• Forget bag:

Ax(i, S) = Ay(i, S ∪ {v}) ∨Ay(i, S ∪ {v})

In the child bag the vertex v can either be in the independent set or not.
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• Join bag:

Ax(i, S) =
i+∣S∣

⋁
j=0

Ay(j, S) ∧Az(i + ∣S∣ − j, S)

The two independent sets of Gy and Gz together form an independent set
of size i of Gx if they are consistent in the overlapping vertex set S, and
their sizes sum up to i, taking care that vertices in S are accounted twice,
and every independent set of Gx can be decomposed accordingly.

It is easy to see that using the above recurrences, Ax(k,∅) can be computed
in O⋆(2k) time, and it is follows by definition that Ax(k,∅) = true if and only if
the given instance is a YES-instance. ∎

Recently, it was shown that in some sense Theorem 2.5 is optimal unless the
SETH fails:

Theorem 2.6 — [LMS11a] Unless the SETH fails, there is no algorithm that given a
tree decomposition of G of width t solves Independent Set in O⋆(2δt) time
for some δ < 1.

It is conceivable(5) that the above algorithm can be related as well to the
Formula-Succinct Short D-Reach concerning both the time and space re-
quirements using constructions similar to the proof of Theorem 2.6.

Open Question 1 Can Circuit-Succinct Short D-Reach or Formula-
Succinct Short D-Reach be solved in O⋆(1) space and O⋆(2cn) time for
some constant c? Or would it have any complexity-theoretic consequences?

More Information on DP
There are many crucial applications of the dynamic programming technique to
theoretical computer science, we refer to [CLRS01, Chapter 15] for a few of the
most basic ones. General studies and classifications of dynamic programming al-
gorithms were initiated already several times. For example in the field of parallel
algorithms [KGGK94], monadic / polyadic and series/parallel types are distin-
guished [KGGK94], in the field of approximation algorithms generic results have
been obtained [Woe01b] (also, in [GKM+11] a very recent generic approximative
counting algorithm has been given), and models of dynamic programming algo-
rithm are considered in [BODI11, Hel89, KH67]. A generic result using dynamic
programming for graphs with given efficient tree decompositions is Courcelle’s
Theorem [DF99, Section 6.5]. Logarithmic space versions of Theorem 2.5 where
t is constant were recently obtained in [EJT10].

Also, we refer to [Dre02] for an historical account (including the origin of the
name), and [Bel54] for a reprint of the famous book of Bellman.

(5)the author does not have a full proof
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2.2 On this Thesis
In this section we will describe the contents of this thesis. Recall the name:

“Space and Time Efficient Structural Improvements
of Dynamic Programming Algorithms”

In this thesis, we search for generic improvements of naive dynamic program-
ming in the same way as the search for generic improvements of exhaustive search
as discussed in the beginning of this chapter. We believe that these two questions
are somehow dual: exhaustive search is very insensitive to the number (and the
complexity) of the constraints imposed on the variables, while dynamic program-
ming is very insensitive to the number of variables(6) (or: number of candidate
solutions).

Since dynamic programming is very space-inefficient by definition, improve-
ments could refer to saving time or/and saving space. Theorem 2.5 and the
discussion of Circuit-Succinct Short D-Reach and Formula-Succinct
Short D-Reach already suggest that improving some naive dynamic program-
ming schemes in time is as hard as improving exhaustive search, but could we
still get some generic positive results?

The remainder of this thesis is organised as follows: in part II, Chapter 3, we
give some space-efficient algorithms using the principle of inclusion/exclusion (or
Möbius inversion). Although the results are non-trivial, this should be considered
as a warm-up since we study a more general framework in Chapter 5.

In Chapter 4 we recall preliminary knowledge and introduce notation that
facilitates reading Part III. We recall a number of known transformations and
discuss two techniques similar to the ones appearing in Part III. More importantly
we recall the notion of an algebraic circuit that will be used to describe classes
of dynamic programming algorithms that will be studied in Part III.

In Chapter 5 we give a class of dynamic programming algorithms that can be
turned into space-efficient ones without increasing the running time significantly.
This will be based on two transformations. As mentioned earlier, the results in
(the second half of) that chapter generalize (almost all) the results of Chapter 3.
Oversimplified, the algorithms are obtained by implicitly applying an invertible
transformation to the dynamic programming table.

Chapter 6 continues the study initiated in Chapter 5: in order to save space
and time, we first implicitly apply a hash function (i.e. non-invertible trans-
formation) to the dynamic programming table and then follow the approach of
Chapter 5. We combine this with exhaustive search to give an algorithm for
the Linear Sat problem. Also, in a technical result, we propose a new hash
function that could useful for further improvements of dynamic programming or
exhaustive search algorithms.

(6)A more concrete setting of this duality is studied in Subsections 8.2.2 and 9.1.
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In Chapter 7 we study the class of dynamic programming algorithms on graphs
of small treewidth for connectivity problems. The main contribution is a hash
function mapping the number of solutions to the number of so-called ‘cut objects’
which is used to improve the time and space requirements of known algorithms.
We also show that for some connectivity problems such an improvement is harder
to obtain, and that it is hard to improve our new algorithms (where hard refers
to breaking a complexity theoretical assumption).

In Chapter 8 we study the relation between dynamic programming algorithms
and branching algorithms from the hardness perspective. Our main aim is to
show that improving ‘naive’ dynamic programming based algorithms for problems
as Steiner Tree and Set Cover implies improving exhaustive k-CNF-Sat.
We achieve this aim partially by showing such a result for the parity versions
of Steiner Tree and Set Cover. We also relate possible improvements of
exhaustive search algorithms for several problems to each other.

In Part IV, Chapter 9, we give a conclusion, relate the chapters to each other,
and give more directions for further research. Moreover, we discuss one lemma
from the paper [NvR10] concerning symmetry.

The thesis is based on (parts of) the following papers:

[Ned09]. Jesper Nederlof. Fast polynomial-space algorithms using Möbius in-
version: Improving on Steiner tree and related problems. In Susanne Albers,
Alberto Marchetti-Spaccamela, Yossi Matias, Sotiris E. Nikoletseas, and Wolf-
gang Thomas, editors, ICALP (1), volume 5555 of Lecture Notes in Computer
Science, pages 713–725. Springer, 2009

[LN10]. Daniel Lokshtanov and Jesper Nederlof. Saving space by algebraization.
In Leonard J. Schulman, editor, STOC, pages 321–330. ACM, 2010

[KKN11]. Petteri Kaski, Mikko Koivisto, and Jesper Nederlof. On homomorphic
hashing for coefficient extraction. 2011. Manuscript

[CNP+11a]. Marek Cygan, Jesper Nederlof, Marcin Pilipczuk, Michał Pilipczuk,
Johan M. M. van Rooij, and Jakub Onufry Wojtaszczyk. Solving connectivity
problems parameterized by treewidth in single exponential time. In FOCS, 2011.
To appear. Full version: [CNP+11b]

[CDL+11]. Marek Cygan, Holger Dell, Daniel Lokstahnov, Dániel Marx, Jesper
Nederlof, Yoshio Okamoto, Ramamohan Paturi, Saket Saurabh, and Magnus
Wahlström. On problems as hard as CNF-Sat. 2011. Manuscript
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[NvR10]. Jesper Nederlof and Johan M. M. van Rooij. Inclusion/exclusion
branching for partial dominating set and set splitting. In Venkatesh Raman
and Saket Saurabh, editors, IPEC, volume 6478 of Lecture Notes in Computer
Science, pages 204–215. Springer, 2010
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Chapter 3

Fast Polynomial-space
Algorithms using Möbius
Inversion: Improving on Steiner
Tree and Related Problems

This chapter is based on a part of the following paper:

[Ned09]. Jesper Nederlof. Fast polynomial-space algorithms using Möbius in-
version: Improving on Steiner tree and related problems. In Susanne Albers,
Alberto Marchetti-Spaccamela, Yossi Matias, Sotiris E. Nikoletseas, and Wolf-
gang Thomas, editors, ICALP (1), volume 5555 of Lecture Notes in Computer
Science, pages 713–725. Springer, 2009

In 2006, Björklund et al. drew new attention to the well-known principle
of inclusion-exclusion (see [BHK09] for the journal version): they gave O∗(2n)-
time algorithms for several set partition problems, the most prominent one being
k-Coloring. They also mention a simple adjustment to their algorithm to
achieve an O∗(2.24n)-time algorithm with polynomial space for k-Coloring.
Also related to this are the older O∗(2n)-time polynomial-space algorithms for
#Hamiltonian path by Karp [Kar82] and (implicitly) Kohn et al. [KGK77],
and for #Perfect Matching by Björklund and Husfeldt [BH08].

Our algorithms presented in this chapter heavily rely on the work of Björklund
et al. [BH08, BHKK07, BHKK08, BHKK10b, BHK09]. The results can be read
from Table 3.1.

Steiner Tree is one of the most well-studied NP-complete problems. For
this problem, the Dreyfus-Wagner [DW72] dynamic programming algorithm (see
also Section 5.2.2) has been the fastest exact algorithm for over 30 years. However,
recently Björklund et al. [BHKK07] gave an O⋆(2k)-time algorithm for the variant
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Problem Poly-space By Exp-space By Results
Steiner Tree 5.96knO(log k) [FGK08] O⋆(2k) [BHKK07] O⋆(2k)
with unit weights O⋆(1.60n) [FGK08] O⋆(1.36n) [FGK08] O⋆(1.36n)

Steiner Tree 5.96knO(log k) [FGK08] O⋆((2 + ε)k) [FKM+07] O⋆(2kC)†
O⋆(2kC) [BHKK07]

Degree
Constrained
Spanning Tree

O⋆(5.92n) [AFS09] O⋆(2n)

Maximum
Internal
Spanning Tree

O⋆(3n) [FGR09] O⋆(2n)

#Spanning
Forests O⋆(2n) [BHKK08] O⋆(2n)

Cover
Polynomial O⋆(3n) [BHKK08] O⋆(2n) [BHKK08] O⋆(2n)

Convex Tree
Coloring O⋆(2kC) [PHN08] O⋆(2kC)†

#Perfect
Matching O⋆(2n)(1) [BH08] O⋆(1.62n)(1) [Koi09] O⋆(1.95n)

Table 3.1 – The results of this work compared to the relevant previous results. The
number of vertices on the input graph is denoted by n. The running times of the algo-
rithms of this work are given in the last column. These new algorithms use polynomial
space, except the ones indicated with the †, which use O⋆

(C) space with C being the
maximum weight involved.

with bounded integer weights with k terminals, and Fuchs et al. [FKM+07] gave
an O⋆(ck)-time algorithm for the general case, for any c > 2. Both algorithms use
Ω(2k) space. In 2008, Fomin et al. [FGK08] initiated the study of polynomial
space algorithms for Steiner Tree. They gave polynomial space algorithms
with running times bounded by 5.96knO(log k) and O⋆(1.60n) where n is the num-
ber of vertices in the graph. They pose the question whether Steiner Tree
is fixed parameter tractable with respect to k when there is a polynomial space
restriction. We answer this question affirmatively by providing an algorithm that
runs in O∗(2k) time and meets the restriction. Using the techniques of [FGK08],
this also leads to a polynomial-space O∗(1.36n)-time algorithm.

TheMax Internal Spanning Tree (MIST) and Degree Constrained
Spanning Tree (DCST (also called Min-Max Degree Spanning Tree)
problems are natural generalizations of Hamiltonian path. In [FGR09], Fernau

(1)Recently Björklund improved this by giving a polynomial space O⋆
(1.41n) time algorithm

[Bjö11].
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et al. ask if there exists an O⋆(2n)-time algorithm to solve MIST. In [GSS08],
Gaspers et al. ask if there exists an O⋆(2n)-time algorithm solving DCST. We
answer both questions by giving polynomial-space algorithms with this running
time.

The Cover polynomial of a directed graph, introduced by Graham and
Chung [CG95], generalizes all problems that can be solved using two operations
named deletion and contraction of edges, and is designed to be the directed
analogue of the Tutte polynomial. We improve the O⋆(3n)-time polynomial-
space algorithm of Björklund et al. [BHKK08] to an O⋆(2n)-time polynomial-
space algorithm. We also give the same improvement for #Spanning forests,
which is one particular case of the Tutte polynomial. For more information about
the Tutte polynomial we refer to [BHKK08].

Finally, we give two new algorithms for Convex Tree Coloring and
#Perfect matching (counting the number of perfect matchings of a graph).
(A special case of) theConvex Tree Coloring problem was studied in [PHN08],
where a O⋆(2kC) time and O⋆(C) space algorithm was given. We will con-
tinue this study by emphasizing the space usage aspect. Finally, we show that
#Perfect matching can be solved in O⋆(1.95n) time and polynomial space,
improving over the previous O⋆(2n) time polynomial space algorithm of Björk-
lund and Husfeldt [BH08](1). It is worth to mention that with exponential space,
one can count perfect matchings of general graphs even in O⋆(1.62n) time due to
Koivisto [Koi09].

This chapter is organized as follows: we first recall the principle of Inclusion-
Exclusion and the well-known Hamiltonian path algorithm in Section 3.1. After
this we provide in Section 3.2 a natural extension by introducing the concept of
branching walks and give the resulting algorithms. In the remaining sections we
prove the remaining results that are not primarily based on branching walks.

Preliminary Definitions
Recall that a walk of length k in G is a sequence W = (v1, . . . , vk+1) ∈ V k+1 such
that (vi, vi+1) ∈ E for each 0 < i ≤ k. We say W is from v if v1 = v, and W is
cyclic if v1 = vk+1. Furthermore, v ∈ V is said to be visited by W if vi = v for some
1 ≤ i ≤ k. For a rooted tree T we will use rt(T ) to denote the root of T . For a
vertex v ∈ V (T ) we will also use pa(v) to denote the parent of v. In this chapter
[k] denotes {1, . . . , k} for an integer k.

Also given a graph G1 = (V1,E1), a homomorphism from G1 to G is a function
ϕ ∶ V1 → V such that (u, v) ∈ E1 implies (ϕ(u), ϕ(v)) ∈ E. Note that ϕ directly
corresponds to a walk in the case that G1 is a path. We will use the notation
ϕ(X) = {ϕ(u) ∣ u ∈ X} and ϕ(Y ) = {(ϕ(u), ϕ(v)) ∣ (u, v) ∈ Y } for X ⊆ V1 and
Y ⊆ E1. If G2 = (V2,E2) is a third graph with V1 ∩ V2 = ∅ and ϕ1 ∶ V1 → V and
ϕ2 ∶ V2 → V are homomorphisms, we will use ϕ1∪ϕ2 to denote the homomorphism
V1 ∪ V2 → V defined by ϕ(v) = ϕ1(v) and ϕ(w) = ϕ2(w) with v ∈ V1 and w ∈ V2.
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Model
We assume integers in the input are given in binary, and we will prove our results
for the unit-cost computation model where any arithmetic operation and storing
any integer is assumed to take constant time and space. However, all our results
also hold in the (more realistic) log-cost computation model where arithmetic
operations and storing integers only take constant time and space if they are
constant-sized. Also see Section 1.2 for more discussion on this issue.

3.1 Inclusion-Exclusion
Here we will give a brief introduction to inclusion-exclusion, following [Ned08].
In a nutshell, inclusion-exclusion is a way of computing a quantity through ex-
pressing it as a number of intersections. This can be useful since in many settings
it is easier to reason about these intersection instead.

Four Sets in a Venn-Diagram
Suppose we are given 5 requirements A1, . . . ,A5 of a set U which are illustrated
in Venn-diagram Figure 3.1. For notational ease, assume Ai = ∅ for i < 1 and
i > 5. We want to compute ∣⋂iAi∣, without using any union operator.
First, in (a) we sum over all sets, counting elements of frequency i exactly i times.
To compensate, we subtract the size of the intersection between each pair of sets
in (b), subtracting elements of frequency i exactly i∗(i−1)

2 times. After adding all
intersections of 3 sets and subtracting elements in 4 sets, every element in one of
the sets is exactly counted once. Concluding, we obtain the following identity:

∣⋃
i

Ai∣ =∑
i

∣Ai∣ −∑
i<j

∣Ai ∩Aj ∣ + ∑
i<j<k

∣Ai ∩Aj ∩Ak∣ − ∑
i<j<k<l

∣Ai ∩Aj ∩Ak ∩Al∣.

The Theorem

Theorem 3.1 — Folklore Let U and V be sets and for every v ∈ V , let Pv be a subset
of V . Use Pv to denote U ∖ Pv. With the convention ∩i∈∅Pi = U , we have:

∣⋂
v∈V

Pv ∣ = ∑
F⊆V

(−1)∣F ∣∣⋂
v∈F

Pv ∣. (3.1)

Proof For R ⊍ F ⊍O = V , define

N(R,F,O) = ∣(⋂
v∈R

Pv) ∩ (⋂
i∈F

Pv)∣.

(intuitively, R,F,O contain all the indices of respectively all ‘required’, ‘forbidden’
and ‘optional’ subsets). Then De Morgan’s law states that for every v ∈ V ,

N(R ∪ {v}, F,O) = N(R ∖ {v}, F,O ∪ {v}) −N(R ∖ {v}, F ∪ {v},O). (3.2)
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Figure 3.1 – An example of an inclusion-exclusion formula

Iteratively applying this equation gives N(R,∅,∅) = ∑F⊆V (−1)∣F ∣N(∅, F,R ∖ F )
which is easily seen to be equivalent to (3.1). ∎

In this chapter, we call any application of the above theorem an Inclusion-
Exclusion-formulation (IE-formulation). In the context of this chapter it is con-
venient to use the following terminology: We refer to the set U as the universe,
to R as the requirement space and to Pv as a property. Moreover, given a set
F ⊆ R, we call the task of computing ∣∩v∈F Pv ∣, the simplified problem. Note that
if the simplified problem can be solved in O⋆(t(n)) time and O⋆(s(n)) space,
the left-hand side of (3.1) can be determined in O⋆(2nt(n))-time and O⋆(s(n))
space in the straightforward manner. All algorithms in this chapter will exploit
this observation.
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Application to the Hamiltonian Path Problem
To illustrate Theorem 3.1, we will first recall the following IE-formulation due to
Karp [Kar82] for counting Hamiltonian paths. Given a (possibly directed) graph
G = (V,E), a Hamiltonian path is a walk that contains each vertex of G exactly
once(2).

Theorem 3.2 — [Kar82] Hamiltonian paths of a graph on n vertices can be counted
in O⋆(2n) time and polynomial space.

Proof Let G = (V,E). In the context of Theorem 3.1, define the universe U as all
walks of length n − 1 in G, the requirement space R = V , and Pv as all walks of
length n − 1 that visit vertex v, for every v ∈ V . With these definitions, the left-
hand side of (3.1), ∣⋂v∈V Pv ∣, is the number of Hamiltonian paths in G. Now it
remains to show how to solve the simplified problem. Given F ⊆ V and x ∈ V ∖F ,
let wF (x, k) be the number of walks from x of length k in G[V ∖ F ]. Then
wF (x, k) admits the following recurrence:

wF (x, k) =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

1 if k = 0,
∑

t∈N(x)∖F

wF (t, k − 1) otherwise. (3.3)

Also, notice that
∣⋂
v∈F

Pv ∣ = ∑
s∈V ∖F

wF (s, n − 1),

and hence the simplified problem can be solved in polynomial time using dynamic
programming on (3.3) (the parameter F is fixed but is added for clarity). Thus
it takes O⋆(2n) time and polynomial space to evaluate (3.1), and the theorem
follows. ∎

3.2 Branching Walks

Definition 3.1 A branching walk B in G = (V,E) is a pair (T,ϕ) where T is
an ordered rooted tree and ϕ ∶ V (T ) → V is a homomorphism from T to G.
For a vertex x ∈ V , B is from x if ϕ(rt(T )) = x. B visits a vertex v ∈ V if
v ∈ ϕ(V (T )). The length of B is ∣E(T )∣.

A branching walk is a natural generalization of a walk: Notice that a branching
walk (T,ϕ) is a walk in the special case that T is a path rooted at an endpoint.
Since we will count distinct branching walks, we emphasize that two branching
walks (T1, ϕ1) and (T2, ϕ2) are distinct if there is no isomorphism ψ ∶ T1 → T2
such that ϕ1(v) = ϕ2(ψ(v)) for every v ∈ V (T1).

(2)Note that this is slightly different from the usual definition, since a path corresponds to two
walks in both directions. So we will actually obtain a number that is exactly twice the number
of Hamiltonian paths.



46 Fast Polynomial-Space Algorithms Using Möbius Inversion

3.2.1 Steiner Tree
In this section we will give an extension of the technique in the previous section
to obtain a new IE-formulation for the Steiner Tree problem, which is defined
as follows:

Steiner Tree Parameter: k = ∣K ∣
Input: G = (V,E), c ∈ Z+, weight function ω ∶ E → [C]∖0 and terminals K ⊆ V
Question: Is there a subtree (V ′,E′) ofG such thatK ⊆ V ′ and∑e∈E′ ω(e) ≤ C?

Given a branching walk (T,ϕ) in the input graph G, the quantity ∑e∈E(T ) ω(ϕ(e))
is said to be its weight.

Lemma 3.1 Let s0 ∈ K. There exists a subtree S = (V ′,E′) of G such that
K ⊆ V ′ and w(E′) ≤ C if and only if there exists a branching walk B = (T,ϕ)
from s0 of weight at most C such that K ⊆ ϕ(V (T )).

Proof For the forward direction, assume S to be ordered by fixing an arbitrary
order. Then define B = (S,ϕ), with ϕ ∶ V ′ → V ′ the identity function, and let
rt(S) = s0 (this is possible since s0 ∈ K ⊆ V (S)). Then, clearly ω(ϕ(E(S))) ≤
c. For the backward direction, notice that (ϕ(V (T )), ϕ(E(T ))) is connected
and if we let S be a spanning tree of (ϕ(V (T )), ϕ(E(T ))), it has the required
properties. ∎

Consider the following IE-formulation: let s0 ∈ K be an arbitrarily chosen
terminal, and define the universe U to be the set of all branching walks (T,ϕ)
from s0 of weight at most C. Let the requirement space R be K. For every v ∈K,
define a property Pv ⊆ U that consists of all branching walks in U that visit v and
have weight at most C. It follows that the left-hand side of (3.1), ∣⋂v∈K Pv ∣, is the
number of branching walks of weight at most C that contain all terminals. By
Lemma 3.1, this quantity is larger than 0 if and only if the instance of Steiner
Tree is a yes-instance. Hence we can restrict our goal to determining ∣⋂v∈K Pv ∣.
For this we use Theorem 3.1.

Before we proceed, first let us recall a basic combinatorial problem: Let Tn
be the set of all distinct ordered rooted trees on n edges (also called the Catalan
numbers). We will give a recurrence for ∣Tn∣. Let

γ ∶⋃
i,j

(Ti × Tj)↔ Ti+j+1 (3.4)

be the gluing operation such that T = γ(T1, T2) is obtained by connecting rt(T1)
and rt(T2), setting rt(T ) = rt(T2), letting the first child of rt(T ) be rt(T1),
being followed by the children of rt(T ) in T2. Clearly γ is a bijection so ∣Tn∣ =
∑n−i−1
i=0 ∣Ti∣∣Tn−i−1∣.
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We now continue applying Theorem 3.1 by showing how the simplified problem
can be solved in O⋆(C) time and space. For F ⊆ K, define BF (x,W ) to be all
branching walks (T,ϕ) of weight at mostW from x in G[V ∖F ], where x ∈ V ∖F .
Hence U = B∅(x,C). Let bF (x,W ) = ∣BF (x,W )∣. First, note that the simplified
problem is to compute

∣⋂
v∈F

Pv ∣ = bF (s0,C)

for a given set F ⊆ K of terminals. Now bF (s0,C) can be computed using the
following lemma in combination with dynamic programming:

Lemma 3.2 Let F ⊆K and x ∈ V ∖ F , then

bF (x,W ) =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

1 if W = 0, (3.5a)
∑

t∈N(x)∖F

∑
W1+W2=W−ω(x,t)

bF (t,W1) bF (x,W2) otherwise. (3.5b)

Proof There is one branching walk B of weight 0, B = (T,ϕ), from x with T being
a single vertex and ϕ mapping this single vertex to x, hence Case 3.5a. For the
second case, define a function

γ′ ∶ ⋃
t∈N(x)∖F

⋃
W1,W2

(BF (t,W1) × BF (x,W2))↔ BF (x,W1 +W2 + ω(x, t))

by γ′((T1, ϕ1), (T2, ϕ2)) = (γ(T1, T2), ϕ1 ∪ ϕ2). Now γ′ is a bijection since γ is a
bijection as stated in (3.4) and for the branching walk (γ(T1, T2), ϕ) it must hold
that ϕ(rt(T1)) ∈ N(ϕ(rt(T2))). Hence Case 3.5b follows. ∎

Theorem 3.3 Steiner tree can be solved in O⋆(2kC) time and O⋆(C) space.

Proof Due to Lemma 3.1 the considered IE-formulation solves Steiner Tree, and
we can use dynamic programming on (3.5b) to compute the simplified problem in
O⋆(C2) time. This can be further reduced to O⋆(C) time in a standard manner
with the Fast Fourier Transform. Then the theorem follows from Theorem 3.1.∎

The following result is a consequence of Theorem 3.3 and the considerations
of Section 4.2 in [FGK08]:

Theorem 3.4 The Steiner Tree with unit weights problem can be solved in
O⋆(1.36n) time using polynomial space.

Proof Modify Algorithm steiner as described in Section 4.2 in [FGK08], except
that we replace Step 4 of steiner with the algorithm due to Theorem 3.3. This
clearly does not change the worst-case running time as claimed in Theorem 5 of
[FGK08], and it is easy to see that the new algorithm uses polynomial space. ∎
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3.2.2 Degree Constrained Spanning Tree

Degree Constrained Spanning Tree (DCST) Parameter: n
Input: G = (V,E), 1 ≤ c ≤ n
Question: Is there a spanning tree of G with maximum degree at most c?

Analoguous to Lemma 3.1, we will use the following lemma to reduce our problem
to computing some quantity involving branching walks:

Lemma 3.3 There exists a spanning tree of G of maximum degree at most c if
and only if there exists a branching walk B = (T,ϕ) of length n − 1 such that
ϕ(V (T )) = V and the maximum degree of T is at most c.

Proof For the forward direction, assume S to be a spanning tree of G of maximum
degree at most c and order it by fixing an arbitrary order. Then define B = (S,ϕ),
with ϕ ∶ V (S) → V (S) the identity function, and choose rt(S) arbitrarily. For
the backward direction, notice that (ϕ(V (T )), ϕ(E(T ))) is a tree of maximum
degree at most c. ∎

Now we can use the following IE-formulation: Define the universe U as all
branching walks (T,ϕ) of length n − 1 such that the maximum degree of T is at
most c. Define the requirement space R = V and Pv to be all branching walks in
U visiting v, for every v ∈ V . That is, let Pv = {(T,ϕ) ∈ U ∶ v ∈ ϕ(V (T ))}. For
F ⊆ V , define DF (x, j, g) as all branching walks (T,ϕ) ∈ U from x of length j in
G[V ∖ F ] such that the degree of the root of T is at most g and the degree of
every other vertex is at most c. Hence U = ∪x∈V ∖FD∅(x,n−1, c). Let dF (x, j, g) =
∣DF (x, j, g)∣. We apply Theorem 3.1, and conclude that the simplified problem
is to compute the number of branching walks in the universe that avoid F , and
hence

∣⋂
v∈F

Pv ∣ = ∑
x∈V ∖F

dF (x,n − 1, c).

This can be done in polynomial time with dynamic programming using the fol-
lowing lemma:

Lemma 3.4

dF (x, j, g) =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

[g ≥ 0] if j = 0, (3.6a)
∑

t∈N(x)∖F

∑
j1+j2=j−1

dF (t, j1, c − 1) dF (x, j2, g − 1) otherwise. (3.6b)

Proof To see that Case 3.6a holds, notice that dF (x,0, g) = 0 if g is negative since
the root has a non-negative degree, and otherwise there is one branching walk
(T,ϕ) of length zero obtained by letting T be the tree on one vertex and letting
ϕ be the function mapping this vertex to x.
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For Case 3.6b, let us define γ′((T1, ϕ1), (T2, ϕ2)) to be the branching walk
(γ(T1, T2), ϕ1 ∪ ϕ2), where γ is the gluing operation from (3.4). Then we claim
that γ′ is a bijection

γ′ ∶ ⋃
t∈N(x)∖F

⋃
j1,j2

(DF (t, j1, c − 1) ×DF (x, j2, g))↔ DF (x, j1 + j2 + 1, g + 1).

To see this, define a (c, g)-tree as a tree of maximum degree c with the degree
of its root at most g, and notice that γ(T1, T2) is a (c, g)-tree if and only if T1 is
a (c, c − 1)-tree and T2 is a (c, g − 1)-tree. Then Case 3.6b follows by combining
with the arguments in the proof of Lemma 3.2. ∎

Theorem 3.5 The Degree Constrained Spanning Tree problem can be
solved in O⋆(2n) time and polynomial space.

Proof Due to Lemma 3.3 the considered IE-formulation solves DCST, and we
can use dynamic programming on (3.4) to compute the simplified problem in
polynomial time. Then the theorem follows from Theorem 3.1. ∎

3.2.3 Maximum Internal Spanning Tree
A vertex of a tree is called internal if its degree is at least 2.

Maximum internal Spanning Tree Parameter: n
Input: G = (V,E), 1 ≤ c ≤ n.
Question: Is there a spanning tree of G with at least c internal vertices?

Lemma 3.5 There exists a spanning tree of G with at least c internal vertices if
and only if there exists a branching walk B = (T,ϕ) of length n − 1 such that
ϕ(V (T )) = V and T has at least c internal vertices.

Proof For the forward direction, assume S to be a spanning tree of G with at least c
internal vertices and order it by fixing an arbitrary order. Define B = (S,ϕ), with
ϕ ∶ V (S) → V (S) the identity function. It clearly has the required properties.
For the backward direction, notice that (V,ϕ(E(T ))) is a spanning tree with at
least c internal vertices since φ(E(T )) = n − 1. ∎

Consider the following IE-formulation: Define the universe U to be all branch-
ing walks (T,ϕ) of length n − 1 such that T has at least c internal vertices. For
v ∈ V , let Pv = {(T,ϕ) ∈ U ∶ v ∈ ϕ(V (T ))}. For F ⊆ V and δ ∈ Z− ∪ {0,1,2},
define Mδ

F (x, j, g) as all branching walks (T,ϕ) in G[V ∖ F ] of length j from
x such that ∣{v ∈ V (T ) ∖ rt(T ) ∶ v is internal}∣ + [d(rt(T )) ≥ δ] = g. Let
mδ
F (x, j, g) = ∣Mδ

F (x, j, g)∣, then
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Lemma 3.6

mδ
F (x, j, g)=

⎧⎪⎪⎪⎨⎪⎪⎪⎩

[g = [δ ≤ 0]] if j = 0, (3.7a)
∑

t∈N(x)∖F

∑
g1+g2=g

∑
j1+j2=j−1

m1
F (t, j1, g1)mδ−1

F (x, j2, g2) otherwise.(3.7b)

Proof To see that Case 3.7a holds, notice that there is only one branching walk
of length 0 from x and its tree-part is a single vertex, so g must be equal to
1 if δ ≤ 0 and equal to 0 otherwise by definition. For Case 3.7b, first define
γ′((T1, ϕ1), (T2, ϕ2)) as the branching walk (γ(T1, T2), ϕ1 ∪ ϕ2), where γ is the
gluing operation from (3.4). Then we claim that γ′ is a bijection
γ′ ∶ ⋃

t∈N(s)∖F

⋃
g1,g2

⋃
j1,j2

(M1
F (t, j1, g1) ×Mδ−1

F (s, j2, g2))↔Mδ
F (s, j1 + j2 + 1, g1 + g2).

To see this, note that γ(T1, T2) has g′ internal vertices not equal to the root if
and only if T1 has g′1 and T2 has g′2 internal vertices not equal to the root with
g′1 + g′2 = g′ and

dγ(T1,T2)(rt(γ(T1, T2))) = 1 + dT2(rt(T2)).
Hence the δ and g accumulators are modified correctly. Then Case 3.7b follows
by combining with the arguments in the proof of Lemma 3.2. ∎

Theorem 3.6 The Maximum Internal Spanning Tree problem can be solved
in O⋆(2n) time and polynomial space.

Proof Use the IE-formulation as described above. The simplified problem is to
compute ∣⋂v∈F Pv ∣, which is equal to ∑s∈V ∖F m

2
F (s, n − 1, c) since the root needs

at least two neighbors in order to be an internal vertex. It follows from Lemma
3.5 that there exists B ∈ ⋂v∈V Pv if and only if there exists a spanning tree with
at least c leaves. ∎

3.2.4 Counting Spanning Forests
Define a c-spanning forest to be an acyclic spanning subgraph with exactly c
connected components. In this section we will address the following problem:

#Spanning Forests Parameter: n
Input: G = (V,E), 1 ≤ c ≤ n
Question: The number of acyclic spanning subgraphs of G with exactly c
connected components.

Assume that a total ordering ≺ on the vertex set V is given. Given a subset
X ⊆ V , let minX be the minimum element of X with respect to ≺.
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Definition 3.2 A sorted branching walk is a branching walk (T,ϕ) such that for
every v ∈ V (T ) with children c1, . . . , cl, numbered with respect to the order of
T , ϕ(ci) ≺ ϕ(cj) for every i < j and ϕ(rt(v)) = minϕ(V (T )).

It can be noted that the definition implies no two children of vertex v ∈ V (T )
can be mapped to the same vertex in G.

Lemma 3.7 There is a bijection between the set of all subtrees S of G, and the
set of all sorted branching walks B = (T,ϕ) of length ∣ϕ(E(T ))∣ such that
ϕ(E(T )) induces a subtree.

Proof Note that it is sufficient to show that for every subtree S of G, there is
exactly one a sorted branching walk B = (T,ϕ) of length ∣ϕ(E(T ))∣ such that
ϕ(E(T )) = E(S).

Since ϕ(V (T )) = V (S) and B is sorted, we know that ϕ(rt(T )) = minV (T ).
Since ∣E(S)∣ = ∣E(T )∣, ϕ is a bijection and hence S and T are isomorphic. More-
over ϕ(ci) ≺ ϕ(cj) whenever ci occurs before cj as a child of a vertex in T since
B is sorted. This implies that T and ϕ are uniquely determined by S. ∎

Define BF (l) to be all sorted branching walks (T,ϕ) of length l in G such that
F ∩ ϕ(V (T )) = ∅. Also, define bF (l) = ∣BF (l)∣.

Lemma 3.8 The number of c-spanning forests is equal to

∑
F⊆V

(−1)∣F ∣ 1
c! ∑

l1+...+lc=n−c

c

∏
j=1
bF (lj). (3.8)

Proof We apply Theorem 3.1. Define U to be the set of all families f of sorted
branching walks of total length n−c (that is, the sum of the length of all members
of f is n − c). Let the requirement space be V , and for every v ∈ V define Pv to
be all elements f ∈ U such that there is (T,ϕ) ∈ f with v ∈ ϕ(V (T )). It is not
hard to see that a term of the summation of (3.8) (ignoring (−1)∣F ∣) is equal to
∣ ∩v∈F Pv ∣.

Applying Theorem 3.1, it remains to show that the number of c-spanning
forests is ∣∩v∈V Pv ∣. To see this, notice that for a family of sorted branching walks
f = {(T1, ϕ1), . . . , (Tc, ϕc)}, ∪ci=1ϕi(Vi) = V if and only if ∪ci=1ϕi(Ei) is a c-spanning
forest. Then every c-spanning forest corresponds to exactly one set of branching
walks of total length n − c due to Lemma 3.7. The lemma follows. ∎

Define BF (x, j, g) as all sorted branching walks (T,ϕ) from x of length j
such that ϕ(V (T )) ∩ F = ∅ and no child of the root of T is mapped to one of
the first g − 1 neighbors of x in G[V ∖ F ] with respect to the ordering ≺. Define
bF (x, j, g) = ∣BF (x, j, g)∣. Use N q

F (x) to denote the qth element of the set N(x)∖F
with respect to the ordering ≺.
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Lemma 3.9

bF (x, j, g) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

1 if j = 0, (3.9a)
0 else ifg > ∣N(x) ∩ F ∣,(3.9b)

bF (x, j, g + 1) +
∑

j1+j2=j−1
bF (N g

F (x), j1,1) bF (x, j2, g + 1) otherwise. (3.9c)

Proof For Case 3.9a, notice there is exactly one branching walk (T,ϕ) with T
being a single vertex and with ϕ mapping this vertex to x.

To see Case 3.9b, notice that since g > ∣N(x) ∩ F ∣, in any branching walk in
BF (x, j, g) the root can not have any children but since j > 0 this must be the
case, and hence such a branching walk does not exist.

For Case 3.9c, first notice that BF (x, j, g + 1) are exactly all branching walks
(T,ϕ) ∈ BF (x, j1 + j2 + 1, g) where no child of the root of T is mapped to N g

F (x).
Define γ′((T1, ϕ1), (T2, ϕ2)) as the branching walk (γ(T1, T2), ϕ1 ∪ ϕ2), where γ
is the gluing operation from (3.4). Then it is not too hard to see that γ′ is a
bijection

γ′∶⋃
j1,j2

(BF (N g
F (x), j1,1) × BF (x, j2, g + 1))↔ BF (x, j1 + j2 + 1, g) ∖ BF (x, j1 + j2 + 1, g + 1)

since γ′(B1,B2) and γ′(B
′
1,B

′
2) are distinct whenever either B1 and B′

1 or B2 and
B

′
2 are distinct. Then Case 3.9c follows by combining with the arguments in the

proof of Lemma 3.2. ∎

Theorem 3.7 The #Spanning forests problem can be solved in O⋆(2n) time
and polynomial space.

Proof Let F = V ∖F and bF (l) = ∑x∈F bF [x](x, l,1), where F [x] stands for the set of
all elements e in F such that x ≺ e. Using dynamic programming in combination
with Lemma 3.9, the values bF (l) can be computed for every 1 ≤ l ≤ n for a fixed
F . Also using standard dynamic programming, the simplified problem (that is,
the summand of (3.9a) ignoring the (−1)∣F ∣) can be computed in polynomial
time. Hence (3.9a) can be evaluated within the claimed resource bounds and the
theorem follows from Lemma 3.8. ∎

3.3 Cover Polynomial
We use xi for the falling factorial x!

(x−i)! . The cover polynomial of a directed graph
D = (V,A) can be defined as (see also [BHKK08, CG95]):

∑
i,j

c(i, j)xiyj
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where c(i, j) is defined as the number of ways to partition V into i directed paths
and j directed cycles of D. In this section we will address the following problem:

Cover Polynomial Parameter: n
Input: A graph G = (V,E) on n vertices.
Question: The coefficients c(i, j) for every 0 ≤ i, j ≤ n.

Since paths and cycles with l edges contain l + 1 and l vertices respectively,
the sum of the lengths of the paths and cycles in such a partition will be n − i.
Moreover, if V is covered by i paths and j cycles with lengths summing up to
n− 1, the path and cycles are disjoint because of the size restriction. Recall from
Subsection 3.1 that wF (s, j) is the number of walks starting from s of length j
avoiding F . Similarly, define wF (j) as all walks of length j avoiding F and ŵF (j)
as the number of cyclic walks of length j avoiding F .

Lemma 3.10

c(i, j) = ∑
F⊆V

(−1)∣F ∣ 1
i!j! ∑

l1+...li+j=n−i
(

i

∏
k=1

wF (lk))(
i+j

∏
k=i+1

ŵF (lk)). (3.10)

Proof We apply Theorem 3.1. Define U as all combinations of i walks and j cyclic
walks with lengths summing up to exactly n− i. Define the requirement space to
be V , and for every v ∈ V let Pv be all combinations of walks and cyclic walks in
U such that at least one of the (cyclic) walks visits v. It is easy to see that each
summand (ignoring the (−1)∣F ∣) equals ∣ ∩v∈F Pv ∣, and since ∣ ∩v∈F Pv ∣ = c(i, j) by
the above discussion, the lemma follows from Theorem 3.1. ∎

Theorem 3.8 The Cover Polynomial problem can be solved in O⋆(2n) time
and polynomial space.

Proof By using minor modifications of the dynamic programming algorithm us-
ing (3.3), for every F ⊆ V and 0 ≤ j ≤ n, both wF (j) and ŵF (j) can be computed
in polynomial time. Using straightforward dynamic programming, the simplified
problem can be obtained from the values wF (j) and ŵF (j). Using this, (3.10)
can be evaluated within the claimed resource bounds. ∎

3.4 Convex Tree Coloring
In this section we solve a generalization of the Convex Recoloring problem
studied in [PHN08] and improve upon one of their results. Let T = (V,E) be a tree
and ω ∶ E(T )× [k]× [k]→ [C]. A k-coloring is a function γ ∶ V → [k]. As before,
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for X ⊆ V let ϕ(X) be ∪v∈Xϕ(v). The coloring γ is minimal if γ(V ) = [k].
Define ω(γ) = ∑(u,v)∈E(T ) ω((u, v), γ(u), γ(v)). The coloring γ is convex if for
every x, y, z ∈ V such that y is in the (unique) path from x to z it holds that
γ(x) = γ(z) implies γ(x) = γ(y), or more informally: γ is convex if all its color
classes induce a connected subtree. It is worth mentioning that in [PHN08] the
slightly different Convex Tree Recoloring (CTR) was studied, but that
CTR is a special case of CTC.

Convex Tree Coloring (CTC) Parameter: k
Input: A tree T = (V,E) with a weight function ω ∶ E × [k] × [k]→ [C].
Question: Is there a convex coloring γ ∶ V → [k] with ω(γ) ≤ C?

Let us first note that we can safely assume that T is in fact binary, since if
it is not, we can insert vertices and force them to have the same color by using
an appropriate weight function. Also note we can restrict ourselves to minimal
colorings by k vertices of degree one to arbitrary vertices and setting ω(⋅, ⋅, ⋅) = 0.
Hence the colors assigned to the added vertices do not matter at all, but if a
color is not minimal, it can be extended to a minimal one using the new added
vertices. Thus we can restrict ourselves to solving the following variant:

Minimal Convex Binary Tree Coloring (MCBTC) Parameter: k
Input: A binary tree T = (V,E) with a weight function ω ∶ E × [k]× [k]→ [C].
Question: Is there a minimal convex coloring γ ∶ V → [k] with ω(γ) ≤ C?

For a given coloring γ, use pce(γ) to denote the number of poly-chromatic
edges, i.e. the number of edges (y, z) ∈ E(T ) such that ϕ(y) ≠ ϕ(z).

Lemma 3.11 The instance of MCBTC is a yes-instance if and only if there
exists a k-coloring γ such that pce(γ) = k − 1, and ω(γ) ≤ C.

Proof In a tree, the fact that γ gives k monochromatic connected components is
equivalent with pce(γ) = k − 1 since after contracting all monochromatic edges,
we again obtain a tree.

Using Lemma 3.11, we can reduce our problem to determining the existence
of a minimal k-coloring with k−1 polychromatic edges. We will use Theorem 3.1:
For notational convenience add a vertex to T , make it adjacent to an arbitrarily
chosen other vertex of T and let the added vertex be the root of T . For the
added edge, set all corresponding weights to 0. Define the universe U = {γ ∶ V →
[k] ∣ pce(γ) = k − 1 ∧ ω(γ) ≤ C}. Define the requirement space to be [k] with for
each 1 ≤ v ≤ k a requirement Pv being all elements γ of U with v ∈ γ(V ). Then
∣∩v∈[l]Pv ∣ > 0 if and only if the current instance is a yes-instance by Lemma 3.11.
Define CF (s,W, g, p) as all k-colorings γ of T [s] with pce(γ) = g+[γ(rt(T )) ≠ p],
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γ(V (T [s])) ∩ F = ∅ and ω(γ) ≤ W and let cF (s,W, g, p) = ∣CF (s,W, g, p)∣. Also
note that ∣∩v∈FPv ∣ = cF (rt(T ),C, k−1,1) (the color of the root is not relevant here
so we just set it to 1). It remains to show how to compute cF (rt(T ),C, k − 1, p):

Lemma 3.12

cF (s,W, g, p) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

[ω((s,pa(s)), p, p) ≤W ] if s is leaf ∧ g = 0,(3.11a)
∑

q∈[l]∖(F∪{p})

[ω((s,pa(s)), q, p) ≤W ] if s is leaf ∧ g = 1,(3.11b)

0 if s is leaf ∧ g > 1, (3.11c)
ĉF (s, j, g, p) otherwise, (3.11d)

where ĉF (s,W, g, p)=

∑
g1+g2=l

W1+W2=W−ω((s,pa(s)),p,p)

cF (s1,W1, g1, q)cF (s2,W2, g2, q)+ (3.12)

∑
q∈[l]∖(F∪{p})

∑
g1+g2=l−1

W1+W2=W−ω((s,pa(s)),q,p)

cF (s1,W1, g1, q)cF (s2,W2, g2, q). (3.13)

Proof For Case 3.11a, the only possible valid coloring is the one where γ(s) =
γ(pa(s)). For Case 3.11b, any coloring γ with γ(s) ≠ γ(pa(s)) and low enough
cost is counted. For Case 3.11c, no such a coloring exists since a leaf is only
adjacent to one edge. For Case 3.11d, s is not a child and hence has two children
s1 and s2. It is not too hard to see that the term at (3.12) is the number of
colorings in CF (s,W, g, p) where γ(s) = γ(pa(s)) and that the term at (3.13) is
the number of colorings in CF (s,W, g, p) where γ(s) ≠ γ(pa(s)). ∎

Theorem 3.9 The Convex Tree Coloring problem can be solved in O⋆(2kC)
time and O⋆(C) space.

Proof By Lemma 3.11 and the discussion before it we can reduce Convex Tree
Coloring to finding a minimal k-coloring γ with k − 1 polychromatic edges and
ω(γ) ≤ C. This can be solved using the IE-formulation as discussed above. The
simplified problem can be solved in O⋆(C2) time and O⋆(C) using Lemma 3.1
and using standard Fast Fourier Transform techniques this can be reduced to
O⋆(C) time and space. The theorem then follows from Theorem 3.1. ∎

3.5 Counting Perfect Matchings
In this section we will count the number of perfect matchings in a graph G =
(V,E). We let ∣V ∣ = 2n. First, we arbitrarily partition the vertex set V into A
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and B (thus, A∪B = V , and A∩B = ∅), with ∣A∣ = ∣B∣ = n. Let an l-matching of
G be a perfect matching M ⊆ E such that ∣{e ∈M ∶ ∣e ∩A∣ = 1}∣ = l, i.e. a perfect
matching containing exactly l edges with exactly one endpoint in A.

We will need the following simple lemma:

Lemma 3.13 — [Ned08] Lemma 4.10, [AFS09] Theorem 4 Given an independent set S ⊆
V , the number of perfect matching of G can be computed in O⋆(22n−∣S∣).

We will first give two algorithms that we combine later. Both algorithms solve
the same problem, but with different running times. Afterwards we show how to
combine the two to obtain the main result of this section.

Lemma 3.14 l-matchings can be counted in O∗((nl)2n) time and polynomial
space.

Proof Given a perfect matching M , define

L(M) = {a ∈ A ∶ ∃(a, b) ∈M ∧ b ∈ B}.

That is, L(M) is the set of all vertices in A that are matched with a vertex in b
in M . Then, if we define f(X) as the number of perfect matchings M such that
L(M) =X, then we can compute the number of l-matchings according to

#l-matchings = ∑
X∈(

A
l
)

f(X) (3.14)

Define g(X,B) as the number of perfect matchings in the graph obtained from
G[X ∪B] by making X into an independent set. Then f(X) = pm(A∖X)g(X,B)
where pm(A ∖X) is the number of perfect matching in G[A ∖X]. Using Lemma
3.13 both pm(A∖X) and g(X,B) can be computed in polynomial space and time
O⋆(2n−l) and O⋆(2n) respectively. Hence the lemma follows. ∎

We proceed to the next algorithm:

Lemma 3.15 l-matchings can be counted in O∗(( n
n
2 +

l
2
)2n) time and polynomial

space.

Proof Arbitrarily choose a total ordering ≺ on A and use the shorthand k = n+l
2 .

We will use Theorem 3.1: Define the universe U to be

U = {((ui, vi))i≤k ∈ ((A × V ) ∩E)k ∣ ∀i < j ∶ ui ≺ uj} ×En−k

and the requirement space to be V . Define Pv to be

{((u1, v1), . . . , (un, vn)) ∈ U ∣ v ∈ {u1, . . . , un} ∪ {v1, . . . , vn}}
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for each v ∈ V . We claim that ∣ ∩v∈V Pv ∣ is 2n( (n−l)
2 )! times the number of l-

matchings. To see this, notice that for every l-matching there are exactly 2n(n−l2 )!
elements in ∣ ∩v∈F Pv ∣ obtained by all permutations of the n−l

2 edges contained in
G[B] and then flipping the order of the vertices of the edge. Moreover, every
element in ∣ ∩v∈F Pv ∣ can obtained in this way from exactly one l-matching.

Thus, combining Theorem 3.1 with the above we obtain that the number of
l-matchings is

1
2n(n−l2 )! ∑F⊆V

(−1)∣F ∣∣⋂
v∈F

Pv ∣. (3.15)

We proceed by trimming (see also [BHKK10b]): Observe that ∣ ∩v∈F Pv ∣ = 0 if
∣F ∩A∣ > (n−k) since u1, . . . , uk ∈ A are distinct for any ((u1, v1), . . . , (un, vn)) ∈ U .
Hence for evaluating (3.15), we can restrict ourselves to sum over F ⊆ V such
that ∣F ∩ A∣ ≤ (n − k). The number of F ⊆ V such that ∣F ∩ A∣ ≤ (n − k) is
O⋆(( n

n−k
)2n) = O⋆((nk)2n). Hence to prove the lemma, it suffices to show that

∣ ∩v∈F Pv ∣ can be computed in polynomial time for a fixed F .
Let {a1, . . . , an} be obtained by sorting A with respect to the total ordering

≺. Define

pF (r,m) = {((ui, vi))
i≤m

∈ (((A ∖ F ) × (V ∖ F )) ∩E)
m

∣ ∀i < j ∶ ui ≺ uj ≺ ar}. ∎
Then we have ∣∩v∈F Pv ∣ = pF (n, k)∗ ∣E(G[B∖F ])∣n−k and it is easy to see that

pF (n, k) can be computed according to

pF (r,m) = {
[m = 1]dG[V ∖F ](v1) if r = 1, (3.16a)
pF (r − 1,m) + dG[V ∖F ]pF (r − 1,m − 1) otherwise, (3.16b)

hence pF (n, k) and ∣∩v∈F Pv ∣ can be computed in polynomial time and the lemma
follows.

Theorem 3.10 The number of perfect matchings of a graph G can be computed
in O⋆(1.95∣V (G)∣) time and polynomial space.

Proof Sum over all 0 ≤ l ≤ n over the number of l-matchings computed by the
algorithm of minimum running time among the algorithms of Lemmas 3.14 and
3.15. The running time of this algorithm is

max
0≤l≤n

min{(n
l
)2n,( n

1
2n + 1

2 l
)2n} = max

0≤l≤n
min{(n

l
),( n

1
2n + 1

2 l
)}2n. (3.17)

Since 0 ≤ p ≤ p′ ≤ n
2 implies (n

p
) ≤ (n

p′), (3.17) is maximized if min{l, n2 − l
2} is

maximized, which is at l = n
3 . Hence (3.17) is equal to (nn

3
)2n = O⋆(1.89n2n)),

where the latter is due to standard approximations (see for example Lemma 4 of
[BK06]). ∎
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3.6 Concluding Remarks
It is worth mentioning that, as the proofs might suggest, most of results of this
chapter admit a generalization. The study of such a generalization was initiated
in the conference version of this work and finally was given in [LN10] and will be
discussed in Chapter 5. There, Theorem 3.3 is also improved by giving a O⋆(2kC)
time and polynomial space algorithm.

The Inclusion-Exclusion formula admits a strong generalization that we will
introduce in Chapter 4 and use in Section 6.3. It is also worth mentioning that
the improvements of the Inclusion-Exclusion formula have been investigated in
the setting of approximative counting or set systems with special properties, see
for example [KLS96].



Chapter 4

Transformations and Circuits

In this chapter we will give an introduction to the use of a number of transforma-
tions in designing algorithms and we will set up the stage for the next chapters,
in particular Chapters 5 and 6. Often, the transformations we will discuss are
quite simple and can be naturally represented as a single matrix. In general, one
can of course argue about whether some algorithm uses a transformation or not,
and when something is actually worth calling a transformation. For example, in
the textbook on algorithms by Levitin [Lev03], the author speaks about three
variations of the so-called ’transform-and-conquer’ method:

1. Instance simplification– transformation to a simpler or more convenient
instance of the same problem,

2. Representation change– transformation to a different representation of
the same instance,

3. Problem reduction– transformation to an instance of a different problem
for which an algorithm is already available.

In this and the subsequent chapters, we will focus on the second and third
variant. Typically, we introduce a general problem involving so-called algebraic
circuits (see Section 4.6) that are useful for problem reduction and show that it
can be solved by using variant 2 or 3 (and occasionally variant 1).

4.1 Transformations
In this section we will discuss some classical examples of the ‘representation
change’ variants mentioned above to show how this can actually be useful. Except
the embedding of the min-sum semiring, we will not need any material covered
this section so it can safely be skipped. However, we feel it serves as a good
introduction to what we consider to be the ‘representation change’ variant.
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Complex Number Multiplication
Perhaps the most fundamental and classical example is the application for com-
plex number multiplication due to Gauss: given four reals a, b, c, d ∈ R, we want
to compute the reals e, f ∈ R such that e + fı = (a + bı)(c + dı).

One way, using transformations, would be to compute the polar representa-
tions of the complex numbers: compute r1, r2, φ1, φ2 such that (a+bı) = r1(cosφ1+
ı sinφ1) and (a+bı) = r2(cosφ2+ı sinφ2). Then compute r3, φ2 such that (e+fı) =
r3(cosφ3+ı sinφ3); this only takes two operations since r3 = r1 ⋅r2 and φ3 = φ1+φ2.
Then compute e, f from r3, φ3. Unfortunately this is not very efficient: we al-
ready need three computations to compute r1, r2 (using Pythagoras’ Theorem)
and r3 = r1 ⋅ r2, and even more important we need to evaluate trigonometric func-
tions which is costly. However, Gauss observed that without using these functions,
it is also possible to reduce the number of multiplications by transforming the
problem to the problem of three totally different multiplications:

k1 ← c ⋅ (a + b) k2 ← a ⋅ (d − c) k3 ← b ⋅ (c + d) e = k1 − k3 and f = k1 + k2.

Matrix Multiplication and the Min-Sum Semiring
Another famous and similar example is Strassen’s algorithm for multiplying two
n × n matrices. It is based on 2 × 2 matrix multiplication: here we are given
elements a, b, . . . , h of a semiring R and want to compute r, s, t, u ∈R where

( r s
t u

) = ( a b
c d

)( e f
g h

) .

Like before we focus on minimizing the number of multiplications in R since
typically, they take more time than additions. It is easy to verify that computing
r, s, t, u in the trivial manner requires 8 multiplications. In 1969, Strassen [Str69]
(see also [CLRS01], Section 28.2) showed that if R is a ring, the problem of
computing r, s, t, u can be transformed to the problem of computing 7 totally
different multiplications. Combined with straightforward recursion where the
ring elements are ⌈n/2⌉ × ⌈n/2⌉ matrices this gives an algorithm for multiplying
two n×n matrices over rings using only nlg 7 ring operations. Let ω be the smallest
number such that matrix multiplication over any ring R can be performed using
O(nω) ring operations. After Strassen’s algorithm, a series of improvements were
found and the current best is in [CW82] proving ω < 2.376.

However, in the case that R is not a ring, a similar improvement is not known.
In particular the case where R is the min-sum semiring M− is interesting and
heavily studied. Note that if A,B ∈Mn×n

− and AB =C then for every 1 ≤ i, j ≤ n
cij = min1≤k≤n aik + bkj. This matrix product is sometimes called the distance-
product (see [SZ99]).

It is an open question (see among others [SZ99, WW10]) whether the distance
product of two n × n matrices can be computed in O(n3−ε logM) time. Solving
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this question in the affirmative would imply an improved algorithm for the All
Pair Shortest Path problem (see [SZ99]),Maximum Edge-Weighted Tri-
angle (see for example [WWY10], where also a O(n3−ε logM) time algorithm
for the more special case of Maximum Node-Weighted Triangle is given)
and Minimum Weight Cycle (see [RW11]).

It is, however, already known that the distance product of two n × n ma-
trices with positive integer entries that are at most M , can be computed in
Õ(nωM lgM) time. Note that this can be very slow because M could be expo-
nential in the input size since the integers are given in binary. But we elaborate
more on this now since it will be particularly useful in the next chapter. The idea
is to embed the min-sum semiring M− into the polynomial ring Z[Z2M+1] and
then apply a fast matrix multiplication algorithm. Let us denote the embedding
by η ∶ M− → Z[Zd+1], and η−1 ∶ Z[Zd+1] → M− be the function extracting the
element from M− back (note that we slightly abuse notation since η and η−1

are not inverses in the strict mathematical sense). Then, if 2M ≤ d and we let
η(a) = ⟨1, a⟩:

η−1(a) = min
i∈supp(a)

i; min(a, b) = η−1(η(a)+η(b)); a+b = η−1(η(a)∗η(b)). (4.1)

Moreover, since all integers resulting from the embedding are either 0 or 1, the
operations in Z[Zd] can be performed using only O(d log d) time using the Fast
Fourier Transform (see Section 4.3). This embedding will turn out to be useful
whenever a technique requiring an additive inverse is applied to a minimiza-
tion/maximization problem.

Matrix Diagonalization
As mentioned before, transformations can be useful to speed up computation.
The reason is naturally that in the transformed domain, the computation is sig-
nificantly easier than in the original: in the above examples, the computation of
four (eight) particular multiplications was transformed to the problem of com-
puting three (seven) multiplications. In the following we restrict ourselves to
the important special case of linear transformations (that is, matrices) and re-
call some basic linear algebra that indicate when they are useful for speeding up
computation.

Consider Example 4. Note that the matrix T is particularly useful since
T −1AT is a diagonal matrix and diagonal matrix multiplication is easier than
general matrix multiplication. Let us say that a matrix T diagonalizes a matrix
A if T −1AT is a diagonal matrix. It is well understood when a matrix is diago-
nalizable and similar decompositions are known as well, but for more details we
refer to any undergraduate textbook on linear algebra (see for example [Ant94]).
We will see in the subsequent chapters that the above scheme of (i) applying a
transformation (ii) doing the required computation in the transformed domain,
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and (iii) applying the inverse transformation, is advantageous in many situations.

Example 4 — Computing Fibonacci numbers. Consider the Fibonacci numbers fi
defined by f0 = f1 = 1 and for n > 1, fn = fn−1 + fn−2. Then it is easy to
see that for n ≥ 1, it holds that

( 1 1
1 0 )

n

= ( fn+1 fn
fn fn−1

) , since ( 1 1
1 0 )( fn+1 fn

fn fn−1
) = ( fn+2 fn+1

fn+1 fn
) .

Moreover, this straightforwardly gives an algorithm using O(logn) operations
for computing fn. But, this algorithm seems to need storage for at least 4
Fibonacci numbers at each step. Since these Fibonacci numbers are particu-
larly big, one might wonder whether there is an alternative way. Let ϕ = 1+

√
5

2
(also called the golden ratio) and let

A = ( 1 1
1 0 ) , T = ( ϕ 1

1 −ϕ ) . Then, note that T −1 = 1
ϕ + 2 ( ϕ 1

1 −ϕ ) .

The transformation T is the one that will simplify the computation of Fn. To
see that this helps, note that

T −1AT = 1
ϕ + 2 ( ϕ 1

1 −ϕ )( 1 1
1 0 )( ϕ 1

1 −ϕ ) = 1
ϕ + 2 ( 3ϕ + 1 0

0 1 − 2ϕ ) .

Now fn = (An)12 can be computed according to An = T (T −1AT n)T −1, where
the powering of the expression between parentheses is powering of a diagonal
matrix, and the crux is that this is a easier than general matrix multiplication.
Hence this scheme only requires storage for two numbers roughly proportional
to fn. Note that very similarly one can also simply use the known closed
formula for the Fibonacci numbers.

4.2 Group Algebra-like Structures
An important source of matrices for which there are explicit diagonalizing ma-
trices known are so called group algebra-like structures. Let us start with giving
the most general formal definition:

Definition 4.1 Given a semiring R and set G equipped with a binary operation
⋅ ∶ G ×G → G, R[G] is defined as the semiring consisting of the set RG equipped
with the addition and multiplication operators defined as follows: if a,b,c,d
are in R[G] with a + b = c and a ∗ b = d, then for every z ∈ G it holds that
cz = az + bz and dz = ∑x⋅y=z axby.
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Note that in the above definition, it is easy to see that R[G] actually is a
semiring. Depending on the corresponding axioms that R and G satisfy, R[G] is
usually called (semi)group (semi)ring/algebra.

As illustration, let us discuss an embedding η of R[G] into the ring of all
∣G∣× ∣G∣ matrices with entries from R. If A = η(a), then Ax,z = ∑x⋅y=z ay. Given A
and assuming G is a semigroup that has an identity, a can be easily re-obtained
using az = Ae,z, where e is the identity of G.

Example 5 — Embedding of Z[Z3] into Z3×3. Let a = (1,2,4), b = (5,6,7), c = a ∗ b
and A,B,C be the corresponding embeddings, then

AB =
⎛
⎜
⎝

1 4 2
2 1 4
4 2 1

⎞
⎟
⎠

⎛
⎜
⎝

5 7 6
6 5 7
7 6 5

⎞
⎟
⎠
=
⎛
⎜
⎝

43 39 44
44 43 39
39 44 43

⎞
⎟
⎠
,

and it is easy to check that indeed c = (43,44,39).

An important case which is the main subject of study in Section 4.3 is R[Zm].
In this special case, the matrices resulting from the embedding are of the special
type defined as follows:

Definition 4.2 A matrix C is circulant if there exists a vector c ∈Rm such that:

C =
⎛
⎜⎜⎜
⎝

c0 cm−1 . . . c1
c1 c0 . . . c2
⋮ ⋮ ⋱ ⋮

cm−1 cm−2 . . . c0

⎞
⎟⎟⎟
⎠
.

To see that R[Zm] can indeed be embedded by exclusively using circulant
matrices, note that if a,b,c ∈R[Zm] and

⎛
⎜⎜⎜
⎝

c0 cm−1 . . . c1
c1 c0 . . . c2
⋮ ⋮ ⋱ ⋮

cm−1 cm−2 . . . c0

⎞
⎟⎟⎟
⎠
=
⎛
⎜⎜⎜
⎝

a0 am−1 . . . a1
a1 a0 . . . a2
⋮ ⋮ ⋱ ⋮

am−1 am−2 . . . a0

⎞
⎟⎟⎟
⎠

⎛
⎜⎜⎜
⎝

b0 bm−1 . . . b1
b1 b0 . . . b2
⋮ ⋮ ⋱ ⋮

bm−1 bm−2 . . . b0

⎞
⎟⎟⎟
⎠
,

then for every 0 ≤ i < n, ci = ∑j+k≡i(modm) ajbk which is indeed consistent with the
multiplication operator of R[Zm].

In the next subsection we will see a transformation that diagonalizes all m×m
circulant matrices. However, in this thesis we will use the following notion of
diagonalization directly rather then the notion of matrix diagonalization:
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Definition 4.3 A matrix T diagonalizes R[G] if for every a,b ∈ R[G] (a ∗ b)T =
aT ○ bT .

4.3 Fourier Transform
In this section we study group algebras of the type C[Zm1 ⊕ Zm2 ⊕ . . . ⊕ Zmδ]
where δ is an integer, (m1,m2, . . . ,mδ) =m ∈ Nδ and ⊕ refers to the direct prod-
uct (refer to Section 1.3). It is known that every Abelian group A is isomorphic
to Zm1 ⊕Zm2 ⊕ . . .⊕Zmδ for some m ∈ Nδ by the fundamental Theorem of finite
Abelian groups (see for example [Ter99, Theorem 1 in Chapter 10]) so all struc-
tural properties in this section apply as well to C[A] where A is an arbitrary
finite Abelian group.

Definition 4.4 — The Fourier transform For a positive integerm, the Fourier transform
Fm is the matrix

Fm =
⎛
⎜⎜⎜⎜
⎝

ω0∗0
m ω0∗1

m . . . ω
0∗(m−1)
m

ω1∗0
m ω1∗1

m . . . ω
1∗(m−1)
m

⋮ ⋮ ⋱ ⋮
ω

(m−1)∗0
m ω

(m−1)∗1
m . . . ω

(m−1)∗(m−1)
m

⎞
⎟⎟⎟⎟
⎠
.

Recall from Section 1.3, that in the above definition, ωN is the N th root of
unity. The Fourier transform is invertible, and its inverse looks very similar:

Lemma 4.1 — Fourier inversion The inverse of Fm is given by

F −1
m = 1

m

⎛
⎜⎜⎜⎜
⎝

ω−0∗0
m ω−0∗1

m . . . ω
−0∗(m−1)
m

ω−1∗0
m ω−1∗1

m . . . ω
−1∗(m−1)
m

⋮ ⋮ ⋱ ⋮
ω
−(m−1)∗0
m ω

−(m−1)∗1
m . . . ω

−(m−1)∗(m−1)
m

⎞
⎟⎟⎟⎟
⎠

Proof This boils down to showing that 1
m ∑

m−1
k=0 ω

ik−kj
N = [i = j]. If i = j, the left

hand is clearly equal to 1. If i ≠ j, we have

1
m

m−1
∑
k=0

(ωi−jm )k = 1 − (ωi−jm )m
1 − ωi−jm

= 1 − (ωmm)i−j
1 − ωi−jm

= 0,

where we use the geometric progression summation formula for the first equality
and the special properties of ωm for the second equality. ∎
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Now we will consider Fm = Fm1 ⊗Fm2 ⊗ . . .⊗Fmδ (recall from Section 1.3 that
⊗ is the Kronecker product). By the mixed product property (refer to (1.1)), we
know that

Fm−1 = F −1
m1 ⊗F

−1
m2 ⊗ . . .⊗F

−1
mδ
. (4.2)

Theorem 4.1 — Fourier diagonalization Letm = (m1,m2, . . . ,mδ) and A = Zm1 ⊕ . . .⊕
Zmδ . Then the Fourier transform Fm = Fm1 ⊗ Fm2 ⊗ . . . ⊗ Fmδ diagonalizes
C[A].

Proof We have to prove that for every a,b ∈ C[A], (a ∗ b)F = aF ○ bF . To see
that this is true let c = a ∗ b. Then, denoting the group operation of A with +,
for every z ∈ A:

((a ∗ b)F )z = (cF )z = cF (z) = ∑
y∈A

( ∑
w+x=y

awbx)
δ

∏
i=1
ωyizimi

= ∑
w,x∈A

awbx
δ

∏
i=1
ω

(wi+xi)zi
mi

= (∑
w∈A

aw
δ

∏
i=1
ωwizimi

)(∑
x∈A

bx
δ

∏
i=1
ωxizimi

)

= (aF ○ bF )z. ∎
Similarly, it can be verified that F diagonalizes all circulant matrices, that is
F −1CF is diagonal for every circulant matrix C but we will not use this. On
a side-note, generalizations of the Fourier transform to non-Abelian group are
known as well (see for example [Ter99, Chapter 15]), that “block-diagonalize”
the matrices resulting from the embedding as discussed in Subsection 4.2.

Fast Fourier Transform
The following theorem, given without proof, is a generalization of the famous
Cooley-Tukey algorithm [CT65] (sometimes also attributed to, among others,
Gauss or Yates [Yat37], see [HJB84] for a historical account). The idea is to
give an algorithm that exploits a factorization of the Fourier matrix F . See also
[CLRS01] for a less technical proof of the original special case δ = 1.

Theorem 4.2 — Fast Fourier Transform,see [BCT90, Theorem 3] Given v ∈ C[Zm1 ⊕ Zm2 ⊕
. . . ⊕ Zmδ] where the complex numbers are represented by at most β bits, vF
and vF −1 can be computed in O(∣A∣(lg ∣A∣)β(lg2 β)) time, where A = Zm1 ⊕
Zm2 ⊕ . . .⊕Zmδ .

This claimed running time is not known to be optimal, even for the special
case where δ = 1. However, in a restricted class of algorithms it is known to be
optimal [Pap79]. For a survey on further generalizations, we also refer to [MR97].
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4.4 Möbius Inversion
For the notation and terminology used on partially ordered sets in this section
we refer to Section 1.3. In the following, let P be a poset and let R be a ring.

Definition 4.5 The Möbius function µ ∶ P × P → R of P is defined for all x, y ∈ P
by

µ(x, y) =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

1 if x = y,
−∑x≤y<z µ(y, z) if x < z,
0 otherwise.

(4.3)

The zeta transform ζ and Möbius transform µ are the ∣P ∣× ∣P ∣ matrices defined
by ζx,y = [x ≤ y] and µx,y = µ(x, y) for all x, y ∈ P .

Theorem 4.3 — Hall [Sta11, Proposition 3.8.5] For all x, y ∈ P , µ(x, y) is the number of
even chains in (x, y) minus the number of odd chains in the interval (x, y).

Proof Use induction on number of elements in the interval (x, y). If x = y, (x, y)
contains only the empty chain, which is even. If x ≤ y, group all chains on their
smallest element y. The contribution of all these chains is exactly −µ(y, z) since
odd chains are extended to even chains and vice-versa by adding y. ∎

Theorem 4.4 — Möbius inversion (Folklore) The Möbius and zeta-transform are mu-
tual inverses, that is: µζ = I and ζµ = I.

Proof This is equivalent to stating ∑y∈P [x ≤ y]µ(y, z) = [x = z]. If x = z, both
sides are easily seen to be equal to 1. Otherwise, the left-hand side is easily seen
to be the number of odd chains in [x, z) minus the number of even chains in
[x, z). Note that in [x, z) with x < z, taking the symmetric difference of a chain
with x is a bijection between all even and odd chains and hence the quantity will
be zero. The second part follows by very similar arguments. ∎

Indeed, in the case that P is the subset lattice (2V ,∪), the equality v = vζµ
or written more explicitly,

vX = ∑
Y ⊆X

µ(Y,X)vY = ∑
Y ⊆X

(−1)∣X∖Y ∣vY

is equivalent to the Inclusion-Exclusion equality (see Theorem 3.1). In retrospec-
tive, we see that the reason that Inclusion-Exclusion was useful in Chapter 3 is
that, like the Fourier transform, ζ is a diagonalizer as well:
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Theorem 4.5 Let a,b ∈R[UV ]. Then (a ∗ b)ζ = aζ ○ bζ.

Proof If we let c = a ∗ b, then for every Z ⊆ V :
(cζ)Z = ∑

Y ⊆Z

∑
W∪X=Y

aW bX = ∑
X,Y ⊆Z

aXbY = (aζ ○ bζ)Z .
∎

Fast Zeta/Möbius-transform
The following theorem is usually attributed to Yates

Theorem 4.6 — Fast zeta/Möbius transform,[Yat37] Given v ∈R[Un] where ∣vX ∣ ≤ 2β for
every X ⊆ {1, . . . , n}, vζ and vµ can be computed in O(2nnβ lg2 β) time.

It is a subject of ongoing research to find similarly fast algorithms for other
posets than the subset lattice Un (see for example [BHK+11]).

4.5 Working Modulo 2
Another useful transformation is simply introducing a modulus 2. Note that
this is quite different from the transformations mentioned before since it is not
invertible: one could argue that all previous transformations are of the second
variant mentioned in the beginning of this chapter, and in this section we will
encounter a transformation of the third type.

If we aim to decide whether there exists a witness of a problem in NP and
we are guaranteed that the number of witnesses is either zero or odd, we can
focus on counting the number of witnesses modulo two instead. This sometimes
is advantageous since in some situations the number of ‘fake witnesses’(1) are
guaranteed to be even. For making sure that the number of witnesses is either
zero or odd, we will now recall a well-known technique.

Definition 4.6 Given a set U , set family F ⊆ 2U and a function ω ∶ U → Z, a set
S ∈ F is called a minimizer of ω in F if ω(S) = minS′∈F ω(S′). The function ω
is said to isolate the set family F ⊆ 2U if there is a unique minimizer of ω in F .

Recall here, that for X ⊆ U , ω(X) denotes ∑u∈X ω(u). Now let us give the
lemma, we provide a proof for completeness.

Lemma 4.2 — Isolation Lemma, [MVV87] Let F ⊆ 2U be a set family over a universe
U with ∣F ∣ > 0. For each u ∈ U , choose a weight ω(u) ∈ {1,2, . . . ,N} uniformly
and independently at random. Then

prob[ω isolates F] ≥ 1 − ∣U ∣
N

(1)for a cleverly chosen definition of ’fake witnesses’
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Proof For every element e ∈ U , define
a(e) = min

e∉S∈F
ω(S) − min

e∈S∈F
ω(S ∖ {e}).

Notice that for every element e ∈ U , a(e) does not depend on ω(e). Hence, taking
probability over all weight functions ω ∶ U → {1,2, . . . ,N} uniformly at random,
we know that for every element e ∈ U , prob[a(e) = ω(e)] ≤ 1

N . Now assume
S1, S2 ∈ F are both minimizers of ω in F such that S1 ≠ S2. Let e ∈ S2 ∖S1. Then
we know that

min
e∉S∈F

ω(S) = ω(S1) = ω(S2) = min
e∈S∈F

ω(S ∖ e) + ω(e),

and subtracting mine∈S∈F ω(S ∖ e) from both sides results in a(e) = ω(e). Then,
we know that the probability that ω does not isolate F is

prob[∃two distinct minimizers of ω in F] ≤ prob[∃e ∶ a(e) = ω(e)] ≤ ∣U ∣
N
,

where the last inequality follows from the union bound. ∎
The original motivation of the Isolation Lemma was to give a fast parallel

algorithm for constructing a maximum weight matching of a graph: first, the
Isolation Lemma is used reduce the problem of deciding whether a matching of
weight at least t exists to the problem to computing the parity of the number of
matchings of size at least t. The latter can be reduced to computing the determi-
nant of a certain matrix, and since the determinant of a matrix can be computed
efficiently by a parallel algorithm due to [Pan85], this gives a fast (to be pre-
cise, RNC2) randomized parallel algorithm for deciding whether a matching of
weight at least t exists. Second, due to the Isolation Lemma and the reduction
all parallel processors will consider the same matching and hence it can also be
constructed in the same resource bound. Before this, an efficient parallel algo-
rithm for the decision variant was already known due to [Lov79] using polynomial
identity testing based on an observation of [Tut47].

It is worth mentioning that in [CRS95], a lemma using fewer random bits is
shown: If ∣F ∣ ≤ Z, then a scheme using O(log ∣U ∣ + logZ) random bits to obtain
a polynomially bounded (in unary) weight function that isolates any set system
with high probability is presented.

An alternative method to a similar end is obtained by using Polynomial Iden-
tity Testing [DL78, Sch80, Zip79] over a field of characteristic 2. This second
method has been already used in the field of exact and parameterized algorithms
[Bjö10b, BHKK10a, Kou08, KW09, Wil09]. The two methods do not differ much
in their consequences: both use the same number of random bits (the most ran-
domness efficient algorithms are provided in [AB03, CRS95]). Also, the challenge
of giving a full derandomization seems to be equally difficult for both methods
[AM08, KI04]. In this work, we choose to use the Isolation Lemma because it
requires less preliminary knowledge.
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4.6 Algebraic Circuits
As mentioned in the beginning of this chapter we use the notion of an (algebraic)
circuit to define generic problems to which other problems to be solved later can
be reduced. It is not surprising that circuits are useful for this purpose since
they are already being studied as a model of computation in the field of algebraic
complexity theory (see for example [AB09, Section 16.1]). In this section we
will mainly introduce some terminology and easy observations that will be used
throughout the next chapters.

Definition 4.7 — (Algebraic) circuit A circuit C is a triple (D,λ,R) where D =
(V,A) is a directed acyclic multigraph with unique sink and indegree at most 2,
R is a semiring and λ is a function λ ∶ V → {+,∗}∪R such that for every source
v ∈ V , λ(v) ∈R and for every vertex v ∈ V that is not a source, λ(v) ∈ {+,∗}.

Note that in the special case where R is the boolean semiring B, the definition
coincides with the definition of a boolean circuit as already encountered for the
CKT-Sat problem (see Chapter 1).

In addition to the formal definition, we use the following natural terminology
and notation. The function λ is a called the labeling function, while vertices of
D are called gates of C. If v is a gate of C, λ(v) is called the label of v. The
sources and sink of D are referred to as input gates and the output gate of C,
respectively. Gates of C that are not input gates are called either addition or
multiplication gates of C depending on their label. If v is a gate of C, C[v] is the
circuit obtained from C by removing all its gates from which v cannot be reached
in the directed graph of C. In all the above, we will omit the ’in C’ part if this
is clear from the context.

Definition 4.8 Every gate g of C is associated with a semiring element in the
following natural way: if g is an input gate, we associate the label of g with g.
If g is an addition gate we associate the ring element e1 + . . .+ ed with g, and if
g is a multiplication gate we associate the ring element e1 ⋅ . . . ⋅ ed with g where
e1, . . . , ed are the ring elements associated with the d in-neighbors of g, and +
and ⋅ are the operations of the ring R.

Often we will slightly abuse notation and directly address the ring element
associated by a gate g by g itself.

We will often encounter circuits over a (semi)ring with a groundset of the
type AB where A,B are sets, so than the semiring elements are actually vectors
indexed by B.

Definition 4.9 A circuit C is said to have singleton inputs if the label of every
input gate of C is a singleton vector.
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a b

c d

v

λ(c) = + λ(d) = ∗

λ(v) = ∗

λ(a) = a = 2 λ(b) = b = 3

c = 5 d = 6

v = 30

Figure 4.1 – A circuit over Z with labeling function λ and the associated values from
Definition 4.8.

Most of the computational problems in the subsequent chapters will be for-
mulated as circuits that have singleton inputs.

Definition 4.10 Let R and S be rings, let h ∶ R → S be a homomorphism, and
suppose that C is a circuit over R. Then, the circuit C ′ over S obtained by
applying h to C is defined as the circuit obtained from C by replacing for every
input gate the label l by h(l).

Note that the following is immediate from the definition of a homomorphism:

Observation 4.1 Suppose C is a circuit over a ringR with output v ∈R. Then the
circuit over S obtained by applying a homomorphism h ∶ R → S to C outputs
h(v) ∈ S.

Maximum Sum / Product Length
Consider the task of evaluating a circuit C = (D,Z, λ) where 0 ≤ λ(g) ≤ 2 for every
input gate g. If v is the output of C, naturally v can be determined using only
an addition for every addition gate and a multiplication for every multiplication
gate, so in the unit-cost model (refer to Section 1.2) this can be done in O(∣C ∣).
However, there is a problem if we move to the (recall, more realistic) log-cost
model: there are circuits where the number of bits needed to represent the output
in binary is exponential in ∣C ∣ (see Figure 4.2 for an example). Hence, the linear
time algorithm is not realistic at all since there are circuits in reality that take
much more time to evaluate.

To filter out these circuits and be able to provide algorithms that are efficient
in the log-cost model, we define the following measure for how difficult evaluating
a circuit is.
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a1 a2

λ(a2) = λ(a2) = . . . = λ(an) = ∗

λ(a1) = a1 = 2 a2 = 4

a3 an. . .

a3 = 16 an = 2(2n)

Figure 4.2 – A circuit over Z with labeling function λ and the associated values from
Definition 4.8.

Definition 4.11 — Maximum sum length, Maximum product length For a given circuit
C = ((V,A), λ,R) with output gate v, define the maximum sum length msl(C)
and maximum product length mpl(C) as follows:

msl(C) = max
X⊆A

∣{ #io-paths(X) ∣ for every v ∈ V with λ(v) = ∗, d−G[X]
(v) = 1}∣ ,

mpl(C) = max
X⊆A

∣{ #io-paths(X) ∣ for every v ∈ V with λ(v) = +, d−G[X]
(v) = 1}∣ ,

where #io-paths(X) is the number of paths in D[X] from an input gate of C
to the output gate v.

The names in this definition are justified by the fact that if one writes down
the formula the circuit C computes, the maximum sum and product length are
exactly the maximum number of concatenated summations and multiplications
respectively. An equivalent and perhaps more useful characterization however is
the following:

Observation 4.2 Let C = (D,λ,R) be a circuit. Then, msl(C) is equal to the
output of the circuit C ′ = (D,κ+,M+) and mpl(C) is equal to the output of
the circuit C ′′ = (D,κ∗,M+), where

κ+(v) =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

1 if v is an input gate,
max if λ(v) = ∗,
+ if λ(v) = +,

κ∗(v) =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

1 if v is an input gate,
max if λ(v) = +,
+ if λ(v) = ∗.

Proof Both claims are easy to prove by induction on ∣C ∣: if ∣C ∣ = 1, v is an
input gate than mpl(C) = msl(C) = 1 and both C ′ and C ′′ clearly output 1.
Otherwise, in the second case we have to consider the input wire to include in X
that maximizes #io-paths(X), which is by induction the in-neighbor maximizing
its associated value. Similarly in the third case, we are allowed to include both
input wires into X and the number of paths from an input to the current gate is
exactly the sum of the number of paths from an input to an in-neighbor. ∎

Now let us show now how Definition 4.11 can be used to bound the values
computed by a circuit.
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Observation 4.3 Given a circuit C = (D,λ,R+) such that 2 ≤M ∈ N and for every
input gate a, a ≤M . Then for every gate g, it holds that

g ≤ (M ⋅ msl(C[g]))mpl(C[g]).

Proof We give a proof by induction on ∣C[g]∣: If ∣C[g]∣ = 1 then msl(C[g]) =
mpl(C[g]) = 1 and clearly g ≤ M by assumption since g is an input gate. If
∣C[g]∣ > 1, let l and r be the in-neighbors of g. If g is an addition gate

g = l + r ≤ (M ⋅ msl(C[l]))mpl(C[l]) + (M ⋅ msl(C[r]))mpl(C[r])

≤ (M ⋅ msl(C[l]))mpl(C[g]) + (M ⋅ msl(C[r]))mpl(C[g])

≤ (M ⋅ (msl(C[l]) + msl(C[r])))mpl(C[g])

= (M ⋅ (msl(C[g]))mpl(C[g]),

and if g is a multiplication gate

g = l ∗ r ≤ (M ⋅ msl(C[l]))mpl(C[l]) ⋅ (M ⋅ msl(C[r]))mpl(C[r])

≤ (M ⋅ msl(C[g]))mpl(C[l]) ⋅ (M ⋅ msl(C[g]))mpl(C[r])

= (M ⋅ (msl(C[g])))mpl(C[g]).

∎

Circuit Evaluation
The task of evaluating a circuit is to compute the element associated to its output.
It is known that, even for the special case of boolean circuits, the evaluation
problem is P-hard [AB09, Section 6.5.2]. Recall from Section 1.3 that the trun`(⋅)
operation accepts a real or complex number as parameter and removes all bits
behind the decimal point that are not the ` − 1 most significant ones. So we
have that ∣c − trun`(c)∣ ≤ 2−l for every c and `. Now consider Algorithm 1.
It performs a natural scheme to determine the output of the circuit except it
truncates intermediate values.

Let a′ and b′ be estimations of a and b respectively, let c′ = trun`(a′ + b′) and
c = a + b. Note that actually c′ = a′ + b′ since the truncation operation is not
effective because the sum operation does not produce new bits less significant
bits. Then we have that

∣c′ − c∣ ≤ ∣a′ − a∣ + ∣b′ − b∣. (4.4)

Now, suppose d′ = trun`(a′ ⋅b′) and d = a ⋅b. This yields the following error bound:

∣d′ − d∣ ≤ ∣a′ − a∣ ⋅ ∣b∣ + ∣b′ − b∣ ⋅ ∣a∣ + ∣a′ − a∣ ⋅ ∣b′ − b∣ + 2−`. (4.5)
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Function evalTrunc(C = (D,λ′,C), `)
1: Find a topological ordering v1, . . . , vn of V where vn = v is the output of C.
2: for i = 1 to n do
3: if vi is an input gate then
4: Set v′i ← λ′(vi)
5: else
6: Let l, r < i be such that N−(vi) = {vl, vr}.
7: if λ = + then
8: Set v′i ← trun`(v′l + v′r)
9: else
10: Set v′i ← trun`(v′l ⋅ v′r)
11: return v′n

Algorithm 1 – Truncated evaluation of circuits over C. See also Lemma 4.3

Here, the 2−` term comes from the truncation operation. Equipped with (4.4) and
(4.5) we are ready to bound the error of approximation obtained by Algorithm
1. See also the similar analysis of Knuth of the Schönhage-Strassen algorithm for
integer multiplication[Knu69].

Lemma 4.3 Let C = (D = (V,A), λ,C) be a circuit with output gate v, let
2 ≤M,` ∈ N, and λ′ ∶ V → C be such that and for every input gate g of C:

1. ∣λ(g)∣ ≤M ,

2. ∣λ′(g) − λ(g)∣ ≤ 2−`.

Then, if v′ = evalTrunc(C = (D,λ′,C), `) (see Algorithm 1), it holds that

∣v′ − v∣ ≤ 2−`(4M ⋅ msl(C) ⋅ ∣C ∣)mpl(C). (4.6)

Moreover, algorithm evalTrunc runs in time ∣C ∣(mpl(C)polylog(msl(C) ⋅M)+
Õ(`)) and uses ∣C ∣(` + polylog(msl(C) ⋅M)) space.

Proof Let Ĉ = (D, λ̂,R+) with λ̂(g) = ∣g∣ for every input gate g, and for a gate g
of C, denote ĝ for the corresponding gate in Ĉ. Then trivially, ∣g∣ ≤ ĝ. Note that
without loss of generality, we can assume that v̂ > 0 since otherwise the labels of
all input must be 0 and then the lemma trivially holds. We will first prove the
bound on ∣v′−v∣ by proving the following induction hypothesis with induction on
∣C[g]∣. Note that it implies (4.6) when combined with Observation 4.3.

Claim 4.6.1 For every gate g of C with ĝ>0 it holds that ∣g′ − g∣ ≤
2−`ĝ(4∣C[g]∣)mpl(C[g]).



74 Transformations and Circuits

Proof (of the claim) For the base case ∣C ∣ = 1 we know that g is an input gate, and
the induction hypothesis follows from assumption 2. For the case ∣C ∣ > 1, we know
that g is not an input gate so it has 2 in-neighbors l and r. If g is an addition
gate, (4.4) yields

∣g′ − g∣ ≤ ∣l′ − l∣ + ∣r′ − r∣

(induction hypothesis)

≤ 2−`l̂(4∣C[l]∣)mpl(C[l]) + 2−`r̂(4∣C[r]∣)mpl(C[r])

(using mpl(C[l]),mpl(C[r]) ≤ mpl(C[l]) and ∣C[l]∣, ∣C[r]∣ ≤ ∣C[g]∣ − 1)

≤ 2−`l̂(4(∣C[g]∣ − 1))mpl(C[g]) + 2−`r̂(4(∣C[g]∣ − 1))mpl(C[g])

(substituting using ∣l∣ + ∣r∣ ≤ ∣g∣)

≤ 2−`ĝ(4(∣C[g]∣ − 1))mpl(C[g]) ≤ 2−`ĝ(4∣C[g]∣)mpl(C[g]).

If g is a multiplication gate, (4.5) yields

∣g′ − g∣ ≤ ∣l′ − l∣∣r∣ + ∣r′ − r∣∣l∣ + ∣l′ − l∣∣r′ − r∣ + 2−`. (4.7)

Let us first bound the terms on the right hand side in (4.7) separately:

∣l′ − l∣∣r′ − r∣ ≤ 2−2`l̂(4∣C[l]∣)mpl(C[l])r̂(4∣C[r]∣)mpl(C[r])

(using ∣C[l]∣, ∣C[r]∣ ≤ ∣C[g]∣)

≤ 2−2`ĝ(4∣C[g]∣)mpl(C[l])(4∣C[g]∣)mpl(C[r])

(using mpl(C[l]) + mpl(C[r]) = mpl(C[g]))

≤ 2−2`ĝ(4∣C[g]∣)mpl(C[g]) ≤ 1
42−`ĝ(4∣C[g]∣)mpl(C[g]),

(4.8)

∣l′ − l∣∣r∣ + ∣r′ − r∣∣l∣ ≤ 2−` (l̂(4∣C[l]∣)mpl(C[l])r̂ + r̂(4∣C[r]∣)mpl(C[r])l̂)

(using l̂ ⋅ r̂ = ĝ; mpl(C[l]),mpl(C[r]) ≤ mpl(C[g]) − 1)

≤ 2−`ĝ4mpl(C[g])−1 (∣C[l]∣mpl(C[g]) + ∣C[r]∣mpl(C[g]))

(using ∣C[l]∣, ∣C[r]∣ ≤ ∣C[g]∣)

≤ 2−`ĝ4mpl(C[g])−12∣C[g]∣mpl(C[g])

≤ 1
22−`ĝ4mpl(C[g])∣C[g]∣mpl(C[g]).

(4.9)
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Now, substituting (4.8) and (4.9) into (4.7) gives

∣g′ − g∣ ≤ 1
22−`ĝ(4∣C[g]∣)mpl(C[g]) + 1

42−`ĝ(4∣C[g]∣)mpl(C[g]) + 2−`

(using ĝ(4C[g])mpl(C[g]) ≥ 1)

≤ 2−`ĝ(4∣C[g]∣)mpl(C[g]),

completing the proof of the claim. ∎
It remains to prove the bound on the running time, which is easy to verify since

a topological ordering can be found in ∣C ∣ lg(∣C ∣) time (see for example [CLRS01,
Section 22.4]) and all arithmetic operations can be performed in the claimed time-
bound using fast integer multiplication since (see for example [DKSS08, Für09])
they are represented by at most ` + lg(M ⋅ msl(C))mpl(C) by Observation 4.3. ∎

4.7 Color-Coding and the Koutis-Williams Approach
Suppose we are given a set U and, implicitly, a set family F ⊆ 2U . For example,
if G = (V,E) is a graph U could be E and F could be the set of paths of
G. Roughly speaking, the Color-Coding and Koutis-Williams approach are both
hashing methods that aim to determine whether there exists a set S ∈ F with
∣S∣ = k in time O⋆(ck) for some constant c.

Multilinear Monomial Detection Parameter: k
Input: A circuit C over B[Dn] with singleton inputs outputting v, integer k.
Question: Does there exist e ∈ Dn such that ve = true and ∣ supp(e)∣ = k?

We will need to use the following theorem as a blackbox (a proof follows for
example from the methods from Chapter 5).

Theorem 4.7 — Folklore If k = n, Multilinear Monomial Detection can be
solved in O⋆(2kmpl(C)) time and O⋆(1) space.

It is worth to mention that it is possible to avoid the mpl(C) term if ex-
ponential space or randomization is allowed. We will also need the following:

Definition 4.12 A k-perfect family of hash functions F is a family of functions
F = {f ∶ {1, . . . , n} → {1, . . . , k}} such for for every subset X ⊆ {1, . . . , k} there
exists f ∈ F such that f−1(X) = {1, . . . , k} (or equivalently, for every x, y ∈ X
it holds that f(x) = f(y)→ x = y).
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Theorem 4.8 — [NSS95] For every n and k, there exist a k-perfect family of hash
functions F = {f ∶ {1, . . . , n} → {1, . . . , k}} of size ekkO(log k) logn that can be
constructed in ekkO(log k)poly(n, k) time.

See also the textbook [FG06] for a proof of a similar result. Now we are
ready to apply the Color-Coding approach to the Multilinear Monomial
Detection problem.

Theorem 4.9 — [AYZ95] Multilinear Monomial Detection can be solved in
O⋆((2e)kmpl(C)) time and O⋆(1) space.

Proof (sketch) Let {1, . . . , n} = U for simplicity. The general idea is the following:
we are looking for a subset X ⊆ U with ∣X ∣ = k such that vX = true. We transform
the given instance by iteratively applying each hash function of F obtained from
Theorem 4.8 to U . For every e ∈ U , choose a color c(e) ∈ {1, . . . , k} at random.
Define γ ∶ B[Dn]→ B[Dk] be the function such that for every X ∈ Dk

γ(a)X = ⋁
Y ⊆U

(∣X ∣ = ∣Y ∣) ∧ (c(Y ) =X) ∧ aX .

Construct the circuit C ′ obtained from C by applying γ. Since C has singleton
inputs, this can be done in polynomial time. Also, since γ is a homomorphism
(this is non-trivial but we skip the derivation; it basically follows from the fact that
c is a homomorphism from Dn to Dk), the output of C ′ is γ(v) by Observation 4.1.
Then, it is easy to see that if γ(v){1,...,k} = true, the original instance is a YES-
instance. Moreover, if there exists X ⊆ U , then there exists an c ∈ F such that
∣X ∣ = k c(X) = {1, . . . , k}, and then it is easy to see that γ(v) = true. Hence,
we can reduce the instance of Multilinear Monomial Detection to ∣F ∣
instances where k = n. Then these can be solved using Theorem 4.7 and we know
the answer of the given instance is YES if and only if at least one of the created
instances is YES. ∎

It should also be noted that variations of the Color-Coding technique that
improve in special cases of the Multilinear Monomial Detection problem
such as k−Path extension have been studied in [CKL+09] (see also [FLGS10]).
Now we proceed to the Koutis-Williams approach. To explain this approach, it is
useful to introduce some terminology that might explain the name of the problem
studied.

Definition 4.13 A monomial M is a multisubset of U , and M is said to be mul-
tilinear if it is also a set. A colored monomial is a pair (M,γ) where M is a
monomial and γ ∶ M → K. Additionally, a colored monomial (M,γ) is called
colorful if ∣γ(M)∣ = ∣M ∣ (that is, γ is a bijection).
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Recall from Section 1.3 the subtle definition of a function with a multiset as its
codomain, and note that different copies of the same element of U are treated as
distinct ones: coloring the first copy with 3 and the second with 4 is the different
from the reverse. Hence, the number of different functions γ defined as above is
∣K ∣∣M ∣, as it is with normal functions.

Lemma 4.4 — Koutis,Williams [Kou08, KW09, Wil09] There exists an algorithm that
given a circuit C = (D = (V,A), λ,B[Nn]) with singleton inputs outputting
v and an integer k, constructs a circuit C ′ = (D′ = (V ′,A′), λ′,Z2[Dk × Znk])
outputting v′ in time poly(∣C ∣, n) such that

1. if there exists e ∈ Dn such that ve = true and ∣ supp(e)∣ = k, then with
probability at least 1

2 it holds that v′
({1,...,k},w)

= 1 for some integer w ≤ 2nk,

2. otherwise v′
({1,...,k},w)

= 0 for every w ≤ 2nk.

We use the coloring technique used by Björklund [Bjö10b] (although we re-
place the original term ‘labels’ with ‘colors’ to avoid confusion) in combination
with Lemma 4.2.
Proof (of Lemma 4.4, sketch) Note that we can assume without loss of generality that
for every input gate g, λ(g) = ⟨true, e⟩ for some e ∈ U : given an input gate g with
λ(g) = ⟨i,X⟩ where X = {e1, . . . , e∣X ∣}, we can replace it with ⟨i,∅⟩∏n

i=1 ⟨1, ei⟩.
Now, for every element e ∈ U and color c ∈ {1, . . . , k}, choose a weight ω(e, c) ∈
{1, . . . ,2n} uniformly at random.

Let h ∶ B[Dn] → Z2[Dk × Znk] be the function such that for every a ∈ B[Dn],
X ⊆ U , and integer W

h(a)X,W = ∑
Y ⊆U

∑
γ∶Y↔X

[∑
e∈X

ω(e, γ(e))=W ]aY . (4.10)

Note that here and in the following, expressions like aY are boolean expression
but actually are interpreted as elements of Z2 as [aY ] (that is, it denotes 1 if bY
is true and 0 if aY is false).

Claim 4.9.1 h is a homomorphism.

Proof (of the Claim) It is easy to see that (h(a)+h(b))
X,W

= h(a+b)X,W .Moreover,
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h(a ∗ b)X,W =

∑
Y ⊆U

∑
γ∶Y↔X

[∑
e∈X

ω(e, γ(e)) =W ] ∑
Y1⊍Y2=Y

aY1bY2

(Partition X,Y and γ into two parts, reorder summations.)

= ∑
X1∪X2=X

∑
Y1,Y2⊆U
Y1∩Y2=∅

∑
γ1∶Y1↔X1
γ2∶Y2↔X2

[ ∑
e∈X1

ω(e, γ1(e)) + ∑
e∈X2

ω(e, γ2(e)) =W ]aY1bY2

(Guessing partition of W into W1,W2.)

= ∑
X1∪X2=X
W1+W2=W

∑
Y1,Y2⊆U
Y1∩Y2=∅

∑
γ1∶Y1↔X1
γ2∶Y2↔X2

[ ∑
e∈X1

ω(e, γ1(e)) =W1]aY1 ⋅ [∑
e∈X2

ω(e, γ2(e)) =W2]bY2

(See the comment below.)

≡ ∑
X1⊍X2=X
W1+W2=W

∑
Y1,Y2⊆U

∑
γ1∶Y1↔X1
γ2∶Y2↔X2

[ ∑
e∈X1

ω(e, γ1(e)) =W1]aY1 ⋅ [ ∑
e∈X2

ω(e, γ2(e)) =W2]bY2

(Collecting dependent variables together and applying definition of h.)

= ∑
X1⊍X2=X
W1+W2=W

h(a)X1,W1 ⋅ h(b)X2,W2

= (h(a) ∗ h(b))
X,W

.

To see that the congruence holds, notice that the quantity

∑
X1∪X2=X
W1+W2=W

∑
Y1,Y2⊆U
Y1∩Y2≠∅

∑
γ1∶Y1↔X1
γ2∶Y2↔X2

[ ∑
e∈X1

ω(e, γ1(e)) =W1]aY1 ⋅ [∑
e∈X2

ω(e, γ2(e)) =W2]bY2

(that is, the sum of the terms with intersecting Y1 and Y2 at the right-hand of
the congruence) is always even since if we have two mappings γ1, γ2, we can take
all elements in the intersection of Y1 and Y2 and exchange their images. It is easy
to see that this also results in a different term with non-zero contribution since
X1,X2 are disjoint. ∎
Now, let C ′ be the circuit obtained from C by applying the homomorphism h.
Note that this can easily be constructed in O⋆(1) time. Let v′ be the output
of C ′. By Observation 4.1 and Claim 4.9.1, v′ = h(v). Now for item 2 of the
lemma, notice that in (4.10) only summands Y with ∣Y ∣ = ∣X ∣ can have a non-zero
contribution since otherwise there are no bijections γ. For item 1: if there exists
Y ∈ Dn such that ve=true and ∣ supp(e)∣ = k, then we can apply Lemma 4.2. Let
the universe be U × {1, . . . , k}; since the set of all bijections γ can be interpreted
as a family of subsets of U × {1, . . . , k}, Lemma 4.2 states that with probability
at least 1

2 there exists a W such that h(v){1,...,k},W = 1. ∎
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Using a small variant of Theorem 4.7 (see Chapter 5 for the relevant tech-
niques) in combination with Lemma 4.4, the following can be obtained:

Corollary 4.1 — Koutis,Williams ([Kou08, KW09, Wil09]) Multilinear Monomial De-
tection can be solved inO⋆(2k) time by a randomized algorithm with constant
one-sided error probability.



Part III

Main Contribution



Chapter 5

Saving Space by Algebraization

This chapter is based on the following paper:

[LN10]. Daniel Lokshtanov and Jesper Nederlof. Saving space by algebraization.
In Leonard J. Schulman, editor, STOC, pages 321–330. ACM, 2010

Recall that an inherent property of dynamic programming algorithms is that
they require a relatively big amount of working memory. This is because often
many previously computed table entries are required for efficient computation of
new entries. In this chapter we identify sufficient conditions for being able to turn
dynamic programming algorithms into algorithms with roughly the same running
time and significantly lower space usage. In particular, we show that if a dynamic
programming algorithm can be formalized as a relatively short expression in one
of some specific types of rings, then one can use algebraic transformations to
evaluate the relevant part of the expression in a space-efficient and quick manner.

In Chapter 2 we saw one of the two canonical applications of dynamic pro-
gramming, namely the Subset Sum and Knapsack problems. The algorithms
by Bellman [Bel54], as explained in Section 2.1, are the most famous and fastest
algorithms for these problems; especially since dynamic programming is the only
known method able to solve these problems in pseudo-polynomial(1) time. How-
ever, as also mentioned before, these algorithms use almost as much space as
time.

So, a natural and fundamental question is whether it is possible to have a
pseudo-polynomial time algorithm for Subset Sum using only polynomial space.
In this chapter we answer this question affirmatively by showing that Bellman’s
dynamic programming algorithm can be encoded as a relatively easy expression
in a specific large ring, and that it is possible to reduce the space requirement of
any dynamic programming algorithm of such type. In particular, we obtain an

(1)polynomial in the input size if integers are given in unary
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algorithm with running time Õ(n3t) time and Õ(n2) space. For the more general
Knapsack problem we give a Õ(n4vw)-time Õ(n2)-space algorithm.

Our methodology enables us to make many exponential-time and exponential-
space dynamic programming algorithms run in polynomial space instead. This is
useful because algorithms using both exponential time and space can run out of
space long before they run out of time. Some old and recent results in the direction
of polynomial-space exponential-time algorithms for NP-hard problems include
Karp’s O∗(2n) time algorithm [Kar82] for Hamiltonian Path (see also Section
3.1), Björklund, Husfeldt and Koivisto’s Set Cover(2) algorithm [BHK09] run-
ning in time O∗(2n), and the O∗(2k) time algorithm for Steiner Tree with
unit weights as introduced in Section 3.2.1. Our method unifies these results,
and improves algorithms for weighted variants of these problems.

An interesting open problem is whether Traveling Salesman can be solved
in O∗(2n) time and polynomial space [Woe04]. We make progress towards re-
solving this problem by giving a polynomial-space algorithm for Traveling
Salesman running in O∗(2nt) time. For the two other problems, Weighted
Set Cover and Weighted Steiner Tree we make similar improvements.
In particular, our algorithms match the time bound of the best known pseudo-
polynomial space algorithms for these problems.

This chapter is organized as follows. In Section 5.1 we give sufficient conditions
to be able to save space for dynamic programming on tables indexed by integers
(so-called numerical dynamic programming). In Section 5.2 we give sufficient
conditions to be able to save space for dynamic programming on tables indexed
by subsets. Then, in Section 5.3 we combine the results from the two previous
sections. All the three sections will be concluded by a few applications.

Methodology and Contribution
Perhaps the best name for the mainly used method in this chapter is ‘coefficient
extraction’ (see also [Lip10]): the idea is to express the given computational
task as a relatively small circuit (see Definition 4.7) over a large ring. This
ring typically consists of large vectors and the computational task is reduced
to determine a specific element of the vector output by the small circuit, the
so-called coefficient. Then transformations are used to determine the coefficient
in a manner more efficient than trivially possible. All preliminary knowledge
is already given in Chapter 4, so in this chapter it only remains to put all the
pieces together. It should be noted that this elementary and generic scheme is
already very old and often used ([CU03, CKSU05, CT65, Für09, Kou08, Man95],
to name just a few). Still, we feel that our contribution is three-fold: (i) we
make an explicit and formal study of the generic setting, (ii) we give some new
applications, and (iii) we show that the small circuit used to solve a task often is
directly implied by the known dynamic programming algorithm.

(2)with a polynomial number of sets
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5.1 Numerical Dynamic Programming
In this section we will study circuits over the ring Z[A], where A is an Abelian
group. As we will see at the end of this section, these arguably represent the
most famous applications of dynamic programming. We will give an algorithm
more efficient than the trivial one by exploiting the Discrete Fourier Transform
(DFT) (see Section 4.3). It should be noted that the main technicality here
stems from the fact that the DFT requires that the base field (in this case Z)
in which the arithmetic finally is performed contains specific roots of unity. To
overcome this, we use the following common approach of working with complex
numbers rather than integers. However, since we work in the log-cost model (see
Section 1.2), we have to work with approximations of the appropriate complex
numbers since the roots of unity require infinite precision to store and work with
exactly. Fortunately all the preliminary work is already done in Chapter 4 and
we can now directly prove the main theorem of this section.

Theorem 5.1 There exists an algorithm that, given A = Zm1 ⊕Zm2 ⊕ . . .⊕Zmδ and
a circuit C = (D,λ,Z[A]) with output gate v and t ∈ A, computes vt using at
most

∣A∣ ⋅ Õ(lg ∣A∣ ⋅ ∣C ∣ ⋅ mpl(C) ⋅ polylog(M ⋅ msl(C) ⋅ ∣C ∣⋅) lgM) time and

O(∣C ∣(mpl(C) lg(M ⋅ msl(C) ⋅ ∣C ∣) + lg ∣A∣)) space,

where M = maxv∈(C){x ∶ λ(v) = ⟨v, i⟩}. Here we assume a group element e ∈ A is
given as input by δ integers (e1, e2, . . . , eδ) = e ∈ A.

Proof We use extractFourier as described in Algorithm 2.

Function extractFourier(C = (D,Z[Zm1 ⊕Zm2 ⊕ . . .⊕Zmδ], λ), t)
1: Let ` = 2 ⋅ mpl(C) ⋅ lg(4M ⋅ msl(C) ⋅ ∣C ∣). Set precision for truncation.

2: returnround( 1
∣A∣

m1−1
∑
x1=0

⋯
mδ−1
∑
xδ=0

trun2(sub(C, (x1, . . . , xδ), `) ⋅ trun`(
δ

∏
d=1
ωxdtdmd

)))

Using the Fourier inversion formula with sufficiently good approximations

Function sub(C = (D,A, λ), x, `) Return approximation of (vF v)x.
3: for every input gate g of C do

4: Set κ(g)← trun`(v ⋅
δ

∏
d=1
ωedmd), where ⟨v,e⟩ = λ(g).

5: return evalTrunc((D,κ,C), `) See Algorithm 1.

Algorithm 2 – Implementing Theorem 5.1
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For the analysis of Algorithm 2, we first analyse its correctness, and discuss
its running time afterwards.

Recall that Fm is the Fourier matrix from Definition 4.4, so then consid-
ering Line 4 of Algorithm 2, we see that lim`→∞ κ(g) = gFm. Since Fm is a
homomorphism from C[A] to C by Theorem 4.1, it follows from Observation 4.1
and Lemma 4.3 that lim`→∞ sub(C,x, `) = (vFm)x. More precisely, we apply
Lemma 4.3 assuming M ≥ 2: it is easy to verify that both conditions of the
lemma are met, so it follows that

∣(vFm)x − sub(C,x, `)∣ ≤ 2−`(4M ⋅ msl(C) ⋅ ∣C ∣)mpl(C) ≤ 2− 1
2 `. (5.1)

Letting ` go to infinity again, it follows from Lemma 4.1 that the expression
returned on Line 2 converges to

(vFm)(F −1
m)(t) = v(F −1

mFm)(t) = vI(t) = vt.
Hence for proving the correctness of Algorithm extractFourier, it remains to
show that ` is chosen large enough in order to make sure that the estimate it
close enough. Since we know that vt is integer, we can round the estimate to the
closest integer in the end. Hence it suffices to show that the error is smaller than
1
2 . This straightforwardly implies that it is sufficient that for every summand,
the estimation error of the quantity returned by trun2 is smaller than 1

2 , or even
stronger, that the estimation error of the input given to the trun2 operation is
at most 1

4 . The latter follows from (4.5) and (5.1).
For the implementation and running time of Algorithm 2 we first remark

that for Line 4, trun`(v ⋅ ∏δ
d=1 ω

ed
md) can be computed in time Õ((` + lgM) ⋅

lg ∣A∣) and O(`+ lgM) space using floating point arithmetic and standard Taylor
approximations of the basic functions cos, sin and π to compute ωedmd , and similarly
the quantity ∏δ

d=1 ω
ed
md on Line 2 can be computed in the same resource bounds.

Due to Lemma 4.3, it follows that Line 5 takes ∣C ∣(mpl(C)polylog(M ⋅ msl(C) ⋅
∣C ∣)+ Õ(`)) time and uses space proportional to ∣C ∣(`+polylog(msl ⋅M)). Then
it follows from straightforward analysis that the algorithm takes

∣A∣ ⋅ ∣C ∣(mpl(C)polylog(M ⋅ msl(C) ⋅ ∣C ∣) + Õ((` + lgM) ⋅ lg ∣A∣))

≤ ∣A∣ ⋅ Õ(lg ∣A∣ ⋅ ∣C ∣ ⋅ mpl(C) ⋅ polylog(M ⋅ msl(C) ⋅ ∣C ∣⋅) lgM) time, and
∣C ∣(` + polylog(msl ⋅M)) + lg ∣A∣
≤ 2∣C ∣(mpl(C) lg(M ⋅ msl(C) ⋅ ∣C ∣) + lg ∣A∣) space. ∎

It is worth mentioning that a result similar to Theorem 5.1 can be obtained
using modular arithmetic instead of complex numbers (for a similar approach see
[DKSS08]). In another variant, if one only is interested in determining whether
vt = 0, then it is possible to use randomization in the spirit of Section 4.5 to
get rid of the mpl(C) in the exponent and replace it with a multiplicative term
polynomial in ∣C ∣.
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5.1.1 Applications
The Subset Sum Problem
We now show how to use Theorem 5.1 to give a pseudo-polynomial-time, polynomial-
space algorithm for the Subset Sum problem, defined below.

Subset Sum Parameter: t
Input: Set S = {1, . . . , n} and function ω ∶ S → N and and integer t
Question: Does there exist a subset X ⊆ S such that ω(X) = t?

The Subset Sum can trivially be solved in O(2n) time and polynomial space.
This has been improved to O∗(2n/2) time and space in [HS74] and to O∗(2n/2)
time and O∗(2n/4) space in [SS79]. Since an element e ∈ S with w(e) > t cannot
participate in any solution we will assume that w(e) ≤ t for every e ∈ S. Also, if
t > 2n then the trivial O(2n) time algorithm runs in O(t) time and polynomial
space. For every 1 ≤ i ≤ n and x ≤ nt let s(i) ∈ Nnt be the vector such that for
every j, s(i)j is the number of subsets S ⊆ {1, . . . , i} such that ∑j∈S wj = x. Recall
the O(nt) time, O(t) space dynamic programming algorithm by Bellman, also
discussed in Section 2.1, which can be formulated as the following recurrence:

s(i)j = {
[j = 0] if i = 0,
s(i − 1)j + s(i − 1)j−wi otherwise.

Now we will reformulate this recurrence into a recurrence over the ring Z[Znt]
in order to be able to apply Theorem 5.1. To this end, we interpret s(i) as an
element of Z[Znt], obtaining the following:

s(i) =
⎧⎪⎪⎨⎪⎪⎩

⟨1,0⟩ if i = 0,
s(i − 1) ∗ (⟨1,0⟩ + ⟨1,wi⟩) otherwise.

(5.3)

We are interested to know whether s(n)t ≠ 0, or for the counting variant of
Subset Sum, even to compute s(n)t itself. A recurrence like (5.3) can naturally
be seen as a circuit C over the ring Z[Znt]. Moreover trivially, ∣C ∣ is O(n) and
λ(g) ≤ 2 for every input gate g, and using Observation 4.2, it is easy to see that
msl(C) = 2 and mpl(C) = n − 1. Then applying Theorem 5.1, setting A = Znt,
M = 2 and using the fact that we can assume without loss of generality that
t < 2n, we obtain the following result:

Theorem 5.2 Subset Sum can be solved in Õ(n3t) time and Õ(n2 lg t) space.

It is also worth mentioning that, if we use the unit cost model instead of
the log-cost model (see Section 1.2), the running time of the above algorithm is
Õ(n2t).
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Knapsack
Now we show that essentially the same approach as in the previous section can
be taken to solve the Knapsack problem in pseudo-polynomial time using poly-
nomial space. The Knapsack problem is formally defined as follows:

Knapsack Parameter: v,w
Input: Set S = {1, . . . , n}, functions ν,ω ∶ S → N and integers v,w.
Question: Is there a subset X ⊆ S such that ν(X) ≥ v and ω(X) ≤ w?

Note that the problem boils down to the Subset Sum problem in the special
case where v = w and it holds for every e ∈ S that ν(e) = ω(e). Similarly
to the Subset Sum problem, there is a trivial brute force algorithm running in
O(2n) time and polynomial space, and the O∗(2n/2) time and space in [HS74] and
O∗(2n/2) time and O∗(2n/4) space in [SS79] apply as well to this more general
problem.

Also like before, any item with weight more than w cannot participate in the
solution, and any item with weight at most w and value at least v constitutes a
solution by itself. Hence we can assume without loss of generality that logw ≤ n,
log v ≤ n and that ω(e) ≤ w and ν(e) ≤ v for every e ∈ S. For every 1 ≤ i ≤ n we
define s(i) ∈Mnv+1

− , where

s(i)y = min{ω(X) ∶X ⊆ S ∧ ν(X) ≥ y}.

Then the dynamic programming algorithm of Bellman [Bel54] uses the following
recurrence:

s(i)y =
⎧⎪⎪⎨⎪⎪⎩

[y = 0] if i = 0,
min{s(i − 1)y, ω(i) + s(i − 1)y−ν(i)} if i < 0.

It is easy to see that this is indeed correct. Using evaluation of this recurrence in
a straightforward manner, Bellman obtained a O⋆(v) time and space algorithm
(an O⋆(w) time and space algorithm could also be obtained in a very similar
manner). In order to apply Theorem 5.1 to obtain a space-efficient algorithm,
we get rid of the minimization operator by embedding it into a polynomial ring
like discussed in Section 4.1. Instead of the above, we define for every 1 ≤ i ≤ n,
s(i) ∈ N[Znw+1 × Znv+1], where s(i)x,y = ∣{X ⊆ S ∶ ω(X) = x ∧ ν(X) = y}∣. Then,
the recurrence formulated in the ring N[Znw+1 ×Znv+1] for s(i) is as follows:

s(i) =
⎧⎪⎪⎨⎪⎪⎩

⟨1, (0,0)⟩ if i = 0,
( ⟨1, (ω(e), ν(e))⟩ + ⟨1,0⟩ ) ∗ s(i − 1) if i < 0.

(5.4)

Note that we are interested in whether there exists x ≤ v, y ≥ w such that
s(n)x,y ≠ 0. We could have used Theorem 5.1 with circuit implied by (5.4) to
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check s(n)x,y ≠ 0 for each x ≤ v, y ≤ w, but that creates an unnecessary overhead
of O(vw) in the running time. To overcome this issue, instead we work with a
circuit C obtained by multiplying the outcome of the circuit implied by (5.4) with
the vector c ∈ N[Znw+1 × Znv+1], defined by cx,y = [x ≤ v][y ≥ w] for every x, y.
Then it is easy to see that if the output of C is s, then sv,w > 0 if and only if the
given instance is a YES-instance. To implement this, we need a (small) circuit Ĉ
that outputs c. For that we will use the following observation.

Observation 5.1 For every integer p and p < q there are circuits C≤ and C≥ over
(Z[Zq];⊕,⊗) of size O(log(p)) outputting a(p) and b(p) respectively, such
that for every x ∈ Zq it holds that a(p)x = [0 ≤ x ≤ p] and b(p)x = [p ≤ x < q].
Moreover, mpl(C≤),mpl(C≥),msl(C≤) and msl(C≥) are O(lg p).

Proof It is easy to see that the observation can be implemented by constructing
circuits according to the following recurrences:

a(p) =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

⟨1,0⟩ if p = 0,
a(p/2) ∗ (⟨1, p/2⟩ + ⟨1,0⟩) if p is even,
a(p − 1) + ⟨1, p⟩ if p is odd,

b(p) =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

⟨1, q − 1⟩ if p = q − 1,
b(p/2) ∗ (⟨1,−p/2⟩ + ⟨1,0⟩) if p is even,
b(p − 1) + ⟨1,−p⟩ if p is odd.

Also, the bounds on the maximum product and sum length claimed are easy to
verify. ∎

Of course, Observation 5.1 can also be used for circuits over N[Znv+1×Znw+1].
Hence, we can obtain the aforementioned circuit C by multiplying the output of
the circuit implied by (5.4) by a(v) and b(w) and let the output of C be the
result. Then, it is easy to see that we have a circuit C with ∣C ∣ being O(n +
lg v + lgw) ∈ O(n), and mpl(Ĉ) and msl(Ĉ) being O(n). Moreover, as discussed
above Observation 5.1, sv,w > 0 if and only if the current instance is a YES-
instance. Applying Theorem 5.1 with M = 2,∣C ∣ ∈ O(n), mpl(C),msl(C) ∈ O(n)
and ∣A∣ = n2vw gives:

Theorem 5.3 The Knapsack problem can be solved in Õ(n4vw) time and
Õ(n2 log(vw)) space.
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5.2 Saving Space by Möbius Inversion
In this section we will prove a general theorem that identifies sufficient conditions
for turning exponential space dynamic programming algorithms over the subset
lattice into polynomial space algorithms based on Möbius inversion. While the
theorem does not yield new polynomial space algorithms, it unifies and gener-
alizes several well-known results, such as the Unweighted Set Cover algo-
rithm by Björklund et al [BHK09], and the Hamiltonian Path algorithm by
Karp [Kar82]. This includes most of the algorithms discussed in Chapter 3, in
the sense that they follow from relatively straightforward dynamic programming
algorithms that were previously known (see Subsection 5.2.2 for an example with
Unweighted Steiner Tree).

5.2.1 Dynamic Programming over Subsets without Tables

Lemma 5.1 Let R be a ring and C = (D,λ,R[Un]) with singleton inputs and
output v. Then, there is an algorithm running in time polynomial in ∣C ∣ and
lg ∣R∣ that, given Y ⊆ {1, . . . , n}, creates a circuit CY = (D,λY ,RUn), such that
CY outputs (aζ)Y .

Proof Let λY (a) = λ(a) if a is not an input gate, and λY (a)X = [X ⊆ Y ]e if a
is an input gate and λ(a) = ⟨e,X⟩, where e ∈ R. It is easy to see that this can
be done in time polynomial in ∣C ∣ and lg ∣R∣. By Theorem 4.5 we know that ζ
is a homomorphism from R[Un] to RUn and since multiplication in RUn is done
coordinate-wise, it follows from Observation 4.1 that CY outputs (aζ)Y . ∎

Theorem 5.4 There exists an algorithm that given a circuit C = (D,λ,R[Un])
with output v and ∣λ(a)∣ ≤ M for every input gate a, determines v{1,...,n} in
O⋆(2nmpl(C)) time and O⋆(mpl(C)) space.

Proof The algorithm simply evaluates the inclusion-exclusion formula (see (3.1)):

v{1,...,n} = ∑
Y ⊆{1,...,n}

(−1)n−∣Y ∣(vζ)Y ,

where for every Y ⊆ {1, . . . , n} the quantity (vζ)Y is computed by first straight-
forwardly evaluating the circuit CY using Lemma 5.1. By Observation 4.3 we
know that all integers involved in that computation are bounded from above
by (M ⋅ msl(C[g]))mpl(C[g]) and hence this can be done in O⋆(mpl(C)) time and
space using fast integer multiplication (for example [Für09]). The claimed bounds
follow. ∎
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5.2.2 An Application of Theorem 5.4
Now we will give an application of Theorem 5.4. In particular we will show that
the polynomial space algorithm as discussed in Section 3.2.1 for Unweighted
Steiner Tree follows directly from the Dreyfus-Wagner [DW72] recurrence.
Recall that Unweighted Steiner Tree is defined as follows:

Unweighted Steiner Tree Parameter: k
Input: A graph G = (V,E), K ⊆ V with ∣K ∣ = k and an integer t ≤ ∣V ∣.
Question: Does there exist a subtree (V ′,E′) of G such that V ′ ≤ t andK ⊆ V ′?

Recall that a dynamic programming algorithm for this problem was given
already in 1972 by Dreyfus and Wagner [DW72]. This algorithm uses O∗(3k)
time and O∗(2k) space. In 2007, Björklund et al. [BHKK07] gave an improved
algorithm using O∗(2k) time and space and in Section 3.2.1, we gave an O⋆(2k)-
time and polynomial-space algorithm. We now show how the last result can be
obtained from the first result using Theorem 5.4. For every 1 ≤ i ≤ n and v ∈ V
define f(i, v) ∈ BP(K) as

f(i, v)X =
⎧⎪⎪⎨⎪⎪⎩

true if ∃subtree (V ′,E′) of G ∶ (V ′ ∩ (K ∪ {v})) =X ∪ {v} ∧ ∣E′∣ ≤ k,
false otherwise.

The instance of Unweighted Steiner Tree is a YES-instance if and only if
f(i, v)K = true for some i ≤ t, where v ∈ K. Thus, it remains to determine
f(t, v)K . The recurrence of the dynamic programming algorithm from [DW72]
to do this is as follows:

f(i, v)X =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

[X = ∅] if i = 0 ∧ v ∉K, (5.5a)
[X = {v}] if i = 0 ∧ v ∈K, (5.5b)
⋁

1≤j<i
⋁

w∈N(v)

⋁
Y ∪Z=X

f(j,w)Y ∧ f(i − j, v)Z if i > 1. (5.5c)

Cases (5.5a) and (5.5b) follow directly from the definition of f(i, v). For Case
(5.5c), note that every subtree (V ′,E′) of G with X ∪ {v} ⊆ V ′ and ∣E′∣ ≤ i
can be split into two subtrees that cause f(j,w)Y and f(i − j, v)Z to be true
for some j,w, Y and Z with the imposed restrictions and that the union of two
such subtrees always gives a subtree causing f(i, v) to be true (since we can
assume without loss of generality that they are disjunct). Now let us rewrite the
recurrence in the ring Z[Uk]:

f(i, v) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

⟨1,∅⟩ if i = 0 ∧ v ∉K,
⟨1,{v}⟩ if i = 0 ∧ v ∈K,
∑

1≤j<i
∑

w∈N(v)

f(j,w) ∗ f(i − j, v) if i > 1.
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And apply the zeta-transform on both sides (recall that f(i, v) ∈ Z[Uk] is a
vector):

(f(i, v)ζ)X =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

1 if i = 0 ∧ v ∉K, (5.6a)
[v ∈X] if i = 0 ∧ v ∈K, (5.6b)
∑

1≤j<i
∑

w∈N(v)

(f(j,w)ζ)X ⋅ (f(i − j, v)ζ)X if i > 1, (5.6c)

where Case 5.6c follows from the linearity of the zeta-transform ζ and the fact that
it diagonalizes convolution from Observation 4.5. Now note that in fact, f(i, v)
is the number of branching walks (refer to Section 3.2) in G[(V ∖K) ∪X ∪ {v}]
from v of size i. Hence applying Theorem 5.4 to (5.6) results in the algorithm
implied by Theorem 3.4.

5.2.3 Subset Convolution
We consider circuits overR[Dn]. One notices quickly that since y⊍z is not defined
for every y, z ∈ Dn, it is hard to directly find a transformation that diagonalizes
the multiplication in this ring (the so-called ’subset convolution’ from [BHKK07]).
Therefore, we first use a natural embedding into R[Un × Z] or R[Zn

2 × Z]. It
should be noted that both are well-known and for example appear in [BHKK07]
and [KW09]. If a ∈R[Dn], we let η ∶R[Dn]→R[Un×Z] or η ∶R[Dn]→R[Zn

2×Z]
be such that for every Y ∈ Dn and integer i it holds that η(a)Y,i = aY [∣Y ∣ = i].
Then for both cases, it is easy to see that (a∗b)Y = (η(a)∗η(b))Y,∣Y ∣ since on the
right hand side only pairs of disjoint indices W,X can contribute since otherwise
∣W ∪X ∣ < ∣W ∣ + ∣Y ∣ and ∣W∆X ∣ < ∣W ∣ + ∣X ∣. Implementing this in a circuit, we
obtain the following easy lemma:

Lemma 5.2 There exists an algorithm that, given a circuit C = (D,λ,R[Dn])
where R is a semiring with output v and singleton inputs, outputs a circuit C ′

over R[Un] with output v such that ∣C ′∣ is O(∣C ∣n lgn), mpl(C ′) = mpl(C) and
msl(C ′) is O(n ⋅ msl(C)).

To assist the formal proof, we make the following definition:

Definition 5.1 A relaxation of a vector f ∈ RUn is a sequence of functions {f i ∶
f i ∈RUn}, for 0 ≤ i ≤ ∣V ∣, such that for every 0 ≤ i ≤ ∣V ∣, Y ⊆ V :

f iY =
⎧⎪⎪⎨⎪⎪⎩

fY if i = ∣Y ∣
0 if i < ∣Y ∣

Proof (of Lemma 5.2) We construct C ′ by replacing every gate of a ∈ C by n gates
a1, . . . , an ∈ C ′. For every input gate a with λ(a) = ⟨aS, S⟩, we set ai = 0 if i < ∣S∣
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and ai = a otherwise. Notice that this means that all constant gates of C ′ are
singletons. If a is not a input gate, let b and c be the in-neighbors of a in C.
Note it could be that b = c. If a is an addition gate, then for every i we set
ai = bi + ci. Otherwise, if a is a multiplication gate, we add gates to C ′ such that
ai = ∑i

j=0(bi ∗ ci−j). Clearly, the above procedure can be executed in polynomial
time, and C ′ has the claimed properties.

We prove that for every gate a, {ai} is a relaxation of a by induction along
a topological order of C. If a is a constant gate this follows by construction.
Otherwise, let b and c be the in-neighbors of a. Then {bi} and {ci} are relaxations
of b and c respectively by the induction hypothesis. If a is an addition gate
(a = b + c), then {ai} is a relaxation of a since

• for i = ∣X ∣, aiX = biX+ciX = bX+cX since biX = bX and ciX = cX by the induction
hypothesis.

• for i < ∣X ∣, aiX = biX + ciX = bX + cX = 0 since both biX and ciX are 0 by the
induction hypothesis.

On the other hand if a is a subset convolution gate (a = b ∗ c), We have that for
each 0 ≤ i ≤ n,

aiX =
i

∑
j=0

∑
Y ∪Z=X

bjY c
i−j
Z .

Consider a summand bjY c
i−j
Z . There are two cases:

• (∣X ∣ > i) Since Y ∪ Z = X we have that ∣Y ∣ + ∣Z ∣ ≥ ∣X ∣ > i. Now either
∣Y ∣ > j and bjY = 0, or ∣Z ∣ > i− j and ci−jZ = 0, because {bi} and {ci} both are
relaxations of b and c respectively. Then we have that aiX = 0.

• (∣X ∣ = i) If ∣Y ∣+ ∣Z ∣ > i, either ∣Y ∣ > j or ∣Z ∣ > i−j and ajAb
i−j
B = 0 analogously

to the first case. If ∣Y ∣ + ∣Z ∣ = i then Y and Z are disjoint. Since only these
pairs Y,Z will contribute to the sum, we match the definition of subset
convolution and hence aiX = aX .

Thus {ai} is a relaxation of a for all gates a, concluding the proof. ∎
Also, the following variation of Lemma 5.2 that we state just for the sake of

completeness, has a proof (almost) identical to Lemma 5.2:

Lemma 5.3 There exists an algorithm that, given a circuit C = (D,λ,R[Dn])
where R is a semiring with output v and singleton inputs, outputs a circuit C ′

over R[Zn
2 ] with output v such that ∣C ′∣ is O(∣C ∣n lgn), mpl(C ′) = mpl(C) and

msl(C ′) is O(n ⋅ msl(C)).
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5.3 Combining DFT and Möbius to Save Space
In this section we will combine the tools introduced in the previous two sections to
obtain new polynomial space algorithms for several minimization problems. We
obtain an analogue of Theorem 5.4 in the case where R is the min-sum semiring
M− (recall that the identity of min is ∞ and the identity of + is 0).

Evidently, Möbius Inversion is not applicable in this case since the addition
operator of M, minimization, does not have the inverse which is required for
Möbius inversion. Therefore, we follow the commonly used solution, as already
discussed in Section 4.1 and in 5.1.1 for the Knapsack problem, namely embed-
dingM− in the ring Z[ZN].

5.3.1 Minimization Dynamic Programming Without Tables

Theorem 5.5 Let n, t be integers, U = {1, . . . , n}, and C = (D,λ,M−[Dn]) with
output v. Then there exists an algorithm deciding whether vU ≤ t in O⋆(2nt ⋅
mpl(C)) time and O⋆(1) space.

Before proving Theorem 5.5 let us remark that there is an algorithm deciding
whether vU ≤ w in O∗(3n) time and O∗(2n) space, by storing the elements of
M− for each subset and each gate and using standard dynamic programming (we
omit the details). Not surprisingly, our proof instead relies on the Möbius and
Discrete Fourier transformations. It is perhaps best summarized graphically as
in Figure 5.1.

Is vU ≤ t? M−[Dn]

(Z[Zt])[Dn]

(Z[Zt])[Un]

C

Z[Zt]

Is (vU )t > 0?

Is (vi
U )t > 0? Compute ((viζ)X)t

Compute (((viζ)X)Fm)t

Finite precision evaluation

Embedding according to Section 4.1 and 5.1.1

Lemma 5.2

Lemma 5.1

Theorem 5.1

Lemma 4.3

Figure 5.1 – Outline of the proof of Theorem 5.5.

Proof (of Theorem 5.5) Let M be an integer such that for every input gate a of C,
λ(a) = ⟨i,X⟩ where i =∞ or 0 ≤ i ≤M . First notice that M ⋅ mpl(C) is an upper
bound for every coefficient of a gate of C. That is, for every gate a of C and
X ⊆ U it holds that aX ≤M ⋅mpl(C). Also notice that we can assume that M ≤ t
since if λ(a) = ⟨i,X⟩ with i >M , replacing it with λ(a) = ⟨∞,X⟩ does not make
a difference.

Now, use Lemma 5.2 to obtain a circuit C(1) over the semiringM−[Un] with
output v. Also, according to the discussion from Section 4.1 and similarly to
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what we did for Knapsack in Subsection 5.1.1, we can safely embed the min-
sum semiring into Z[Zt+M ⋅mpl(C)]. More specifically, we obtain a circuit C(2) =
(D,λ′,Z[Z

t+M ⋅mpl(C)]) by letting λ′(a) = λ(a) for a being not an input gate of C(1)

and otherwise λ′(a) = ⟨i,1⟩ where λ(a) = i. Next, we obtain a circuit C(3) by
adding the circuit C≤(t) outputting a(p) as described in Subsection 5.1.1 and let
the output of C(3) be the product of a(p) and the output of C(2). If we denote
v(3) for the output of C(3), it follows that (v(3)U )t > 0 if and only if vU ≤ t. So it
remains to compute (v(3)U )t. To this end we straightforwardly evaluate the Möbius
inversion/Inclusion-Exclusion formula (see Theorem 3.1 and 4.4):

(v(3)U )t = ∑
X⊆U

(−1)n−∣X ∣((v(3)ζ)X)t, (5.7)

so it remains to show how to compute ((v(3)ζ)X)t for an arbitrary fixed X ⊆ V in
O⋆(M ⋅mpl(C)) time and O⋆(1) space. To do this, use Lemma 5.1 to obtain from
C(3) a circuit CX over the ring Z[Zt+M ⋅mpl(C)] that outputs the vector ((v(3)ζ)X).
Finally, use Theorem 5.1 to determine ((v(3)ζ)X)t. It is easy to see that all steps
take time polynomial in the input, except that we have to sum over 2n summand
in (5.7) and that applying Theorem 5.1 takesO⋆(M ⋅mpl(C)) time since mpl(C(3))
is easily seen to be O⋆(mpl(∣C ∣)). ∎

5.3.2 Applications
We will now give a few applications of Theorem 5.5, hence, considering circuits
using pointwise addition and the ’min-sum subset convolution’. Note that in the
context of the min-sum semiring, Iverson’s bracket notation works as follows;
[b]X = 0 for every X if b = true and [b]x = ∞ for every X otherwise. Thus, a
constant [X = S]v is v if X = S and [X = S]v is [false] otherwise. We will
only consider decision variants, but it should be noted that using binary search
and standard self-reduction it is possible to extend these algorithms to construct
an optimal solution, at the cost of a polynomial factor in the input size in the
running time.

Traveling Salesman Problem
Recall that a Hamiltonian path of a graph is a path visiting all vertices exactly
once. We study the following generalization of Hamiltonian path:

Traveling Salesman Problem (TSP) Parameter: ∣V ∣, t
Input: A graph G = (V,E), an integer t, a vertex s and a function ω ∶ V ×V →
{1, . . . , t}.
Question: Is there a Hamiltonian path E′ ∈ E with ω(E′) ≤ t?

Denote n = ∣V ∣. Early O∗(2n) time and space dynamic programming algo-
rithms are given in [Bel62, HK62]. Later, an algorithm running in time O∗(2nt)
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using O∗(t) space was given by Karp [Kar82]. TSP can also be solved in O∗(4n)
time and polynomial space [GS87]. Recently, [KP10] proposed a combination of
these two approaches to obtain a space-time trade off. It is an interesting open
problem ([Woe04]) whether TSP can be solved in O(2n) time and polynomial
space.

For v ∈ V and X ⊆ V ∖ {s, v}, define f(v)X as the minimum weight of a
Hamiltonian path in G[X ∪ {s, v}] starting in s and ending in v. The Bellman-
Held-Karp recurrence [Bel62, HK62] is:

f(v)X =
⎧⎪⎪⎨⎪⎪⎩

ω(s, v) if X = ∅,
minu∈N(v)∩X f(u)X∖{v} + ω(u, v) otherwise.

(5.8)

To see that the above equation holds, note that there only is one Hamiltonian path
to consider if X = ∅ and its weight is ω(s, v). If X is not empty, any Hamiltonian
path of G[X ∪{s, v}] starting in s and ending in v consists of a Hamiltonian path
of G[X ∪ {s, u}] starting in s and ending in u, and the edge (u, v). Hence, we
can minimize over all the last edges a Hamiltonian path can have, and find the
minimum weight such a Hamiltonian path can have using previously computed
values and the value ω(u, v).

In order to turn (5.8) into a circuit, we formulate it in the semiringM−[Dn].
For every v, let f(v) ∈M−[Dn] be as defined above, then we claim that

f(v) = ⟨ω(s, v),∅⟩ + ∑
u∈N(v)

f(u) ∗ ⟨ω(u, v),{u}⟩ . (5.9)

The best way to see that (5.9) holds, is perhaps to straightforwardly expand the
definition of addition and multiplication in the semiringM−[Dn]:

f(v)X = min{[X = ∅]ω(s, v), min
u∈N(v)

min
A⊍B=X

f(u)A + [B = {u}]ω(u, v)}. (5.10)

note that here min,+ refer to the standard integer minimization and addition and
that [p] denotes 0 is p = true and ∞ otherwise. At first sight, (5.9) looks like an
infinite recurrence (that is, f(v) seems to depend on f(v)), and hence it can not
be translated into a circuit. However, from the expanded version (5.10) we can
see that this not the case since B has to be non-empty in order to influence the
minimization. So, this bounds the number of recursive calls and it is easy to see
we can instead use the following recurrence in the semiringM−[Dn]:

f(i, v) =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

ω(s, v) if i = 1,
∑

u∈N(v)

(f(i − 1, u) ∗ ⟨1, v⟩) + ω(u, v) if i > 1. (5.11)

since f(n, v)V = f(v)V for every v ∈ V ∖ {s}. In order to apply 5.5, it remains
to bound the maximum product length of the circuit C implied by (5.11). Al-
though it is quite easy to see mpl(C) is O⋆(1), we apply Observation 4.2 for
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clarity. The circuit C ′′ defined in Observation 4.2, obtained by replacing addition
with maximization and multiplication by addition, then is given by the following
recurrence:

f ′′(i, v) =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

1 if i = 1,
max
u∈N(v)

max{f ′′(i − 1, u) + 1,1} if i > 1.

Then Observation 4.2 implies that mpl(C) is O⋆(1) and applying Theorem 5.5
we obtain:

Theorem 5.6 Traveling Salesman Problem can be solved in O∗(2nd) time
and polynomial space.

Steiner Tree
In this section, we will extend the example of Section 5.2.2. First, recall the
Steiner Tree problem from Section 3.2.1:

Steiner Tree Parameter: k
Input: A graph G = (V,E), an integer t, a weight function ω ∶ E → {1, . . . , t},
and a terminal set K ⊆ V with ∣K ∣ = k.
Question: Does there exist a subtree (V ′,E′) of G such that ω(E′) ≤ t and
K ⊆ V ′?

The current fastest algorithm for this problem is due to [FKM+07], and uses
O((2 + ε)knh(ε)) time and space for some function h. We first again consider the
algorithm of Dreyfus and Wagner [DW72], but now for the weighted case. In the
semiringM−[Dn], the recurrence used can be written as follows: f(i, v)X =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

[X = ∅] if i = 0 ∧ v ∉K, (5.12a)
[X = {v}] if i = 0 ∧ v ∈K, (5.12b)
min
1≤j<i

min
w∈N(v)

min
Y ⊍Z=X

f(j,w)Y + f(i − j, v)Z + ω(v,w) if i > 1. (5.12c)

Following the argumentation of Subsection 5.2.2, it is easy to see that (5.12)
holds. To make it more clear that this is a recurrence in the semiring M−[Dn],
let us rewrite (5.12) again in a more implicit way.

f(i, v) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

⟨0,∅⟩ if i = 0 ∧ v ∉K, (5.13a)
⟨0,{v}⟩ if i = 0 ∧ v ∈K, (5.13b)
∑

1≤j<i
∑

w∈N(v)

f(j,w) ∗ f(i − j, v) ∗ ⟨ω(v,w),∅⟩ if i > 1. (5.13c)

Now we can apply Theorem 5.5 by considering (5.13) as a circuit C. Then,
mpl(C) is easily seen to be O⋆(1) and the following result follows:
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Theorem 5.7 The Weighted Steiner Tree problem can be solved in O∗(2kt)
time and polynomial space.

5.4 Concluding Remarks
First, it should be noted that a variant of Section 5.2 also appeared implicitly as a
subroutine of the Koutis-Williams approach [KW09], using the Fourier transform
rather than Möbius inversion (unfortunately, the authors were not sufficiently
aware of this connection at the time of writing [LN10]). Moreover, in [Kan10] an
algorithm for Subset Sum similar to the one given in this chapter was given.

It should be noted that the Koutis-Williams approach (see Section 4.7) can
also be used to solve reasonable variants of the Steiner Tree problem. Consider
for example

Small Steiner Tree Parameter: `
Input: A graph G = (V,E), a terminal set K ⊆ V and integers 1 ≤ t ≤ n,1 ≤ ` ≤
∣K ∣.
Question: Does there exist a subtree (V ′,E′) of G such that ∣E′∣ ≤ t and
∣T ∩ V ′∣ ≥ `?

Then, applying the Koutis-Williams approach directly to the circuit implied
by (5.6) gives the following theorem

Theorem 5.8 The Small Steiner Tree problem can be solved by a Monte-
Carlo algorithm in O⋆(2`) time and O⋆(1) space.

An elegant application of Section 5.2 has already been found in [Bjö11]. Here
a non-trivial recurrence is given for the number of perfect matchings in graph.
Since the recurrence is over the ring Z[Dn], Section 5.2 can be used to evaluate
the recurrence in a space-efficient manner.

The min-sum semiring embedding into the ring Z[Zm] seems very inefficient.
It should also be noticed that for many purposes, an algebraic structure with
less structure than a ring is sufficient for M− to be embedded in. For example,
using the Isolation lemma, any semiring of characteristic two suffices for using
inclusion-exclusion with a randomized embedding for a decision problem. On the
other hand, perhaps it is possible that any algebraic object that allows a useful
embedding must actually have operations that are as costly to perform as for
Z[Zm].

Let us continue with some concrete open questions:
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Open Question 2 Can Knapsack be solved in O⋆(v +w) time and O⋆(1) space?

The following so-called fully polynomial approximation scheme (although its
running time is pseudo-polynomial in ε since we represent in binary) for the
Knapsack problem is well known (see for example [KT06]):

Theorem 5.9 There exist an algorithm that given an instance of Knapsack and
ε > 0, runs in O⋆(1/ε) time and space and returns

• YES, if there exists X ⊆ S such that ν(X) ≤ v and ω(X) ≥ (1 + ε)w,

• NO, if there does not exist X ⊆ S such that ν(X) ≤ v and ω(X) ≥ w.

We ask for a space-efficient analogue. It should be noted that since Theo-
rem 5.9 depends uses the dynamic programming algorithm for Knapsack as a
subroutine, an affirmative answer to Open Question 2 would imply an affirmative
answer for the following question:

Open Question 3 Does there exist an algorithm that given an instance of
Knapsack and ε > 0, runs in O⋆(1/ε) time and O⋆(1) space and returns

• YES, if there exists X ⊆ S such that ν(X) ≤ v and ω(X) ≥ (1 + ε)w,

• NO, if there does not exist X ⊆ S such that ν(X) ≤ v and ω(X) ≥ w.

We also ask for the complexity of two weighted variants studied in this chapter.
The following open question was already asked in [Woe04].

Open Question 4 — [Woe04] Can the Traveling Salesman Problem be solved
in O⋆(2n) time and O⋆(1) space?

Even an O⋆(2n + t) time and O⋆(1) space would be interesting. When we
allow running times linear in t, the current fastest polynomial space follows by
combining the algorithm of [Bjö10b] with Theorem 5.1 (as noted by Björklund
[Bjö10a]). It should be mentioned that in [KP10], space/time tradeoffs between
the known O⋆(2n) time and space algorithm from [Bel62] and the O⋆(4n) time
and O⋆(1) space algorithm from [GS87].

Open Question 5 Can Steiner Tree be solved in O⋆(ck) time and O⋆(1) space?



Chapter 6

On Homomorphic Hashing for
Coefficient Extraction

This chapter is based on the following paper:

[KKN11]. Petteri Kaski, Mikko Koivisto, and Jesper Nederlof. On homomorphic
hashing for coefficient extraction. 2011. Manuscript

In this chapter we will continue were we left off in the previous chapter. The
method used continuously in that chapter could be named coefficient extraction
(see also [Lip10]). Coefficient extraction can be seen as a general method for
designing algorithms. The most successful and famous instantiation is clearly the
Discrete Fourier Transform for fast polynomial multiplication (usually credited
to [CT65]). Recently many new results have been using variants of coefficient
extraction as already discussed in the previous two chapters with applications
to, only to name a few, k-Path, Set Cover, Set Partition, Steiner Tree,
Subset Sum, Traveling Salesman (all being in the area of exact exponential
algorithms). The general approach of the method is the following:

1. Define a variable (the so-called coefficient) whose value (almost) immedi-
ately gives the solution of the problem to be solved,

2. Show that the variable can be expressed by a relatively easy formula or
circuit (see Definition 4.7) in terms of a (cleverly chosen) algebraic object
like a ring or field,

3. Show how to perform the operations in the algebraic object relatively effi-
ciently.

For some applications of the method, the first and second step can be implemented
by using the recurrence of previously known dynamic programming recurrences
(as already seen in Chapter 5). But how does the coefficient extraction method
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compare here to the straightforward alternative for computing all table entries?
In this chapter we try to settle this question. Mainly, it is well-known that if the
DP table is sparse, DP can be adjusted easily to give an improved algorithm. But
how does coefficient extraction perform in this setting? Interestingly it appears,
informally stated, that even if only the last segment of the DP table (or equiv-
alently, the output of the circuit) is guaranteed to be sparse (in the sense that
many entries are zero), coefficient extraction can be improved in several cases.

The subject of sparse instances is a highly motivated and well-studied subject
of study: for example, several sequence analysis problems [EGGI92a, EGGI92b]
and matrix multiplication where the input matrices or their product is assumed
to be sparse [Lin11, YZ05]. Perhaps the most related to our work is the result
of [Man95] for interpolating sparse polynomials; here the main tool is Chernoff
bounds and the given algorithm obtains all non-zero coefficients in time polyno-
mial in the number of non-zero coefficients. We will only interpolate one requested
coefficient, but will do so a in space efficient and faster way.

Our main tool is hashing in a way consistent with the constructed circuit:
homomorphic hashing. Before the actual coefficient extraction is performed, the
circuit is transformed to another one over a simpler ring or field by a homomorphic
hash function. Because the function is homomorphic, hashing the input gates
results in a circuit outputting the hash of the original output gate. Since the
function is a hash-function, the coefficient to be extracted does not collide with
other coefficients and hence coefficient extraction on the new circuit can be used
instead. It should be noted that this framework is not new. For example, the
Koutis-Williams and Color-Coding approach (see Section 4.7) could also be seen
as instantiations of this approach.

We study three types of algebraic objects: the polynomial ring, the group
algebra F[Zn

2 ], and the Möbius algebra. For the first two types we show that
existing algorithms can indeed be improved when sparsity is promised. As appli-
cations we show that the Subset Sum can be solved in polynomial space and
linear in the number of distinct sums of subsets of the given integers, and that
Set Partition can be solved in O⋆(2rk(A)) time and O⋆(1) space, where rk(A) is
the rank of the incidence matrix of the given set system. We also give a so-called
‘Win/Win approach’(1) that solves the Linear Sat problem in O⋆(2n/2) time
and O⋆(1) space. For studying the Möbius algebra, we propose a hashing scheme
based on an old result of Solomon and give a possible application to CNF-Sat
with the promise that the number of projections of variable assignments to the
CNF-formula is small (see Section 6.3 for a more formal definition).

Coefficient extraction via the Fourier Transform is a very well-known method
(1)Here we distinguish two cases that are solved by different algorithms/arguments. An instan-

tion of this was already encountered in Section 3.5. The term is usually used when describing
‘bidimensionality theory’ (see for example [DFHT05, DH08]) that distinguish between instances
of small and high treewidth (see also Subsection 7.0.3.)
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(see for example [CLRS01]). We already saw that it can be used to solve the
Subset Sum problem in a space efficient manner (see Section 5.1). Sparse coeffi-
cient extraction in the polynomial ring is a well-studied problem [Man95, Zip79],
even for polynomials in F[Zn

2 ] (see for example [BO88]). However, in the field of
Theoretical Computer Science, the Möbius algebra has still found relatively few
applications: for the specific case of the Möbius algebra of the subset lattice a
few are listed in Chapters 3 and 5.

This chapter is organized as follows: in Section 6.1 we study numerical dy-
namic programming and the Subset Sum problem, in Section 6.2 we study the
Set Partition and Linear Sat problems and in Section 6.3 we study the
CNF-Sat problem. Finally we will give some concluding remarks in Section 6.4.

6.1 Homomorphic Hashing for Subset Sum
Let us start by again recalling the Subset Sum problem:

Subset Sum Parameter: t
Input: Integer n, function ω ∶ {1, . . . , n}→ N and integer t.
Question: Does there exist a subset X ⊆ {1, . . . , n} such that ω(X) = t?

Also, recall the dynamic programming algorithm as described in Section 2.1.
It used the following observation: for 1 ≤ i ≤ n and 0 ≤ j ≤ t, define s(i − 1, j) to
be true if and only if there exists X ⊆ {1, . . . , i} such that ω(X) = j, then:

s(i, j) = {
true if i = 0, (6.1a)
s(i − 1, j) ∨ s(i − 1, j − ai) otherwise. (6.1b)

Theorem 6.1 — Folklore, [Bel54] There exists an algorithm that solves any given in-
stance (n,ω, t) of the Subset Sum problem in O(n ⋅ ∣S∣ lg ∣S) time and O(∣S∣)
space, where S = ∣{ω(X) ∶X ⊆ {1, . . . , n}}∣.

Before proceeding to the proof let us note that the theorem is stated in the
unit-cost model. In the log-cost model the resource bounds would be O(n ⋅ b ⋅
∣S∣ lg ∣S∣) time and O(∣S∣((b+ lgn))) space. We give the proof of Theorem 6.1 for
completeness
Proof We use what could be called ‘Sparse Dynamic Programming’. For every
0 ≤ i ≤ n we create a binary search tree Bi to which we will add all values j
such that s(i, j) = true. Implementing this with an AVL tree (see for example
[CLRS01]), this requires O(S) space and queries, removals and insertions, and
all of this can be performed in lg ∣S∣ time. First, B0 only contains 0. Then Bi is
created by creating a copy of Bi−1 and for all integers j in Bi−1 adding ω(i)+ j to
Bi if it does not exist yet and after this Bi−1 can be removed from the working
memory. In the end the algorithm return YES if and only if t is in Bn. ∎
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As mentioned in the introduction of this chapter, after considering Theo-
rem 5.2, a natural question is whether we can obtain a space efficient analogue
of Theorem 6.1. In this section we will show that this is possible and prove it
is in the same generic setting as in Section 5.1. The main observation in the
generic setting is that if the last row of the dynamic programming table contains
many zero’s, then we can work with a hashed version of the table to speed up
the computation since collisions are less probable.

Theorem 6.2 Given a circuit C = (D,λ,Z[N]) with singleton inputs output gate
v and integers S, t with ∣ supp(v)∣ ≤ S,

1. an integer ṽt such that prob[ṽt = vt] ≥ 1
2 can be computed using

O⋆(mpl(C)) space and O⋆(S ⋅ mpl(C)) expected time, and

2. vt can be computed using at most O⋆(mpl(C)) space and O⋆(S2 ⋅mpl(C))
time.

In order to prove Theorem 6.2, we will need the following number-theoretic
results:

Lemma 6.1 — [Ros41] If u > 55, then the number of primes at most u is at least
u

lnu+2 .

The next lemma follows almost directly:

Lemma 6.2 — Folklore There exists an algorithm pickprime(u) running in O⋆(1)
expected time that, given integer u ≥ 2 as input, outputs a prime chosen uni-
formly at random from the set of primes at most u.

Proof Take an integer i ≤ u uniformly at random, and check whether it is a prime
using the polynomial time algorithm of [AKS04]. If i is prime, then output i and
halt; otherwise repeat. This clearly meets the running time due to Lemma 6.1.∎
Proof (of Theorem 6.2) In the following, let M be the largest integer such that there
exists an input gate a of C with λ(a) = ⟨e,M⟩ for some integer e and Z =
M ⋅ mpl(C). Without loss of generality let us assume that S ⋅ lgZ > 55. It is easy
to see that for every gate a of C and i > Z, i ∉ supp(a). The algorithms are given
in Algorithm 3.

Let us start by analyzing extractWithModulus. Line 16 can be performed in
polynomial time since all elements of Z[N] are singleton vectors. Line 17 takes
O⋆(p ⋅ mpl(C) ⋅ lg(p + msl(C))) = O⋆(p ⋅ mpl(C)) time(2) and mpl(C) space due

(2)Note that the integers λ(a) do not show up in the runtime since extractWithModulus runs
in time polynomial in the size of their binary representation.
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Function hashExtractFourier1(C = (D,Z[N], λ), S, t)
1: p← pickprime(2S ⋅ lgZ ⋅ ln2(2S ⋅ lgZ)). Using Lemma 6.2.
2: return extractWithModulus(C, t, p).

Function hashExtractFourier2(C = (D,Z[N], λ), S, t)
3: mult, res, i, j ← 0. res is result candidate; mult is multiplicity of res
4: while i ≤ 2S ⋅ lgZ do
5: j ← j + 1
6: if the deterministic primality testing from [AKS04] returns j is prime then
7: i← i + 1; higher prime counter
8: a = extractWithModulus(C, t, p).
9: if res = 0 then
10: res← a
11: else if a = R then
12: mult←mult + 1
13: else
14: mult←mult − 1
15: return res

Function extractWithModulus(C = (D,Z[N], λ), t, p)
16: C ′ ← (D,Z[Zp], λ′) where λ′(a) = ⟨e, imodp⟩ if λ(a) = ⟨e, i⟩ for an input gate

a of C.
17: return extractFourier(C, tmodp). see Algorithm 2

Algorithm 3 – Implementing Theorem 6.2.

to Theorem 5.1. Note that C ′ is the circuit obtained by applying h to C (see
Definition 4.10), where h ∶ Z[N] → Z[Zp] is defined by h(v)j = ∑i∶i≡j(modp) vi for
any v ∈ ZN. Then by Observation 4.1 and Theorem 5.1 we have that

(extractWithModulus(C, t, p))
t
= ∑
i∶i≡t(modp)

vi, (6.2)

and hence it follows that if there exists no i ∈ supp(v) with i ≠ t and i ≡ t(modp),
then the left-hand side of (6.2) is vt.

Next we consider hashExtractFourier1. It follows from Lemma 6.2 that
Line 1 can be performed in O⋆(1) expected time. Line 2 is performed using
O⋆(S ⋅mpl(C)) time and O⋆(mpl(C)) space according to the above discussion on
extractWithModulus. Denote γ = 2S ⋅ lgZ ⋅ ln2(2S ⋅ lgZ) and note that

γ

lnγ + 2 = 2S ⋅ lgZ ⋅ ln2(2S ⋅ lgZ)
ln (2S ⋅ lgZ ⋅ ln2(2S ⋅ lgZ)) + 2

≥ 2S ⋅ lgZ. (6.3)
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Then, for correctness of the probability bound of Item 1, notice that

prob[ṽt ≠ vt] ≤ ∑
i∈supp(v)

prob[p divides ∣i − t∣] ≤ ∣ supp(v)∣ lgZ
γ

lnγ+2
≤ S lgZ

2S ⋅ lgZ ≤ 1
2 .

To see that this holds, note that the first inequality follows from (6.2) and the
union bound; the second inequality follows from Lemma 6.1 and the fact that for
every i ∈ supp(a) it holds that i ≤ Z and hence i has at most lgZ prime divisors;
the third inequality follows from (6.3). This concludes the proof of Item 1 of the
theorem.

Finally let us consider hashExtractFourier2. For 1 ≤ i ≤ 2S ⋅ lgZ + 1, de-
note the values a has on iteration i. Because of (6.2) and the properties of
extractWithModulus, we know that for at most S lgZ values of i, ai ≠ vt.
Hence the majority of the set a1, . . . , a2S⋅lgZ+1 is vt. The remaining part of
hashExtractFourier2 implements the classic majority voting algorithm (see
[BM91]). The easiest way to see that this indeed returns the majority is per-
haps to note that if we remove any pair ai, ai+1 with ai ≠ ai+1, then the majority
is the same in the remaining sequence so at iteration i the algorithm (implicitly)
replaces a1, . . . , ai with M occurrences of the integer C not cancelled out yet.
This concludes the proof of (Item 2 of) the theorem. ∎

Application to Subset Sum

Theorem 6.3 Given an instance (n,ω, t) of Subset Sum and an integer S as input
such that ∣{ω(X) ∶X ⊆ {1, . . . , n}}∣ ≤ S,

1. an integer y such that prob[x = y] ≥ 1
2 can be computed in O⋆(S) expected

time and O⋆(1) space, and

2. x can be computed in O⋆(S2) time and O⋆(1) space.

Where x = ∣{X ⊆ {1, . . . , n} ∶ ω(X) = t}∣.

Proof Consider the recurrence (5.3). Although it was originally formulated over
the ring Z[Znt], of course it is equivalent when formulated in the ring Z[N] since
then all elements indexed by integers at least nt are zero. So let C be the circuit
over Z[N] implementing recurrence (5.3), and apply Theorem 6.2 to C. It is easy
to see that supp(s(n)) = {ω(X) ∶ X ⊆ {1, . . . , n}} (see (5.3)) and as explained
also in Section 5.1.1, mpl(C) = n−1. Then both items follow from Theorem 6.2.∎

Also, it follows straightforwardly from Algorithm 6.2 that the algorithms of
Theorem 6.3 return 0 only if the given instance of Subset Sum is a NO-instance.
Then, using standard self-reduction to detect false positives in combination with
Theorem 6.3 and iteratively doubling an estimate of S, we can also obtain algo-
rithms that do not require an upper bound on the number of non-zero entries in
the DP table as input:
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Corollary 6.1 Given an instance (n,ω, t) of Subset Sum it can be decided
whether it is a YES-instance in (i) O⋆(S) expected time, or in (ii) O⋆(S2)
time, where S = ∣{ω(X) ∶X ⊆ {1, . . . , n}}∣.

6.2 Homomorphic Hashing for Linear Satisfiability
In this section, we let F be an arbitrary field of non-even characteristic(3) and the
standard addition and multiplication refer to operations in F. We first revisit the
Walsh-Hadamard transform.

For a non-negative integer s, the Walsh-Hadamard matrix is the matrix Φ ∈
FZs2×Zs2 , defined for all x,y ∈ Zs

2 by Φx,y = (−1)xyT . It follows that Φ = Fm, where
m = (2,2, . . . ,2), where F is the Fourier transform (see Section 4.3). It inherits
the following properties from Theorem 4.1 and Lemma 4.1:

Lemma 6.3 — Folklore The Walsh-Hadamard matrix satisfies ΦΦ = 2sI and, for
every f ,g ∈ F[Zs

2], it holds that (f ∗ g)Φ = fΦ ○ gΦ.

Proof For the first equality, let A = ΦΦ. Then for every x,y ∈ Zs
2 we have

Ax,y = ∑
z∈Zs2

(−1)xzT+yzT

= ∑
z∈Zs2

(−1)(x+y)zT

(using that ∑p∈Zs2(−1)qpT = 2s[q = 0])

= 2s[x = y].

For the second equality, let z ∈ Zs
2 and observe that

(fΦ ○ gΦ)z = ∑
x∈Zs2

(−1)zxT fx ∑
y∈Zs2

(−1)zyT gy

= ∑
x,y∈Zs2

(−1)z(x+y)T fxgy

= ∑
w∈Zs2

(−1)zwT (f ∗ g)w

= Φ(f ∗ g)z. ∎

In particular, if F is a field of non-even characteristic, then Φ is a bijective
homomorphism (or equivalently, isomorphism) from F[Zs

2] to FZs2 .
(3)This is to make sure the Walsh-Hadamard transform does not make non-zero entries vanish.
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Theorem 6.4 Let F be a field of non-even characteristic. There exists a random-
ized algorithm that, given as input (i) a circuit C with singleton inputs over
F[Zn

2 ], (ii) an integer S ≥ ∣ supp(v)∣, and (iii) an element t ∈ Zn
2 , outputs the

coefficient vt ∈ F with probability at least 1
2 , where v ∈ F[Zn

2 ] is the output of C.
The algorithm (a) runs in time O⋆(S) and uses O⋆(S) arithmetic operations in
F, and (b) requires storage for O⋆(1) bits and elements of F.

Function hashZ2
1: Let s = ⌈logS⌉+1.
2: Choose a matrix H ∈ Zs×n

2 uniformly at random from the set of all s × n
matrices with binary entries.

3: Let h ∶ F[Zn
2 ] → F[Zs

2] be the homomorphism defined by h(a) = b where
bx = ∑y∈Zn2 ∶yH=xay for all x ∈ Zs

2. Apply h to C to obtain the circuit C1.

4: return 1
2s ∑x∈Zs2

(−1)(tH)xT sub(C1,x).

Function sub(C1,x)
5: Let ϕ ∶ F[Zs

2]→ F be the homomorphism defined by ϕ(w) = ∑y∈Zs2(−1)xyT wy
for all w ∈ F[Zs

2]. Apply ϕ to C1 to obtain the circuit C2.
6: Evaluate C2 and return the output.

Algorithm 4 – Implementing Theorem 6.4.

Proof (of Theorem 6.4) The algorithm is given in Algorithm 4. Let us first analyse
the complexity of this algorithm: Steps 1 and 2 can be done in time polynomial
in the input. Step 3 can as well be done in polynomial time since it amounts to
relabeling all input gates with h(e) where e was the old label. Indeed, we know
that e ∈ F[Zn

2 ] is a singleton ⟨v,y⟩, so h(e) is the singleton ⟨v,Hy⟩ and this can
be computed in polynomial time. Step 4 takes O⋆(S) operations and calls to
sub, so for the complexity bound it remains to show that each call to sub runs
in polynomial time. Step 5 can be implemented in polynomial time similar to
Step 3 since the singleton e = ⟨v,y⟩ is mapped to (−1)xyT v. Finally, the direct
evaluation of C2 uses ∣C2∣ operations in F. Hence the algorithm meets the time
bound, and also the space bound is immediate.

The correctness of hashZ2 is a consequence of the following two claims. Let
w be the output of C1.

Claim 6.4.1 probH[vt =wtH] ≥ 1
2 .

Proof For every a,b ∈ F[Zn
2 ] we have (a + b)H = aH + bH and hence h is easily

seen to be a homomorphism by Observation 4.1. Thus, by Observation 4.1 we
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know that w = h(v), that is, for every z ∈ Zs
2

wz = ∑
y∈Zn2 ∶yH=z

vz.

Hence, if vt ≠ wtH , there must exist y ∈ supp(v) such that y ≠ t and yH = tH .
Equivalently, (y − t)H = 0. For any x ∈ Zn

2 with x ≠ 0 we have

probH[xH = 0] =
s

∏
i=1

probH[(xH)i = 0] = 2−s,

where the probability is taken uniform over all binary s×n matrices, and the two
equalities follow from the fact that the random variables (xH)i for i = 1, . . . , s
are independent and uniformly distributed. Now the claim follows by taking the
union bound over all elements in the support:

prob[vt ≠wtH] ≤ prob[∃x ∈ supp(v) with x ≠ t and xH = eH] ≤ ∣S∣2−s ≤ 1
2 ∎

Claim 6.4.2 Algorithm hashZ2 returns wtH .

Proof Let b ∈ F[Zs
2] such that bx = sub(C1,x) for every x ∈ Zs

2. It suffices to show
that b = wΦ since hashZ2 returns 1

2s (bΦ)tH as can bee seen from Line 4, and
this is equal to wHt by Lemma 6.3. For proving that b =wΦ, we first claim that
ϕ is a homomorphism from F[Zs

2] to F since, for a,b ∈ F[Zs
2], we have

ϕ(a + b) = ∑
y∈Zs2

(−1)xyT (ay + by) = ∑
y∈Zs2

(−1)xyT ay + ∑
y∈Zs2

(−1)xyT by = ϕ(a) + ϕ(b),

and ϕ(a ∗ b) is equal to

∑
y∈Zs2

(−1)xyT ∑
y1+y2=y

ay1 + by2 = ∑
y1∈Zs2

(−1)xyT1 ay1 ∑
y2∈Zs2

(−1)xyT2 by2 = ϕ(a) ○ ϕ(b).

Then, by Observation 4.1, sub(C1,x) returns ϕ(w). For a ∈ Z[Zs
2] we have

ϕ(a) = (aΦ)x so sub(C1,x) = (wΦ)x and hence b =wΦ. ∎
Now Claims 6.4.1 and 6.4.2 combined imply directly that hashZ2 returns vt with
probability at least 1

2 . ∎

6.2.1 Application to Linear Satisfiability
To motivate Theorem 6.4, we give some consequences of it for the following
problem:
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Linear Sat Parameter: n,m
Input: A matrix A ∈ Zn×m

2 , vectors b ∈ Zm
2 and ω ∈ Nn and integer t = nO(1).

Question: Is there a vector x ∈ Zn
2 such that xA = b and ωxT ≤ t?

Variants of Linear Sat have been studied, perhaps most notably in [Hås01],
where approximability was studied. In [AGK+10, CGJY11] the Fixed Parameter
Tractability (see Section 1.3) was studied for parameterizations above guarantees.
There it was quoted from of [Hås01] that (variants of) Linear Sat are “as basic
as satisfiability”. Let us first mention that a first non-trivial algorithm is easily
obtained using the approach from [HS74]. The idea is to obtain the iterate over
all assignments of x′ = (x1, . . . , x⌊n/2⌋), and create a set B that contains all vectors
b′ = x′A′ where A′ is the matrix consisting of the first m/2 columns of A. Then
sort B in lexicographical order and iterate over all assignments of the variables
x⌈n/2⌉, . . . , xn and find whether a matching assignment of x′ exists using binary
search on B. Then, the following is obtained:

Observation 6.1 — [HS74] Linear Sat can be solved in Õ(2n/2m) time and
Õ(2n/2m) space.

Also, using ‘sparse dynamic programming’, as in the proof of Theorem 6.1,
the following can easily be obtained:

Observation 6.2 — [HS74] Linear Sat can be solved in Õ(2rk(A)(n+m)) time and
Õ(2rk(A)(n +m)) space.

Using Theorem 6.4, we obtain the following:

Theorem 6.5 There exists an algorithm that, given an instance (A,b,ω, t) of Lin-
ear Sat, computes the number of x ∈ Zn

2 with xA = b and xωT ≤ t with
probability at least 1

2 in O⋆(2rk(A)) time and O⋆(1) space.

Proof For 1 ≤ i ≤ n and w ≤ t define f[i,w] ∈ Q[Zn
2 ] as

f[i,w] =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

⟨1,0⟩ if i = w = 0,
0 if i = 0 ∧w ≠ 0,
f[i − 1,w + f[i − 1, j − ωi] ∗ ⟨1,A(i)⟩ otherwise.

(6.4)

It is easy to see that for every 1 ≤ i,0 ≤ w, and y ∈ Zn
2 , f[i,w]y is the number

of x ∈ Zi
2 such that ω′xT = t and xA′ = y where ω′ and A′ are obtained by

truncating ω and A respectively to the first i columns. Hence, we let C be the
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circuit implementing Recurrence 6.4 and let its output be ∑t
w=0 f[n,w]. Thus, if

v is the output of C, v1 is the number of x ∈ Zn
2 with xA = b and xωT ≤ t.

Also, ∣ supp(v)∣ ≤ 2rk(A) since any element of the support of v is a sum of rows
of A and hence in the column-space of A, which has size at most 2rk(A). To apply
Theorem 6.4, let F = Q and observe that the computations are in fact carried out
over integers bounded in absolute value poly-exponentially in n and hence the
operations in the base field can also be executed poly-logarithmically in n. The
theorem follows from Theorem 6.4. ∎

Now we give a so-called Win/Win approach for Linear Sat. First, let us
see how to exploit that in an instance of Linear Sat, rk(A) is relatively high:
by Theorem 1.3 we know that if A has full rank (that is, rk(A) = min{n,m})
then there exists at most one vector x such that xA = b and it can be found
in polynomial time using Gauss elimination. Hence, we first find rk(A) linearly
independent columns (which can as well be done in polynomial time using ele-
mentary linear algebra) and iterate over all subsets of the remaining columns, for
every subset we determine whether it can be extended by picking a subset of the
linearly independent columns in polynomial time (using Gauss elimination). If
this is possible we check whether we found a solution, and if we haven’t found
any in the end we can safely return NO.

Observation 6.3 Linear Sat can be solved in O⋆(2n−rk(A)) time and O⋆(1)
space.

Now the idea of the Win/Win approach is to distinguish two scenarios which
are dealt with by different arguments.

Theorem 6.6 Linear Sat can be solved in O⋆(2n/2) time and O⋆(1) space with
constant one-sided error probability.

Proof Compute rk(A). If rk(A) ≥ n/2, run the algorithm implied by Observa-
tion 6.3. Otherwise, run the algorithm implied by Theorem 6.5. ∎

Set Partition

Set Partition Parameter: n
Input: An integer t and a set system F ⊆ 2U where ∣F ∣ =m,∣U ∣ = n.
Question: Is there a subset C ⊆ F with ∣C∣ ≤ t such that ⋃S∈C S = U and for
every ∑S∈C ∣S∣ = ∣U ∣?

We will refer to a subset X ⊆ S with ∑S∈X ∣S∣ = n and ∪S∈XS = U as a set partition
of size ∣X ∣. Given a set system (F , U) we let its Incidence matrix be the ∣U ∣× ∣F ∣
matrix A with 0/1 entries and index by elements of U and F where Ae,S = [e ∈ S].
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Theorem 6.7 There exists an algorithm that, given an instance (F , U, t) of Set
Partition, computes the number of set partitions of size at most t with proba-
bility at least 1

2 in 2rk(A)nO(1)m time and O⋆(1) space, where A is the incidence
matrix of the set system (F , U).

Proof We use Theorem 6.5. Assume F = {S1, . . . , Sm} and create the instance
(A,b,ω, t′) of Linear Sat where A is the incidence matrix of the set system
(F , U), b = 1, ωi = ∣Si∣m + 1 and t′ = nm + t. It is easy to see that the algorithm
of Theorem 6.5 returns exactly the number of set partitions of size at most t ∎

We can also obtain a faster exponential space variant, but for this we need
the following special case of Theorem 4.2:

Theorem 6.8 — Fast Walsh-Hadamard transform, Folklore Given a vector a ∈ F[Zs
2], aΦ

can be computed in time O(2ss) and using O(2ss) operations in F.

Theorem 6.9 There exists an algorithm that, given an instance (F , U, t) of Set
Partition, computes the number of set partitions with probability at least 1

2
in (2rk(A) +m)nO(1) time and O⋆(1) space, where A is the incidence matrix of
the set system (F , U).

Proof Consider the following circuit C over Q[Zn
2 ]:

f[i, j] =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

⟨1,0⟩ if i = j = 0
0 if i = 0 and j ≠ 0
j

∑
h=0

f[i − 1, h]g[j − h] otherwise, where
(6.5)

g[j] =
m

∑
i=1

[∣Si∣ = j] ⟨1, Si⟩ (6.6)

For every x ∈ Zn
2 and non-negative integers i and j, the coefficient f[i, j]x

counts the number of ways to choose an i-tuple of sets in S such that their sizes
sum up to j and their characteristic vectors sum to x in Zn

2 . Thus supp(f[k,n]) ≤
2rk(A). Furthermore, f[k,n]1 is the number of set partitions of size k times k!.
Indeed, if a k-tuple of sets from S contributes to f[k,n]1, each element of U must
occur in a unique set in the k-tuple. It remains to compute f[k,n]. For this we
will use algorithm hashZ2 with s = rk(A), except that we replace Line 4 with the
following to compute wtH , where w is the output of C1:
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4: for every 0 ≤ j ≤ n do
5: Compute and store h(g[j]) using (6.6)
6: Compute and store h(g[j])Φ using Theorem 6.8
7: return 1

2s ∑x∈Zs2
(−1)(1H)xT (wΦ)x, using (6.5) and the stored values to com-

pute the vector wΦ.
Algorithm 5 – Changes to Algorithm 4 to implement Theorem 6.9.

The correctness follows from Claim 6.4.1 and the observation that the in-
version formula from Theorem 6.3 is returned on Line 7. Indeed, h is a homo-
morphism and Φ is a bijective homomorphism, so Observation 4.1 enables us to
compute wΦ using (6.6).

To establish the time and space complexity, we observe that Steps 5 and 6
take 2snO(1) time by Theorem 6.8, and Step 7 takes also 2snO(1) time since we
can compute wΦ via (6.5) in O(n2) operations in QZs2 by relying on the stored
values h(g[j])Φ. ∎

6.3 Towards Homomorphic Hashing for CNF-Sat
In this section our objective is to mimic the approach of the previous sections
for the semigroup algebra F[Un], where F is a field and Un is the semigroup as
defined in Section 1.3. For clarity, we use some alternative notation: instead of
Un, we write (2U ,∪) so its elements are subsets of U and the group operator is
the union.

The direct attempt to mimic, unfortunately, fails. Indeed, let h be an arbitrary
homomorphism from (2U ,∪) to (2V ,∪) with ∣V ∣ < ∣U ∣. Let U = {e1, e2, . . . , en}
and consider the minimum value 1 ≤ j ≤ n− 1 with h({e1, . . . , ej}) = ∪ji=1h({ei}) =
∪j+1
i=1h({ei}) = h({e1, . . . , ej+1}); in particular, for X = {e1, . . . , ej, ej+2, . . . , en} ≠ U

we have h(X) = h(U), which signals failure since we cannot isolate X ≠ U (4).
Our main contribution in this section is that we introduce a more promis-

ing homomorphism from the semigroup algebra F[(2U ,∪)] to the Solomon alge-
bra F[P ] of a partially ordered set P . Unfortunately, we only achieved partial
progress towards obtaining results similar to the ones of the previous sections.
Our main result here is formulated as follows (See Subsection 6.3.1 for the addi-
tional definitions used.):

(4)let us emphasize that this only excludes the most naive approach as candidate.
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Theorem 6.10 Let C be a circuit over F[(2U ,∪)] with singleton inputs outputting
v ∈ F[(2U ,∪)]. Let (P,≤) be a poset that has a maximum element 1̂ and that
satisfies

1. U ⊆ P ,

2. for every X ∈ supp(v), X has a join in P , and

3. for every X ∈ supp(v), the join of X in P is 1̂ if and only if X = U .

Then vU can be computed (a) in Õ(∣P ∣2∣C ∣O(1)) time and arithmetic operations
in F, and (b) using storage for ∣P ∣∣C ∣O(1) elements of F .

One possible application is the CNF-Sat problem: recall that here we are
given a CNF-formula C = {C1, . . . ,Cm} over the variables v1, . . . , vn as input, the
task is to determine whether there exists an assignment of 0/1 values to the
variables such that every clause Cj contains at least one literal (a variable or its
negation) that is satisfied by the assignment.

A prefix assignment is an assignment of 0/1 values to the variables v1, v2, . . . , vi
for some 1 ≤ i ≤ n. A projection (prefix projection) of a CNF-formula is a subset
π ⊆ C such that there exists an assignment (prefix assignment) of the variables
that satisfies a clause if and only if it is in π. Considering the previous section,
it is sensible to ask about the complexity of CNF-Sat if we are given an upper
bound on the number of projections. It should be noted that an algorithm running
in time linear in the number of partial projections can be obtained by standard
dynamic programming. A corollary of Theorem 6.10 that is possibly useful for
resolving this question is:

Corollary 6.2 Let C be a CNF-formula and let (P,≤) be a poset that has a max-
imum element 1̂ and that satisfies

1. C ⊆ P ,

2. for every projection π ⊆ C, π has a join in P , and

3. for every π ∈ supp(v), the join of π is 1̂ iff π = C.

Then the number of satisfying assignments of C can be counted ∣P ∣2(mn)O(1)

time and ∣P ∣(mn)O(1) space.

Proof Use the circuit over Q[(2C,∪)] that implements the expression
f = (⟨1, V1⟩ + ⟨1, V1⟩) ∗ (⟨1, V2⟩ + ⟨1, V2⟩) ∗ . . . ∗ (⟨1, Vm⟩ + ⟨1, Vm⟩),

where Vi ⊆ C (Vi ⊆ C) is the set of all clauses that contain a positive (negative)
literal of vi. Then use Theorem 6.10 to determine fC, the number of satisfying



112 On Homomorphic Hashing for Coefficient Extraction

assignments of C; Item 1 and 2 of Theorem 6.10 are clearly satisfied, and for item
2 it is easy to see that supp(f) is exactly the set of projections of C. ∎

It remains to prove Theorem 6.10. The next section reviews the necessary
background on the Solomon algebra. Section 6.3.2 introduces the homomorphic
hash function and proves Theorem 6.10.

6.3.1 Möbius Inversion and the Solomon Algebra

Recall the standard poset terminology from Section 1.3 and recall Möbius inver-
sion and the Möbius function µ from Section 6.3.1.

Definition 6.1 — [Sol67] Let (P,≤) be a poset. The Solomon algebra F[P ] is the
set FP equipped with coordinate-wise addition ⊕ and the Solomon product ⊗
defined for all f ,g ∈ F[P ] and z ∈ P by

(f ⊕ g)z = fz + gz (f ⊗ g)z = ∑
x,y∈P

( ∑
x,y≤q≤z

µ(q, z)) fxgy

It is easy to see that, in the special case that P is the subset lattice on 2n
elements, F[P ] = F[Un]. In the general case, the Solomon product is easily
verified to be associative:

Lemma 6.4 — [Sol67] For every f ,g,h ∈ F[P ] and s ∈ P we have

((f ⊗ g)⊗h)s = ∑
x,y,z≤s

∑
x,y,z≤q

µ(q, s)fxgyhz
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Proof

((f ⊗ g)⊗h)s = ∑
w,z∈P

( ∑
w,z≤r≤s

µ(r, s)) (f ⊗ g)whz

(Definition of the Solomon product)

= ∑
w,z∈P

( ∑
w,z≤r≤s

µ(r, s))( ∑
x,y∈P

∑
x,y≤q≤w

µ(q,w)fxgy)hz

(Reordering summations)

= ∑
w,x,y,z∈P

⎛
⎜
⎝
∑

w,z≤r≤s
x,y≤q≤w

µ(r, s)µ(q,w)
⎞
⎟
⎠
fxgyhz

(Reordering summation)

= ∑
x,y,z≤s

∑
x,y≤q
z≤r

( ∑
q≤w≤r

µ(q,w))µ(r, s)fxgyhz

(Möbius inversion (Theorem 4.4 ))

= ∑
x,y,z≤s

∑
x,y≤q
z≤r

[q = r]µ(r, s)fxgyhz

(Variable identification)

= ∑
x,y,z≤s

∑
x,y,z≤q

µ(q, s)fxgyhz. ∎

Associativity then follows from Lemma 6.4 since ((f ⊗g)⊗h)s = (f ⊗ (g⊗h))s.
The Solomon product is particularly useful since it is diagonalized by the zeta-
transformation:

Theorem 6.11 — [Sol67] The zeta transform is a homomorphism from F[P ] to FP
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Proof For every w ∈ P we have

((f ⊕ g)ζ)w = ∑
z≤w

(fz + gz) = ∑
z≤w

fz +∑
z≤w

gz = (fζ)w + (gζ)w, and

((f ⊗ g)ζ)w = ∑
z≤w

∑
x,y∈P

( ∑
x,y≤q≤z

µ(q, z)) fxgy

= ∑
x,y,q,z∈P

[x, y ≤ q ≤ z ≤ w]µ(q, z)fxgy

(Reordering summation)

= ∑
x,y,q∈P

[x, y ≤ q ≤ w] ( ∑
q≤z≤w

µ(q, z)) fxgy

(Möbius inversion (Theorem 4.4 ))

= ∑
x,y,q∈P

[x, y ≤ q ≤ w][q = w]fxgy

= ∑
x,y∈P

[x, y ≤ w]fxgy

= (∑
x≤w

fx)(∑
y≤w

gy)

= (fζ)w(gζ)w. ∎

Lemma 6.5 — [Sol67] Let P be a poset with a minimum element 0̂. Then, F[P ]
is a commutative ring with the multiplicative identity ⟨1, 0̂⟩.

Proof The singleton ⟨1, 0̂⟩ is the multiplicative identity because

(⟨1, 0̂⟩⊗ g)z =∑
y≤z

( ∑
y≤q≤z

µ(q, z)) gy = gz,

where the last equality follows from Möbius inversion. To see that F[P ] is a
commutative ring, note that ζ is an isomorphism from S[P ] to the ring FP .
Indeed, Theorem 6.11 shows that ζ is a homomorphism, and ζµ = µζ = I shows
that ζ is bijective. ∎

6.3.2 Towards homomorphic hashing for the union product
Let U be an n-element set and let (P,≤) be a poset that satisfies U ⊆ P and has
a minimum element 0̂. Define the function h ∶ F[(2U ,∪)] → F[P ] by setting, for
all a ∈ F[(2U ,∪)],

h(a) = ⊕
X⊆U

⟨aX , 0̂⟩⊗⊗
e∈X

⟨1, e⟩ . (6.7)
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Lemma 6.6 For singletons ⟨c, x⟩ , ⟨d, x⟩ ∈ F[P ] it holds that ⟨c, x⟩⊗⟨d, x⟩ = ⟨cd, x⟩.

Proof For all z ∈ P , we have (⟨c, x⟩⊗ ⟨d, x⟩)z =

∑
w,y∈P

( ∑
w,y≤q≤z

µ(q, z)) [w = x]c[y = x]d = ∑
x≤q≤z

µ(q, z)cd = [x = z]cd.
∎

Lemma 6.7 The mapping h is a homomorphism from F[(2U ,∪)] to F[P ].

Proof For every v,w ∈ Z[(2U ,∪)] we have

h(v +w) = ⊕
X⊆U

⟨vX +wX , 0̂⟩⊗⊗
e∈X

⟨1, e⟩

= ⊕
X⊆U

(⟨vX , 0̂⟩⊕ ⟨wX , 0̂⟩)⊗⊗
e∈X

⟨1, e⟩)

= ⊕
X⊆U

(⟨vX , 0̂⟩⊗⊗
e∈X

⟨1, e⟩⊕ ⟨wX , 0̂⟩⊗⊗
e∈X

⟨1, e⟩)

= ⊕
X⊆U

⟨vX , 0̂⟩⊗⊗
e∈X

⟨1, e⟩⊕ ⊕
X⊆U

⟨wX , 0̂⟩⊗⊗
e∈X

⟨1, e⟩ = h(v)⊕ h(w),

h(v ∗w) = ⊕
X⊆U

⟨(v ∗w)X , 0̂⟩⊗⊗
e∈X

⟨1, e⟩

(Definition of multiplication in F[(2U ,∪)])

= ⊕
X⊆U

⟨ ∑
V ∪W=X

vVwW , 0̂⟩⊗⊗
e∈X

⟨1, e⟩

(By definition of ⊕)

= ⊕
X⊆U

⊕
V ∪W=X

⟨vVwW , 0̂⟩⊗⊗
e∈X

⟨1, e⟩

(By Lemma 6.6 and commutativity of ⊗ implied by Lemma 6.5)

= ⊕
X⊆U

⊕
V ∪W=X

⟨vVwW , 0̂⟩⊗⊗
e∈V

⟨1, e⟩⊗⊗
e∈W

⟨1, e⟩

(We have that V and W determine X)

= ⊕
V,W⊆U

⟨vVwW , 0̂⟩⊗⊗
e∈V

⟨1, e⟩⊗⊗
e∈W

⟨1, e⟩

(By Lemma 6.6 )

= ⊕
V,W⊆U

(⟨vV , 0̂⟩⊗ ⟨wW , 0̂⟩)⊗⊗
e∈V

⟨1, e⟩⊗⊗
e∈W

⟨1, e⟩

(By distributivity from Lemma 6.5)

= (⊕
X⊆U

⟨vX , 0̂⟩⊗⊗
e∈X

⟨1, e⟩)⊗ (⊕
X⊆U

⟨vX , 0̂⟩⊗⊗
e∈X

⟨1, e⟩) = h(v)⊗ h(w).∎
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Proof (of Theorem 6.10) The algorithm is given in Algorithm 6. Note that in the
following, we can without loss of generality assume that P has a minimum element
0̂, since otherwise we can introduce a minimum element.

Function hashU
1: For every x ∈ P compute the Möbius function M[x] = µ(x, 1̂) using

mobius(P,≤).
2: Construct circuit C1 over F[P ] obtained from C by applying h.
3: return ∑x∈P M[x]sub(C1, x)
Function sub(C1, x)
4: Construct circuit C2 over F obtained from C1 by applying ζx ∶ e↦ ∑y≤x ey.
5: Evaluate C2 and return the output.
Function mobius(P,≤)
6: Let P = {v1, v2, . . . , v∣P ∣} such that vi ≤ vj implies i ≥ j.
7: M[v1]← 1.
8: for i = 1,2, . . . , ∣P ∣ do
9: for every vj ≥ vi do
10: M[vi]←M[vi] −M[vj]

Algorithm 6 – Implementing Theorem 6.10

Let us first analyse the complexity. To establish the claimed bounds we may
assume that each operation in F takes one time unit, and each element of F
requires one storage unit. Step 1 can be implemented in O(∣P ∣2) time and O(∣P ∣)
storage. Step 2 expands every singleton (of F[(2U ,∪)]) in C according to (6.7)
into a product of at most n+ 1 singletons of F[P ], and thus can be implemented
in time and storage O(n∣C ∣). Step 3 makes ∣P ∣ calls to sub. Step 4 can be
implemented in time and space O(∣C1∣) because the singleton e = ⟨v, y⟩ is mapped
to [y ≤ x]v. Finally, the evaluation of C2 over F uses ∣C2∣ operations. Hence by
the assumption ∣C ∣ ≥ n the algorithm meets the claimed time and space bounds.

The proof of correctness of hashU is divided into the following two Claims.
Denote by w ∈ F[P ] the output of circuit C1.

Claim 6.11.1 Algorithm hashU returns w1̂.

Proof Algorithm mobius follows the recurrence (4.3) and thusM[x] is µ(x, 1̂). Let
b ∈ F[P ] such that for every x ∈ P , we have bx = sub(C1, x). Note that algorithm
find2 returns (bµ)1̂ in Step 3, so by Möbius inversion it is sufficient to show that
b = wζ, which follows from Observation 4.1 since the zeta transform is applied
to circuit C1, which outputs w. ∎
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Claim 6.11.2 w1̂ = vU .

Proof Since h is a homomorphism by Lemma 6.7, w = h(v) by Observation 4.1.
So it remains to show that (h(v))1̂ = vU .

(h(v))1̂ = (⊕
X⊆U

⟨vX , 0̂⟩⊗⊗
e∈X

⟨1, e⟩)
1̂

(for X ∉ supp(v) we have vX = 0)

= ( ⊕
X∈supp(v)

⟨vX , 0̂⟩⊗⊗
e∈X

⟨1, e⟩)
1̂

(Definition of ⊕)

= ∑
X∈supp(v)

(⟨vX , 0̂⟩⊗⊗
e∈X

⟨1, e⟩)1̂

(Iteratively applying Lemma 6.4, denoting X = {e1, . . . , e∣X ∣)

= ∑
X∈supp(v)

∑
a0,...,a∣X∣∈P

⎛
⎜
⎝

∑
a0,...,a∣X∣≤q≤1̂

µ(q, 1̂)
⎞
⎟
⎠
vX[a0 = 0̂]

∣X ∣

∏
i=1

[ai = ei]

(X has a join by Assumption 2)

= ∑
X∈supp(v)

⎛
⎜
⎝

∑
e1∨...∨e∣X∣≤q≤1̂

µ(q, 1̂)
⎞
⎟
⎠
vX

(Möbius inversion)

= ∑
X∈supp(v)

∑
e1,...,e∣X∣∈P

[e1 ∨ . . . ∨ e∣X ∣ = 1̂]vX

(Assumption 3)

= vU . ∎

Combining the above claims yields the theorem. ∎

6.4 Concluding Remarks
Let us first emphasize that the hash functions used in the first two sections
are commonly used; for example Color-Coding also uses (much more involved)
hashing with prime numbers (see for example [FG06, Section 13.3] for a proof)
and a slightly related approached was used by Kane [Kan10]. The hashing in
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Section 6.2 is similar to the randomized algorithm for matrix product verification
from Section 1.1 and a variant is for example also used in [PP10].

As mentioned in the introduction, one property of homomorphic hashing that
is particularly appealing is that it can be used to obtain running times depending
on the structure of total candidate solutions rather than partial candidate solu-
tions. For example, if we are looking for a set partition in Section 6.2 consisting of
k sets, the studied algorithm runs in time proportional to the number of distinct
sums of the characteristic vectors in F[Zn

2 ] of exactly k sets, rather then at most
k sets for dynamic programming.

For problems like CNF-Sat it might be interesting whether a similar con-
struction is possible: an example question in this direction could be, given a
CNF-formula φ and an integer S such that φ has at most S projections, can
its satisfiability be determined in O⋆(Sc) for some constant c? Can we given
faster-than-brute-force algorithm if the number of projections is small?

It should be noted that the three hashing approaches are somewhat comple-
mentary; for example, the Traveling Salesman Problem could potentially
benefit from each approach because it has a numeric aspect (the cost of a Hamil-
tonian path) and as well a “partition” or “covering” aspect (the fact that the
path is Hamiltonian). Here we have focused on sparse instances, but a dual line
of study would be to investigate what happens when the corresponding DP tables
are as dense as possible.

Open Question 6 — [Woe08] Can Subset Sum be solved in O⋆(2 − ε)n time and
O⋆(1) space, for some ε > 0?

Perhaps a Win/Win approach could be used to answer Open Question 6
similarly to the algorithm for Linear Sat. For example, what happens when
the dynamic programming is "dense"? Consider the following problem:

All distinct Subset Sum Parameter: t
Input: Integer n, function ω ∶ {1, . . . , n} → N such that for every X,Y ⊆
{1, . . . , n} it holds that ω(X) = ω(Y )→X = Y , and integer t.
Question: Does there exist a subset X ⊆ {1, . . . , n} such that ω(X) = t?

Can the "all distinct" property be exploited and can we get a O⋆(2 − ε)n-
time and O⋆(1)-space algorithm for this problem, for some ε > 0? And if so,
does it help to resolve Open Question 6? Note that similar questions and a
similar problem called Equal Subset Sum was already introduced and studied
in [Woe08, WY92].



Chapter 7

Solving Connectivity Problems
Parameterized by Treewidth in
Single Exponential Time

This chapter is based on the following paper:

[CNP+11a]. Marek Cygan, Jesper Nederlof, Marcin Pilipczuk, Michał Pilipczuk,
Johan M. M. van Rooij, and Jakub Onufry Wojtaszczyk. Solving connectivity
problems parameterized by treewidth in single exponential time. In FOCS, 2011.
To appear. Full version: [CNP+11b]

The notion of treewidth (recall the definition from Section 1.3) was intro-
duced independently by Rose in 1974 [Ros74] (under the name of partial k-tree)
and in 1984 by Robertson and Seymour [RS84], and in many cases proved to
be a good measure of the intrinsic difficulty of various NP-hard problems on
graphs, and a useful tool for attacking those problems. Many of them can be
efficiently solved through dynamic programming if we assume the input graph to
have bounded treewidth. For example, an expository algorithm to solve Vertex
Cover and Independent Set running in time(1) O⋆(4tw(G)) is described in the
algorithms textbook by Kleinberg and Tardos [KT06], while the book of Nieder-
meier [Nie06] on fixed-parameter algorithms presents an algorithm with running
time O⋆(2tw(G)).

The interest in algorithms for graphs of bounded treewidth stems from their
usefulness: such algorithms are used as sub-routines in a variety of settings.
Amongst them prominent are approximation algorithms [BHM10, BKMK07, DH08,
Epp00] and Fixed Parameter Tractable (see Section 1.3) algorithms [DFT06,

(1)When stating running times involving tw(G) we assume the algorithm is given a treede-
composition of G of width at most tw(G).
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FGSS09] for a vast number of problems on planar, bounded-genus and H-minor-
free graphs, including Vertex Cover, Dominating Set and Independent
Set; there are applications for parameterized algorithms in general graphs [MRR08,
TSB05] for problems like Connected Vertex Cover and Cutwidth; and
exact algorithms [FGSS09, vRNvD09] such as Minimum Maximal Matching
and Dominating Set.

In many cases, where the problem to be solved is “local” (loosely speaking
this means that the property of the object to be found can be verified by checking
separately the neighborhood of each vertex), matching upper and lower bounds
for the runtime of the optimal solution are known. For instance, for the afore-
mentioned O⋆(2tw(G)) algorithm for Vertex Cover there is a matching lower
bound — unless the Strong Exponential Time Hypothesis (see Chapter 2) fails,
there is no algorithm for Vertex Cover running faster than (2−ε)tw(G) for any
ε > 0 (see [LMS11a]).

On the other hand, when the problem involves some sort of a “global” con-
straint — e.g., connectivity — the best known algorithms usually have a runtime
on the order of O⋆(2O(tw(G) log tw(G))). In these cases the typical dynamic pro-
gramming routine has to keep track of all the ways in which the solution can
traverse the corresponding separator of the tree decomposition, that is Ω(ll) on
the size l of the separator, and therefore of treewidth. This obviously implies
weaker results in the applications mentioned above. This problem was observed,
for instance, by Dorn, Fomin and Thilikos [DFT06, DFT08] and by Dorn et al. in
[DPBF10], and the question whether the known O⋆(2O(tw(G) log tw(G)))-time pa-
rameterized algorithms for Hamiltonian Path, Connected Vertex Cover
and Connected Dominating Set are optimal was for the first time explicitly
asked by Lokshtanov, Marx and Saurabh [LMS11b].

The O⋆(2O(tw(G) log tw(G))) dynamic programming routines for connectivity
problems were thought to be optimal, because in these routines the dynamic
programming table reflects the whole information that needs to be memoized in
order to continue the computation. For every two distinct tables at some bag
of the tree decomposition there exists a possible future on which the algorithm
should behave differently. This resembles the notion of Myhill-Nerode equivalence
classes [HMU01], which, in a variety of settings, define the minimal automaton
for a given problem. Hence, shrinking the size of the dynamic programming table
would be, in some sense, trying to reduce the size of the minimal automaton.
From this point of view, the results of this chapter come as a significant surprise.

7.0.1 Our Results
In this chapter we introduce a technique we name “Cut&Count”. Briefly stated,
we first reduce the original problem to the task of counting possibly disconnected
“cut solutions” modulo 2 by (i) making sure that the number of disconnected
cut solutions is always even and (ii) using randomization to make sure that the
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number of connected cut solutions is odd iff there is a solution. The reduction is
performed in such a way that counting cut solutions is a local problem and can
be done sufficiently fast by standard dynamic programming.

For most problems involving a global constraint, our technique gives a ran-
domized algorithm with runtime O⋆(ctw(G)). In particular we are able to give
such algorithms for the three problems mentioned in [LMS11b], as well as for all
the other sample problems mentioned in [DFT08]. Moreover, the constant c is
in all cases well defined and small. The randomization we mention comes from
the usage of the Isolation Lemma (see Section 4.5). This gives us Monte Carlo
algorithms with one-sided error. The formal statement of a typical result is as
follows:

Theorem 7.1 — [CNP+11b] There exists a randomized algorithm that, given a graph
G = (V,E), a tree decomposition of G of width t and a number k in O⋆(3t) time
either states that there exists a connected vertex cover of size at most k in G,
or that it could not verify this hypothesis. If there indeed exists such a cover,
the algorithm will return “unable to verify” with probability at most 1/2.

Less elaborately, we call an algorithm as in Theorem 7.1 an algorithm with
constant error probability. We see similar results for a number of other global
problems. As the exact value of c in the ctw(G) expression is often important
and highly non-trivial to obtain, we gather the results in the second column of
Table 7.1.

For a number of these results we have matching lower bounds, such as the
following one:

Theorem 7.2 Unless the Strong Exponential Time Hypothesis is false, there do not
exist a constant ε > 0 and an algorithm that given an instance (G = (V,E), T, k)
together with a path decomposition of the graph G of width p solves the Con-
nected Dominating Set problem in O⋆((4 − ε)p) time.

Since each path decomposition is also a tree decomposition, a lower bound for
pathwidth is at least as strong as for treewidth (see also Observation 1.1). We
have such matching lower bounds for several other problems presented in the third
column of Table 7.1. We feel that the results for Connected Vertex Cover,
Connected Dominating Set, Connected Feedback Vertex Set and
Connected Odd Cycle Transversal are of particular interest here and
should be compared to the algorithms and lower bounds for the analogous prob-
lems without the connectivity requirement.

We have found Cut&Count to fail for two maximization problems: Cycle
Packing and Max Cycle Cover. We believe this is an example of a more
general phenomenon — problems that ask to maximize (instead of minimizing)
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Problem name A B C D
Steiner Tree(2) 3tw(G)

● 3pw(G)

Feedback Vertex Set 3tw(G) 3pw(G) 3k● 3.83k [CCL10]
Connected Vertex Cover 3tw(G) 3pw(G) 2k● 2.4882k [BR10]
Connected Dominating Set 4tw(G) 4pw(G)

Connected
Feedback Vertex Set

4tw(G) 4pw(G) 3k 46.2k [MPR+10]
Connected
Odd Cycle Transversal 4tw(G) 4pw(G)

Undirected/Directed
Min Cycle Cover

4tw(G)

6tw(G)●
Undirected/Directed
Longest Path (Cycle)

4tw(G)

6tw(G)

Exact k-Leaf Spanning
Tree 4tw(G) 4pw(G)

Exact k-Leaf Outbranching 6tw(G)

Maximum Full
Degree Spanning Tree 4tw(G)

Graph Metric Traveling
Salesman Problem 4tw(G)

(Directed) Cycle Packing 2Ω(pw(G) log pw(G))

(Directed) Max Cycle
Cover 2Ω(pw(G) log pw(G))

Maximally Disconnected
Dominating Set 2Ω(pw(G) log pw(G))

●

Table 7.1 – Summary of our results. For the sake of presentation in each entry we
skip the ∣V ∣

O(1) multiplicative term. Column A is devoted to time complexities of
our algorithms for treewidth (denoted by tw(G)) parametrization. For example, the
entry at the third row represents Theorem 7.1. Column B contains lower bounds
showing problems that are not solvable in O⋆

(cpw(G)
) time for any constant c unless

the Strong Exponential Time Hypothesis fails, and in 2Ω(pw(G) lg pw(G)) time unless
the Exponential Time Hypothesis fails, where pw(G) is the pathwidth. Columns C
is devoted to time complexities of our algorithm for solution size parameterization,
whereas Column D contains previously best known time complexities. All problems
statements can be found in [CNP+11b]; entries marked with a ● are proved in this
thesis while all remaining proofs can be found in the full version [CNP+11b].

the number of connected components in the solution seem more difficult to solve
than the problems that ask to minimize (including problems where we demand
that the solution forms a single connected component). As evidence, lower bounds
for the time complexity of solutions to such problems are given in [CNP+11b],
proving that ctw(G) solutions of these problems are unlikely:

(2)In this chapter, Steiner Tree will denote the variant with unit weights (as opposed to
Chapter 3).
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Theorem 7.3 — [CNP+11b] Unless the Exponential Time Hypothesis is false, there
does not exist an O⋆(2o(p log p))-time algorithm solving Cycle Packing orMax
Cycle Cover (both in the directed and the undirected setting). The parameter
p denotes the width of a given path decomposition of the input graph.

To further verify this intuition, we also investigate the (artificial)Maximally
Disconnected Dominating Set problem, in which we ask for a dominating
set with the largest possible number of connected components, and indeed we
find a similar phenomenon, which we will explain in Section 7.3.

7.0.2 Previous Work
The Cut&Count technique has two main ingredients. The first step we assure
that objects we are not interested in are counted an even number of times, and
then do the calculations in Z2 (or for example any other field of characteristic 2),
which causes them to disappear. This line of reasoning goes back to Tutte [Tut47],
and was recently used by Björklund [Bjö10b] and Björklund et. al [BHKK10a].

The second step is the idea of defining the connectivity requirement through
cuts, which is frequently used in approximation algorithms via linear program-
ming relaxations. In particular cut based constraints were used in for example
the Held and Karp relaxation for the Traveling Salesman Problem problem
from 1970 [HK70, HK71] and appear up to now in the best known approximation
algorithms, for example in the recent algorithm for the Steiner Tree prob-
lem by Byrka et al. [BGRS10]. To the best of our knowledge the idea of defining
problems through cuts has not been used in the exact and parameterized settings.

A number of papers circumvent the problems stemming from the lack of
single exponential algorithms parameterized by treewidth for connectivity–type
problems. For instance in the case of parameterized algorithms, sphere cuts
[DFT06, DPBF10] (for planar and bounded genus graphs) and Catalan struc-
tures [DFT08] (for H-minor-free graphs) were used to obtain O⋆(2O(

√
k))-time

algorithms for a number of problems with connectivity requirements. To the best
of our knowledge, however, no attempt to attack the problem directly was pub-
lished before; indeed the non-existence of O⋆(2o(tw(G) log tw(G)))-time algorithms
was deemed to be more likely.

7.0.3 Consequences of the Cut&Count Technique
As already mentioned, algorithms for graphs with bounded treewidth have a num-
ber of applications in various branches of algorithmics. Thus, it is not a surprise
that the results obtained by our technique give a large number of corollaries.
In this thesis we do not explore all possible applications, but only give sample
applications in various directions.

We would like to emphasize that the strength of the Cut&Count technique
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shows not only in the quality of the results obtained in various fields, which
are frequently better than the previously best known ones, achieved through a
plethora of techniques and approaches, but also in the ease in which new strong
results can be obtained.

Consequences for FPT Algorithms
Let us recall the definition of the Feedback Vertex Set problem:

Feedback Vertex Set Parameter: k
Input: An undirected graph G and an integer k
Question: Is it possible to remove k vertices from G so that the remaining
vertices induce a forest?

This problem is on Karp’s original list of 21 NP-complete problems [Kar72].
It has also been extensively studied from the parameterized complexity point of
view. Let us recall that in the fixed-parameter setting (FPT) the problem comes
with a parameter k, and we are looking for a solution with time complexity
O⋆(f(k)), where n is the input size and f is some function (usually exponential
in k) (see also Section 1.3). Thus, we seek to move the intractability of the
problem from the input size to the parameter.

There is a long sequence of FPT algorithms for Feedback Vertex Set.
[BBYG00, Bod94, CFL+08, DFL+05, DF06, DF99, GGH+06, KPS04, RSS02,
RSS06]. The best — so far — result in this series is the O⋆(3.83k) result of
Cao, Chen and Liu [CCL10]. Our contribution is:

Theorem 7.4 There exists a Monte Carlo algorithm with constant one-sided error
probability that solves the Feedback Vertex Set problem in a graph G =
(V,E) in O⋆(3k) time and polynomial space.

We also give similar improvements for Connected Vertex Cover (from
O⋆(2.4882k) time of [BR10] to O⋆(2k) time) and Connected Feedback Ver-
tex Set (from O⋆(46.2k) time of [MPR+10] to O⋆(3k) time).

Parameterized Algorithms for H-minor-free graphs
A large branch of applications of algorithms parameterized by treewidth is the
bidimensionality theory, used to find subexponential time algorithms for various
problems in H-minor-free graphs. In this theory we use the theorem of Demaine
et al. [DHiK05], which ensures that any H-minor-free graph either has treewidth
bounded by O(

√
k), or a 2

√
k × 2

√
k grid as a minor. In the latter case we are

assumed to be able to answer the problem in question (for instance a 2
√
k × 2

√
k

grid as a minor guarantees that the graph does not have a Vertex Cover or
Connected Vertex Cover smaller than k). Thus, we are left with solving
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the problem with the assumption of bounded treewidth. In the case of for in-
stance Vertex Cover, a standard dynamic programming algorithm suffices,
thus giving us a O⋆(2O(

√
k)) algorithm to check whether a graph has a vertex

cover no larger than k. In the case of Connected Vertex Cover, however,
the standard dynamic programming routine gives a O⋆(2O(

√
k log k)) complexity

— thus, we lose a logarithmic factor in the exponent.
There have been a number of attempts to deal with this problem, taking

into account the structure of the graph, and using it to deduce some properties
of the tree decomposition under consideration. The latest and most efficient
of those approaches is due to Dorn, Fomin and Thilikos [DFT08], and exploits
the so-called Catalan structures. The approach deals with most of the problems
mentioned in our paper, and is probably applicable to the remaining ones. Thus,
the gain here is not in improving the running times (though our approach does
improve the constants hidden in the big-O notation these are rarely considered to
be important in the bidimensionality theory), but rather in simplifying the proof
— instead of delving into the combinatorial structure of each particular problem,
we are back to a simple framework of applying the Robertson-Seymour theorem
and then following up with a dynamic programming algorithm on the obtained
tree decomposition.

Consequences for Exact Algorithms for Graphs of Bounded Degree
Another application of our methods can be found in the field of solving prob-
lems with a global constraint in graphs of bounded degree. The problems that
have been studied in this setting are mostly local in nature (such as Vertex
Cover, see, e.g., [BEPvR10]); however global problems such as, for example,
the Traveling Salesman Problem (TSP) and Hamiltonian Cycle have
also received considerable attention [BHKK10b, Epp07, Geb08, IN07].

Throughout the following, we let n denote the number of vertices of the given
graph. The starting point is the following theorem by Fomin et al. [FGSS09]:

Theorem 7.5 — [FGSS09] For any ε > 0 there exists an integer nε such that for any
graph G with n > nε vertices,

pw(G) ≤ 1
6n3 +

1
3n4 +

13
30n5 + n≥6 + εn,

where ni is the number of vertices of degree i in G for any i ∈ {3, . . . ,5} and n≥6
is the number of vertices of degree at least 6.

This theorem is constructive, and the corresponding path decomposition (and,
consequently, tree decomposition) can be found in polynomial time. Combining
this theorem with our results gives algorithms running in faster than 2n time
for graphs of maximum degree 3, 4 and (in the case of the O⋆(3tw(G)) and



126 Solving Connectivity Problems Parameterized by Treewidth

O⋆(4tw(G))-time algorithms) 5. Furthermore in the [CNP+11b], we improve the
general O⋆(4tw(G))-time algorithm for Hamiltonian Cycle to O⋆(3pw(G)) time
in case of a path decomposition of cubic graphs(3). Consequently we prove the
following theorem, which improves over previously best results for maximum de-
gree three O(1.251n)-time algorithm of Iwama and Nakashima [IN07], and for
degree four O(1.657n)-time, which is the algorithm of Björklund [Bjö10b].

Corollary 7.1 There exists a Monte Carlo algorithm with constant one-sided error
probability that solves the Hamiltonian Cycle problem in O(1.201n) time
for cubic graphs, and in O(1.588n) time for graphs of maximum degree 4.

Consequences for Exact Algorithms on Planar Graphs
Recall from the previous section that n denotes the number of vertices of the
given graph. Here we begin with a consequence of the work of Fomin and Thilikos
[FT04]:

Proposition 7.1 — [FT04] For any planar graph G, tw(G) + 1 ≤ 3
2
√

4.5n ≤ 3.183
√
n.

Moreover a tree decomposition of such width can be found in polynomial time.

Using this we immediately obtain O(c
√
n)-time algorithms for solving prob-

lems with a global constraint on planar graphs with good constants. For the
Hamiltonian Cycle problem on planar graphs we obtain the following result:

Corollary 7.2 There exists a Monte Carlo algorithm with constant one-sided error
probability that solves the Hamiltonian Cycle problem on planar graphs in
O(43.183

√
n) = O(26.366

√
n) time.

To the best of our knowledge the best algorithm known so far was theO(26.903
√
n)-

time algorithm of Bodlaender et al. [DPBF10].
Similarly, we obtain an O(26.366

√
n)-time algorithm for Longest Cycle on

planar graphs (compare to the O(27.223
√
n) time of [DPBF10]), and — as in

the previous subsections — well-behaved c
√
n-time algorithms for all mentioned

problems.

7.0.4 Organization of this Chapter
This chapter is organised as follows. In Section 7.1 we present the Cut&Count
technique on two examples: the Steiner Tree problem and the Directed

(3)The observation, which was observed and shared with us by Andreas Björklund, is that the
dynamic programming subroutine used by our algorithm can be improved because many values
of the dynamic programming will always be zero.
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Min Cycle Cover problem. In Section 7.2 we give the O⋆(3k)-time algorithm
for Feedback Vertex Set and the O⋆(2k)-time algorithm for Connected
Vertex Cover when parameterized by the solution size, whereas in Section 7.3
we move to lower bounds. We end this chapter with a number of conclusions and
open problems in Section 7.4.

As the reader might have already noticed, there is a quite a large amount of
material covered in the paper [CNP+11b] on which this chapter is based. In order
to prevent that this thesis loses focus, we will only include and discuss a subset
of the results from [CNP+11b].

7.0.5 Notation
Here we introduce some notation we will use on top of the notation already
introduced in Section 1.3. Just as G[X] for X ⊆ V (G) denotes a subgraph
induced by the set X of vertices, we use G[X] for X ⊆ E(G) for the graph
(V,X), where G = (V,E). Note that in the graph G[X] for an edge set X the
set of vertices remains the same as in the graph G.

By a cut of a set X we mean a pair (X1,X2), with X1 ∩X2 = ∅, X1 ∪X2 =X.
We refer to X1 and X2 as the (left and right) sides of the cut.

In a directed graphG by weakly connected components we mean the connected
components of the underlying undirected graph. For a (directed) graph G, we let
cc(G) denote the number of (weakly) connected components of G.

We denote the symmetric difference of two sets A and B by A△ B. For a
function s ∶ A → B and a ∈ A,b ∈ B, we denote s[a → b] be the function equal
to s except that s(a) = b. Also, recall the following from Section 1.3. For two
integers a, b we use a ≡ b to indicate that a is even if and only if b is even. If
ω ∶ U → {1, . . . ,N}, we shorthand ω(S) ∶= ∑e∈S ω(e) for S ⊆ U .

7.1 Cut&Count: Illustration of the Technique
In this section we present the Cut&Count technique by demonstrating how it
applies to the Steiner Tree and Directed Min Cycle Cover problems.
We go through all the important details in an expository manner, as we aim not
only to show the solutions to these particular problems, but also to show the
general workings.

The Cut&Count technique applies to problems with certain connectivity re-
quirements. Let S ⊆ 2U be a set of solutions; we aim to decide whether it is
empty. Conceptually, Cut&Count can naturally be split in two parts:

• The Cut part: Relax the connectivity requirement by considering the set
R ⊇ S of possibly connected candidate solutions. Furthermore, consider the
set C of pairs (X,C) where X ∈ R and C is a consistent cut (to be defined
later) of X.
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• The Count part: Compute ∣C∣ modulo 2 using a sub-procedure. Non-
connected candidate solutions X ∈ R ∖ S cancel since they are consistent
with an even number of cuts. Connected candidates x ∈ S remain.

Note that we need the number of solutions to be odd in order to make the
counting part work. For this we use the Isolation Lemma (Lemma 4.2): we
introduce uniformly and independently chosen weights ω(v) for every v ∈ U and
compute ∣CW ∣modulo 2 for every integerW , where CW = {(X,C) ∈ C ∣ ω(X) =W}.
Let us recall that for two integers a, b we use a ≡ b to indicate that a is even if
and only if b is even. The general setup can thus be summarized as in Algorithm
7.

Function cutandcount(U,T,CountC)
Input Set U ; tree decomposition T; Procedure CountC accepting a weight func-

tion ω ∶ U → {1, . . . ,N}, integer W ∈ Z and T.
1: for every v ∈ U do
2: Choose ω(v) ∈ {1, . . . ,2∣U ∣} uniformly at random.
3: for every 0 ≤W ≤ 2∣U ∣2 do
4: if CountC(ω,W,T) ≡ 1 then return YES
5: return NO

Algorithm 7 – cutandcount(U,T,CountC)

The following corollary that we use throughout the paper follows from Lemma
4.2 by setting F = S and N = 2∣U ∣:

Corollary 7.3 Let S ⊆ 2U and C ⊆ 2U × (2V × 2V ). Suppose that for every W ∈ Z:

1. ∣{(X,C) ∈ C ∣ ω(X) =W}∣ ≡ ∣{X ∈ S ∣ ω(X) =W}∣,

2. CountC(ω,W,T) ≡ ∣{(X,C) ∈ C ∣ ω(X) =W}∣.

Then Algorithm 7 returns NO if S is empty and YES with probability at least 1
2

otherwise.

When applying the technique, both the Cut and the Count part are non-
trivial: in the Cut part one has to find the proper relaxation of the solution set,
and in the Count part one has to show that the number of non-solutions counted
is even for eachW and provide an algorithm CountC. In the next two subsections,
we illustrate both parts by giving two specific applications.
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7.1.1 Steiner Tree

Steiner Tree
Input: An undirected graph G = (V,E), set of terminals T ⊆ V and integer k.
Question: Is there a set X ⊆ V of cardinality k such that T ⊆ X and G[X] is
connected?

The Cut part. Let us first consider the Cut part of the Cut&Count technique,
and start by defining the objects we are going to count. Suppose we are given
a weight function ω ∶ V → {1, . . . ,N}. For any integer W , let RW be the set
of all subsets X of V such that T ⊆ X, ω(X) = W , and ∣X ∣ = k. Also, define
SW = {X ∈RW ∣ G[X] is connected}. The set ⋃W SW is our set of solutions — if
for any W this set is nonempty, our problem has a positive answer. The set RW
is the set of candidate solutions, where we relax the connectivity requirement. In
this easy application the only requirement that remains is that the set of terminals
is contained in the candidate solution.

Definition 7.1 A cut (V1, V2) of an undirected graph G = (V,E) is consistent if
u ∈ V1 and v ∈ V2 implies uv ∉ E. A consistently cut subgraph of G is a pair
(X, (X1,X2)) such that (X1,X2) is a consistent cut of G[X].

Similarly for a directed graph D = (V,A) a cut (V1, V2) is consistent if
(V1, V2) is a consistent cut in the underlying undirected graph. A consistently
cut subgraph of D is a pair (X, (X1,X2)) such that (X1,X2) is a consistent
cut of the underlying undirected graph of D[X].

Let v1 be an arbitrary terminal. Define CW to be the set of all consistently
cut subgraphs (X, (X1,X2)) such that X ∈ RW and v1 ∈ X1. Before we proceed
with the Count part, let us state the following easy combinatorial identity:

Lemma 7.1 Let G = (V,E) be a graph and let X be a subset of vertices such
that v1 ∈X ⊆ V . The number of consistently cut subgraphs (X, (X1,X2)) such
that v1 ∈X1 is equal to 2cc(G[X])−1.

Proof By definition, we know for every consistently cut subgraph (X, (X1,X2))
and connected component C of G[X] that either C ⊆ X1 or C ⊆ X2. For the
connected component containing v1, the choice is fixed, and for all cc(G[X])− 1
other connected components we are free to choose a side of a cut, which gives
2cc(G[X])−1 possibilities leading to different consistently cut subgraphs. ∎
The Count part. The following lemma shows that the first condition of Corol-
lary 7.3 is indeed met:
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Lemma 7.2 Let G,ω,CW , SW , and RW be as above. Then for allW , ∣SW ∣ ≡ ∣CW ∣.

Proof By Lemma 7.1, we know that ∣CW ∣ = ∑X∈RW
2cc(G[X])−1. Thus ∣CW ∣ ≡ ∣{X ∈

RW ∣cc(G[X]) = 1}∣ = ∣SW ∣. ∎
Now the only missing ingredient left is the sub-procedure CountC. This sub-
procedure, which counts the cardinality of CW modulo 2, is a standard application
of dynamic programming:

Lemma 7.3 Given G = (V,E), T ⊆ V , an integer k, ω ∶ V → {1, . . . ,N} and a tree
decomposition T of G of width t, there exists an algorithm that can determine
∣CW ∣ modulo 2 for every 0 ≤W ≤ kN in O⋆(3tN2) time.

Proof We start with transforming T to a nice tree decomposition of the same width
which can be done in polynomial time. We will use dynamic programming, but
we first need some preliminary definitions. Recall that for a bag x ∈ T we denoted
by Vx the set of vertices of all descendants of x, while by Gx we denoted the graph
composed of vertices Vx and the edges Ex introduced by the descendants of x. We
now define “partial solutions”: For every bag x ∈ T, integers 0 ≤ i ≤ k, 0 ≤ w ≤ kN
and s ∈ {0,11,12}Bx define

Rx(i,w) = {X ⊆ Vx ∣ (T ∩ Vx) ⊆X ∧ ∣X ∣ = i ∧ ω(X) = w}

Cx(i,w) = {(X, (X1,X2)) ∣ X ∈Rx(i,w) ∧ (v1 ∈ Vx⇒ v1 ∈X1)

∧ (X, (X1,X2)) is a consistently cut subgraph of Gx}

Ax(i,w, s) = ∣{(X, (X1,X2)) ∈ Cx(i,w) ∣ (s(v) = 1j ⇒ v ∈Xj)

∧ (s(v) = 0⇒ v ∉X)}∣

The intuition behind these definitions is as follows: the set Rx(i,w) contains
all sets X ⊆ Vx that could potentially be extended to a candidate solution from
R, subject to an additional restriction that the cardinality and weight of the
partial solution are equal to i and w, respectively. Similarly, Cx(i,w) contains
consistently cut subgraphs, which could potentially be extended to elements of C,
again with the cardinality and weight restrictions. The number Ax(i,w, s) counts
those elements of Cx(i,w) which additionally behave on vertices of Bx in a fashion
prescribed by the sequence s. 0,11 and 12 (we refer to them as colors) describe
the position of any particular vertex with respect to a set X with a consistent
cut (X1,X2) of G[X] — the vertex can either be outside X, in X1 or in X2. In
particular note that

∑
s∈{0,11,12}Bx

Ax(i,w, s) = ∣Cx(i,w)∣
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— the various choices of s describe all possible intersections of an element of C
with Bx. Observe that since we are interested in values ∣CW ∣ modulo 2 it suffices
to compute values Ar(k,W,∅) for all W (recall that r is the root of the tree
decomposition), because ∣CW ∣ = ∣Cr(k,W )∣.

We now give the recurrence for Ax(i,w, s) which is used by the dynamic
programming algorithm. In order to simplify the notation, let v denote the vertex
introduced and contained in an introduce bag, and let y, z denote the left and
right children of x in T, if present.

• Leaf bag x:

Ax(0,0,∅) = 1

All other values of Ax(i,w, s) are zeroes.

• Introduce vertex v bag x:

Ax(i,w, s[v → 0]) = [v /∈ T ]Ay(i,w, s)
Ax(i,w, s[v → 11]) = Ay(i − 1,w − ω(v), s)
Ax(i,w, s[v → 12]) = [v /= v1]Ay(i − 1,w − ω(v), s)

For the first case, note that by definition, v can not be colored 0 if it is a
terminal. For the other cases, the accumulators have to be updated and we
have to make sure we do not put s(v1) = 12.

• Introduce edge uv bag x:

Ax(i,w, s) = [s(u) = 0 ∨ s(v) = 0 ∨ s(u) = s(v)]Ay(i,w, s)

Here we filter table entries inconsistent with the edge (u, v), i.e., table
entries where the endpoints are colored 11 and 12.

• Forget vertex v bag x:

Ax(i,w, s) = ∑
α∈{0,11,12}

Ax(i,w, s[v → α])

In the child bag the vertex v can have three states so we sum over all of
them.

• Join bag:

Ax(i,w, s) = ∑
i1+i2=i+∣s−1({11,12})∣

∑
w1+w2=w+ω(s−1({11,12}))

Ay(i1,w1, s)Az(i2,w2, s)
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The only valid combinations to achieve the coloring s is to have the same
coloring in both children. Since vertices colored 1j in Bx are accounted for in
the accumulated weights of both of the children, we add their contribution
to the accumulators.

It is easy to see that the Lemma can now be obtained by combining the above
recurrence with dynamic programming. Note that as we perform all calculations
modulo 2, we take only constant time to perform any arithmetic operation. ∎

We conclude this section by obtaining the following theorem.

Theorem 7.6 There exists a Monte-Carlo algorithm that given a tree decompo-
sition of width t solves Steiner Tree in O⋆(3t) time. The algorithm cannot
give false positives and may give false negatives with probability at most 1/2.

Proof Run Algorithm 7 by setting U = V , and CountC to be the algorithm implied
by Lemma 7.3. The correctness follows from Corollary 7.3 by setting S = ⋃W SW
and C = ⋃W CW and Lemma 7.2. It is easy to see that the timebound follows from
Lemma 7.3. ∎

7.1.2 Directed Min Cycle Cover

Directed Min Cycle Cover
Input: A directed graph D = (V,A), an integer k.
Question: Can the vertices of D be covered with at most k vertex disjoint
directed cycles?

In this problem the aim is to maximize connectivity in a more flexible way than in
the previous section: in the previous section the solution induced one connected
component, while it may induce at most k weakly connected components in the
context of this section. Note that with the Cut&Count technique as introduced
above, the solutions we are looking for cancel modulo 2. We introduce a concept
called markers. A set of solutions consists of pairs (X,M), where X ⊆ A is a
cycle cover and M ⊆ X, ∣M ∣ = k is a set of marked arcs, such that each cycle
in X contains at least one marked arc. Since ∣M ∣ = k, this ensures that for
every solution (X,M) the cycle cover X consists of at most k cycles. Note that
distinguishing two different sets of marked arcs of a single cycle cover is considered
to induce two different solutions. For this reason, with each arc of the graph we
associate two random weights: the first contributes to the weight of a solution,
when an arc belongs to X, while the second contributes additionally, when it
belongs to M as well. When we relax the requirement that in the pair (X,M)
each cycle in X contains at least one vertex fromM , we obtain a set of candidate
solutions. The objects we count are pairs consisting of (i) a pair (X,M), where
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X ⊆ A is a cycle cover and M ⊆X is a set of k markers, (ii) a cut consistent with
D[X], where all the marked arcs from M have both endpoints on the left side of
the cut. Formal definition follows.
The Cut part. As said before, we assume that we are given a weight function
ω ∶ U = A × {X} ∪A × {M} → {1, . . . ,N}, where N = 2∣U ∣ = 4∣A∣. The arguments
A× {X} correspond to the contribution of choosing an arc to belong to X, while
A × {M} correspond to additional contribution of choosing it to belong to M as
well.

Definition 7.2 For an integer W we define:

1. RW to be the family of candidate solutions, that is, RW is the family
of all pairs (X,M), such that X ⊆ A is a cycle cover, i.e., outdegX(v) =
indegX(v) = 1 for every vertex v ∈ V ; M ⊆ X, ∣M ∣ = k and ω(X × {X} ∪
M × {M}) =W ;

2. SW to be the family of solutions, that is, SW is the family of all pairs
(X,M), where (X,M) ∈ RW and every cycle in X contains at least one
arc from the set M ;

3. CW as all pairs ((X,M), (V1, V2)) such that (X,M) ∈ RW , (V1, V2) is a
consistent cut of D[X] and V (M) ⊆ V1.

Observe that the graph D admits a cycle cover with at most k cycles if and
only if there exists W such that SW is nonempty.
The Count part. We proceed to the Count part by showing that candidate
solutions that contain an unmarked cycle cancel modulo 2.

Lemma 7.4 Let D,ω,CW , and SW be defined as above. Then, for every W ,
∣SW ∣ ≡ ∣CW ∣.

Proof For subsets M ⊆ X ⊆ A, let cc(M,X) denote the number of weakly con-
nected components of D[X] not containing any arc from M . Then,

∣CW ∣ = ∑
(X,M)∈RW

2cc(M,X).
∎

To see this, note that for any ((X,M), (V1, V2)) ∈ CW and any vertex set C of a
cycle fromX not containing arcs fromM , we have ((X,M), (V1△C,V2△C)) ∈ CW
— we can move all the vertices of C to the other side of the cut, also obtaining
a consistent cut. Thus, for any set of choices of a side of the cut for every cycle
not containing a marker, there is an object in CW . Hence (analogously to Lemma
7.1) for any W and (M,X) ∈ RW there are 2cc(M,X) cuts (V1, V2) such that
((X,M), (V1, V2)) ∈ CW and the lemma follows, because:

∣CW ∣ ≡ ∣{((X,M), (V1, V2)) ∈ CW ∶ cc(M,X) = 0}∣,
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which equals ∣SW ∣ by the definition. Now, it suffices to present a dynamic pro-
gramming routine counting ∣CW ∣ modulo 2 in a bottom-up fashion. Before we give
this, let us give the following definition and theorem that we will use:

Definition 7.3 — [CP10, vRBR09]. Let p ≥ 2 be an integer constant and let B be a
finite set. For t1, t2, t ∈ {0,1, . . . , p − 1}B we say that t1 + t2 = t if and only if
t1(b)+ t2(b) = t(b) for all b ∈ B. For functions f, g ∶ {0,1, . . . , p− 1}B → B define
their generalized subset convolution ∗p as

(f ∗p g)(t) = ∑
t1+t2=t

f(t1)g(t2).

Note that here the addition is not evaluated in Zp but in Z. The following
can be proved using Theorem 4.2 in combination with a technique similar to the
one of Subsection 5.2.3.

Theorem 7.7 — Generalized Subset Convolution [CP10, vRBR09] Given f, g ∶ {0, . . . , p −
1}B → B, their generalized subset convolution f ∗p g can be computed in
p∣B∣∣B∣O(1) time.

Lemma 7.5 Given D = (V,A), an integer k, a weight function ω ∶ A ∪ V →
{1, . . . ,N} and a tree decomposition T of D of width t, there is an algorithm
that can determine ∣CW ∣ modulo 2 for every 0 ≤ W ≤ (k + ∣V ∣)N in O⋆(6tN2)
time.

Proof Again, we start with transforming T to a nice tree decomposition and use
dynamic programming. We follow the notation from the Steiner Tree example
(see Section 7.1.1). Let Σ = {00,011,012,101,102,11}. For every bag x ∈ T of
the tree decomposition, integers 0 ≤ i ≤ ∣V ∣, 0 ≤ w ≤ 2N ∣V ∣ and s ∈ ΣBx (called the
coloring) define

Rx(i,w) = {(X,M) ∣M ⊆X ⊆ Ex ∧ ∣M ∣ = i ∧ ω(X × {X} ∪M × {M}) = w

∧ (∀v∈V (X)∖Bx indegG[X](v) = outdegG[X](v) = 1)

∧ (∀v∈Bx indegG[X](v),outdegG[X](v) ≤ 1)}

Cx(i,w) = {((X,M), (X1,X2))∣ (X,M) ∈Rx(i,w) ∧ V (M) ⊆X1

∧ (X1,X2) is a consistent cut of the graph (V (X),X)}

Ax(i,w, s) = ∣{((X,M), (X1,X2)) ∈ Cx(i,w)∣ (s(v) = ioj ⇒ v ∈Xj)

∧ ((s(v) = io ∨ s(v) = ioj)⇒ (indegG[X](v) = i ∧ outdegG[X](v) = o))}∣
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The value of s(v) contains information about the indegree and outdegree of v
and, in case the degree of v is one, s(v) also stores information about the side
of the cut v belongs to. We note that we do not need to store the side of the
cut for v if its degree is 0 and 2, since it is not yet or no longer needed. The
accumulators i and w keep track of the size of M and the weight of (X,M),
respectively. Note that we do not need to keep track of the size of X, as it can
be precisely determined when we know s and ∣Vx∣.

The algorithm computes Ax(i,w, s) for all bags x ∈ T in a bottom-up fashion
for all reasonable values of i, w and s. We now give the recurrence for Ax(i,w, s)
that is used by the dynamic programming algorithm. In order to simplify nota-
tion, let v be the vertex introduced and contained in an introduce bag, (u, v) the
arc introduced in an introduce edge (arc) bag, and y, z the left and right child of
x in T if present.

• Leaf bag:

Ax(0,0,∅) = 1

• Introduce vertex bag:

Ax(i,w, s[v → 00]) = Ay(i,w, s)

The new vertex has indegree and outdegree zero.

• Introduce edge (arc) bag: For the sake of simplicity of the recurrence
formula let us define functions insubs,outsubs ∶ Σ→ 2Σ.

00 011 012 101 102 11
insubs ∅ ∅ ∅ {00} {00} {011,012}

outsubs ∅ {00} {00} ∅ ∅ {101,102}

Intuitively, for a given state α ∈ Σ the values insubs(α) and outsubs(α) are
the sets of possible states a vertex can have before adding an incoming and
respectively outgoing arc.
We can now write the recurrence for the introduce arc bag.

Ax(i,w, s) = Ay(i,w, s)
+ ∑
αu∈outsubs(s(u))
αv∈insubs(s(v))

j∈{1,2}

[(αu = 10j ∨ s(u) = 01j) ∧ (αv = 01j ∨ s(v) = 10j)]⋅

(Ay(i,w − ω(((u, v),X)), s[u→ αu, v → αv])

+ [j = 1]Ay(i − 1,w − ω((u, v),X) − ω((u, v),M), s[u→ αu, v → αv]))
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To see that all cases are handled correctly, first notice that we can always
choose not to use the introduced arc. Observe that in order to add the
arc (u, v) by the definition of insubs and outsubs we need to have αu ∈
outsubs(s(u)) and αv ∈ insubs(s(v)). We use the integer j to iterate over
two sides of the cut the arc (u, v) can be contained in. Finally we check
whether j = 1 before we make (u, v) a marker.

• Forget vertex v bag x:

Ax(i,w, s) = Ay(i,w, s[v → 11])

The forgotten vertex must have degree two.

• Join bag: We have two children y and z. Figure 7.1 shows how two
individual states of a vertex in y and z combine to a state of x. XX indicates
that two states do not combine. The correctness of the table is easy to check.

00 011 012 102 101 11
00 00 011 012 102 101 11
011 011 XX XX XX 11 XX
012 012 XX XX 11 XX XX
102 102 XX 11 XX XX XX
101 101 11 XX XX XX XX
11 11 XX XX XX XX XX

Figure 7.1 – The join table of Directed Min Cycle Cover indicating which states
combine to which other states.

For colorings s1, s2, s ∈ ΣBx we say that s1 + s2 = s if for each vertex v ∈ Bx

the values of s1(v) and s2(v) combine into s(v) as in Figure 7.1. We can
now write the recurrence formula for join bags.

Ax(i,w, s) = ∑
i1+i2=i

∑
w1+w2=w

∑
s1+s2=s

Ay(i1,w1, s1)Az(i2,w2, s2)

A straightforward computation of the above formula leads to 36t∣V ∣O(1) time
complexity. We now introduce a definition and Theorem that can be used
to obtain a better time bound.
Let φ, ρ ∶ Σ→ {0,1,2,3,4,5} where

φ(00) = 0 φ(011) = 1 φ(012) = 2 φ(102) = 3 φ(101) = 4 φ(11) = 5
ρ(00) = 0 ρ(011) = 1 ρ(012) = 1 ρ(102) = 1 ρ(101) = 1 ρ(11) = 2
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Let φ ∶ ΣBx → {0,1,2,3,4,5}Bx be obtained by extending φ in the natural
way. Define ρ ∶ ΣBx → Z as ρ(s) = ∑e∈Bx ρ(e). Hence ρ reflects the total
number of 1’s in a state s, i.e., the sum of all degrees of vertices in Bx.
Then, define

f i,wm (φ(s)) = [ρ(s) =m]Ay(i,w, s)
gi,wm (φ(s)) = [ρ(s) =m]Az(i,w, s)
hi,wm (φ(s)) = ∑

i1+i2=i
∑

w1+w2=w
∑

m1+m2=m

(f i1,w1
m1 ∗6 gi2,w2

m2 )(φ(s))

We claim that

Ax(i,w, s) = hi,wρ(s)(φ(s))

To see this, first notice that the values of accumulators are divided among
the children, and that no vertex or edge is accounted for twice by the
definition of Ax. Hence, it suffices to prove that exactly all combinations of
table entries from Ay and Az that combine to state s acccording to Table 7.1
contribute to Ax(i,w, s). Notice that if α,β ∈ Σ and γ = φ−1(φ(α) + φ(β)),
then ρ(γ) ≤ ρ(α) + ρ(β). This implies that the only pairs that contribute
to hi,b,wm (φ(s)) are the pairs not leading to crosses in Table 7.1 since for the
other pairs we have ρ(γ) < ρ(α) + ρ(β). Finally notice that for every such
pair we have that γ is the correct state, and hence correctness follows.
Finally we obtain that, by Theorem 7.7, the values Ax(i,w, s) for a join bag
x can be computed in time O⋆(6tN2).

It is easy to see that the above recurrence leads to a dynamic programming
algorithm that computes the parity of ∣CW ∣ = Ar(k,W,∅) for all values of W
in O⋆(6tN2) time. Note that we count the parities and not the numbers Ax
themselves, hence all arithmetical operations are done in constant time each. ∎

Combining all the observations in the same way as in the proof of Theorem 7.6,
we can conclude the following:

Theorem 7.8 There exists a Monte-Carlo algorithm that, given a tree decompo-
sition of width t, solves Directed Min Cycle Cover in O⋆(6t) time. The
algorithm cannot give false positives and may give false negatives with proba-
bility at most 1/2.

7.2 Parameterizations by Solution Size
7.2.1 Feedback Vertex Set Parameterized by Solution Size

In this subsection we provide a proof of Theorem 7.4. Recall the definition of
Feedback Vertex Set from Section 7.0.3. We will first give some intuition
before proceeding to the formal proof.
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Defining a solution candidate with a relaxed connectivity condition to work
with our technique is somewhat more tricky here, as there is no explicit connec-
tivity requirement in the problem. To overcome this, we reformulate the problem
using the following simple lemma:

Lemma 7.6 A graph G = (V,E) with n vertices and m edges is a forest if and
only if G has at most n −m connected components.

Now we use the Cut&Count technique. Instead of looking for the feedback
vertex set we look for its complement, being a forest. Let U = V ×{F,M}, where
V ×{F} is used to assign weights to vertices from the chosen forest and V ×{M} for
markers. We also assume that we are given a weight function ω ∶ U → {1, ...,N},
where N = 2∣U ∣ = 4∣V ∣.
The Cut part. For integers A,B,W , we define:

1. RA,BW to be the family of pairs (X,M), whereX ⊆ V , ∣X ∣ = A, G[X] contains
exactly B edges,M ⊆X, ∣M ∣ = n−k−B, and ω(X×{F})+ω(M×{M}) =W ;

2. SA,BW to be the family of pairs (X,M), where (X,M) ∈ RA,BW , and G[X] is
a forest containing at least one marker from the set M in each connected
component;

3. CA,BW to be the family of pairs ((X,M), (X1,X2)), where (X,M) ∈ RA,BW ,
M ⊆X1, and (X1,X2) is a consistent cut of G[X].

Observe that by Lemma 7.6 the graph G admits a feedback vertex set of size
k if and only if there exist integers B, W such that the set Sn−k,BW is nonempty.
The Count part. Similarly as in the case of Min Cycle Cover (analogously
to Lemma 7.4), note that, for any A, B, (X,M) ∈RA,BW , there are 2cc(M,G[X]) cuts
(X1,X2) such that ((X,M), (X1,X2)) ∈ CA,BW , where cc(M,G[X]) denotes the
number of connected components of G[X] which do not contain any marker from
the set M . Hence, we have ∣SA,BW ∣ ≡ ∣CA,BW ∣ for every A,B and W by Lemma 7.6.

It remains to show how to count ∣Cn−k,BW ∣ modulo 2 for every W and B in
3k∣V ∣O(1) time and polynomial space. For this we will combine the Cut&Count
approach with iterative compression [RSV04]. The idea of iterative compression
is to break the given task down in compression steps: we assume we are given
a solution of size at most k + 1 and use it to find a solution of size at most k,
or conclude that none exists. Here, we apply iterative compression by showing
that, given a feedback vertex set of size k + 1, we can compute ∣Cn−k,BW ∣ modulo 2
in 3k∣V ∣O(1) time and polynomial space.
Proof (of Theorem 7.4) We will show that the procedure fvs(G,k) from Algorithm 8
requires at most O⋆(3k) time and polynomial space and either returns a feedback
vertex set in the graph G of size at most k or returns NO. We also show that if
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Function fvs(G = (V,E), k)
1: V0 ← ∅; S0 ← ∅
2: for every 1 ≤ i ≤ ∣V ∣ do invariant: S0 is a fvs of G[V0]
3: Vi ← Vi−1 ∪ {vi}; Gi = G[Vi]; Si ← Si−1 ∪ {vi}
4: found← false; repeat← 0; p← ∅
5: while repeat < ∣V ∣ ∧ found = false do boost error probability
6: repeat← repeat + 1
7: for every e ∈ (V × {M,F}) do
8: Choose ω(e) ∈ {1, . . . ,4∣V ∣} at random
9: if ∃W,B ∶count(Gi, Si, p, k, ω,W,B) ≡ 1 then
10: found← true
11: for every 0 ≤ j ≤ ∣Vi∣ do write solution to p using self-reduction
12: cX←count(Gi, Si, p[vj →X], k, ω,W,B)
13: cO←count(Gi, Si, p[vj →O], k, ω,W,B)
14: Let α ∈ {X,O} s.t. cα ≡ 1
15: p← p[vj → α]
16: if found = false then return no
17: Si ← {v ∈ Vi ∶ p(v) = O}
18: return S∣V ∣

Function count(G = (V,E), S, p, k, ω,W,B)
1: r ← 0
2: for every s ∈ {0,11,12}S consistent∗ with p do
3: for every tree Ti in G[V ∖ S], 1 ≤ i ≤ t do
4: Arbitrarily fix a root ri of Ti
5: Compute all values Ari(a, b, c,w,α) by DP using Equations 7.1-7.2
6: Compute all values As(a, b, c,w) by DP using Equations 7.3-7.6.
7: r ← r +∑

c,w

qcwAs(n − k,B,n − k −B − c,W −w)

8: return r

∗ s ∈ {0,11,12}S is consistent with p if:
p−1({X}) ⊆ s−1({11,12})
p−1({O}) ⊆ s−1({0})
(s−1({11}) × s−1({12})) ∩E = ∅ the cut is consistent

Algorithm 8 – Implementing Theorem 7.4
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the algorithm returns NO, then the probability that there exists a feedback vertex
set of size at most k in G is at most 1/2.

The proof has two parts: we first consider the procedure fvs(G,k) and
then consider the procedure count(G,S, p, k, ω,W,B). The second procedure
is given a graph G, a feedback vertex set S in G, a set of requirements on
the vertices V represented by p, the parameter k, a weight function ω ∶ V ×
{M,F} → {1, . . . ,4∣V ∣}, a target weight W , and an integer B. The procedure
count(G,S, p, k, ω,W,B) computes the number of ((X,M), (X1,X2)) ∈ Cn−k,BW

that are consistent with the requirements on the vertices V given by p, that is,
the number of ((X,M), (X1,X2)) ∈ Cn−k,BW such that: the vertices v ∈ V with
p(v) = X are in the set X and the vertices v ∈ V with p(v) = O are in the
feedback vertex set (not in X).

Part 1. Consider the procedure fvs(G,k). The main loop of this procedure
starting at Line 2 implements the n compression steps discussed above. That
is, the body of this loop computes a feedback vertex set in Gi = G[Vi] of size
at most k using the given feedback vertex set Si of size at most k + 1, or it
outputs no if no such set is found. The while-loop starting at Line 4 repeats
the search for such a feedback vertex set at most n times. Each try uses a new
weight function, which is initialised at Lines 6-7 by choosing each weight uniformly
independently at random. Recall that if there exist B, W such that ∣Cn−k,BW ∣ ≡ 1
(evaluated using Gi), then such a feedback vertex set of size at most k exists
in Gi, as ∣Cn−k,BW ∣ ≡ ∣Sn−k,BW ∣. The algorithm tests this by trying all possible B,
W at Line 9 for which it calls the procedure count(Gi, Si, p, k, ω,W,B) without
imposing any requirements (p = ∅). If B, W such that ∣Cn−k,BW ∣ ≡ 1 are found, then
the algorithm constructs the corresponding feedback vertex set by a standard self-
reduction: for each vertex v ∈ Vi it guesses whether v should be in X or in the
complementing feedback vertex set, and checks which guess is correct by testing
whether ∣Cn−k,BW ∣ ≡ 1 while keeping track of the guesses in the set of requirements p.
Justifying Line 14, note that for one of the two guesses the counted quantity
∣Cn−k,BW ∣ indeed has to be odd, since the two guesses partition an odd-sized set.
After completing the self-reduction, the feedback vertex set Si of size at most k
in Gi is extracted at Line 18.

In the second part of the proof below, we show that count(G,S, p, k, ω,W,B)
can be implemented in O⋆(3∣S∣) time and polynomial space. It is not hard to see
that, as a result, the procedure fvs(G,k) runs in O⋆(3k) time and polynomial
space since the loops require ∣V ∣O(1) repetitions, at most ∣V ∣O(1) values of B and
W need to be tested at each iteration, and Si ≤ k+1 at each call to the procedure
count(Gi, Si, p, k, ω,W,B).

If fvs(G,k) returns a feedback vertex set, then it is clearly correct since
∣Sn−k,BW ∣ ≡ ∣Cn−k,BW ∣ ≡ 1, as argued in Section 7.2. We now analyse the error proba-
bility: the probability that the algorithm returns no while there exists a feedback
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vertex set of size at most k. For each instantiation of the weight function ω, the
probability that Cn−k,BW /= ∅ while ∣Cn−k,BW ∣ ≡ 0 is at most 1/2. Since we try n
independently instantiated weight functions at each iteration of the main loop,
the probability that the algorithm incorrectly outputs no after n tries is at most
2−n. We conclude that the total error probability is at most n2−n (which is less
than 1/2 if n > 2), as the body of the main loop is executed at most n times.

Part 2. Now, consider the procedure count(G,S, p, k, ω,W,B). We will show
that it computes the number of pairs ((X,M), (X1,X2)) ∈ Cn−k,BW that are consis-
tent with p, where p specifies that some vertices must be in X or must be in the
complement of X. Note that G = (V,E) is the graph of the current compression
step of whole algorithm (i.e., G = Gi) and not the original input graph of the
procedure fvs(G,k). For this computation, the algorithm distinguishes between
whether a vertex is put in X1, in X2, or not in X at all, for every vertex in V .
Similar to the algorithm for Steiner Tree, it uses the colors 11, 12, and 0,
respectively, to represent these possibilities. We note that we will also use the
colors 1M

1 and 1F
1 to additionally represent that a vertex is in M , or in X1 ∖M ,

respectively.
The procedure considers all 3∣S∣ colorings s of S with the colors 0, 11, and 12 at

Line 2. For each such coloring s, it computes the number of ((X,M), (X1,X2)) ∈
Cn−k,BW that are consistent with p and such that s−1({0})∩X = ∅, s−1({11}) ⊆X1,
and s−1({12}) ⊆X2. Note that the algorithm only considers consistent colorings s,
i.e., colorings that are consistent with p and that do not contain vertices u, v with
uv ∈ E with s(u) = 11 and s(v) = 12, as these do represent the consistent cuts
(X1,X2). It computes the required numbers by using the fact that G[V ∖S] is a
forest: it applies dynamic programming on each of the trees in this forest.

Given a tree Ti in G[V ∖ S] with root ri, let T xi be the subtree of Ti rooted
at x, and let V x

i be the vertices of T xi . By dynamic programming, the algorithm
computes the values Ax(a, b, c,w,α) for each x ∈ Ti. Here, Ax(a, b, c,w,α) is the
number of ways to divide the vertices of V x

i over the sets M , X1 ∖M , X2, and
V ∖X in a way consistent with p and the coloring s of S such that exactly a
vertices are assigned to X, there are exactly b edges in total between the vertices
in X and between the vertices in X and the vertices in S with color 11 or 12,
there are exactly c vertices inM , the total weight of these assignments is w (using
weight function ω), and the vertex x corresponds to the color α ∈ {0,1F

1 ,1M
1 ,12}.

For a vertex v in a tree Ti we say that a coloring α of this vertex is consistent, if
it is consistent with p, and there does not exist an edge vu with u ∈ S such that
either, α ∈ {1F

1 ,1M
1 } and s(u) = 12, or α = 12 and s(u) = 11.

For a leaf x of Ti, one can see that Ax(a, b, c,w,α) can be computed using the
following formulas, where the given colorings must be interpreted as colorings of
the vertex x.

We have that Ax(a, b, c,w,0) = [σ is consistent][a = b = c = w = 0], and
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Ax(a, b, c,w, σ) = [σ is consistent][a = 1]⋅
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

[b = |{ xv ∈ E∣ ∶ v ∈ S, s(v) = 11}∣][c = 0][w = ω(x × {F})] if σ = 1F
1 , (7.1a)

[b = |{ xv ∈ E∣ ∶ v ∈ S, s(v) = 11}∣][c = 1][w = ω(x × {M})] if σ = 1M
1 , (7.1b)

[b = |{ xv ∈ E∣ ∶ v ∈ S, s(v) = 12}∣][c = 0][w = ω(x × {F})] if σ = 12. (7.1c)
For internal nodes x of Ti with children y1, . . . , yl, we compute the values

Ajx(a, b, c,w,α) for 0 ≤ j ≤ l, where Ajx(a, b, c,w,α) has the same meaning as
Ax(a, b, c,w,α) but considers partitions of the vertices of T xi restricted to the
subtree of T xi in which x only has its first j children. In this way, we obtain the
values Ax(a, b, c,w,α) in l + 1 steps as Ax(a, b, c,w,α) = Alx(a, b, c,w,α). Notice
that the values A0

x(a, b, c,w,α) can be computed by using the formula for a leaf,
as x becomes a leaf after removing all its children. For j ≥ 1, one can see that
Ajx(a, b, c,w,α) =

∑
β∈{0,1F

1 ,1M
1 ,12}

[β is consistent] ∑
ax+ay=a

bx+by+[0/∈{α,β}]=b
cx+cy=c
wx+wy=w

Aj−1
x (ax, bx, cx,wx, α) ⋅Ayj(ay, by, cy,wy, β). (7.2)

This formula considers all possible consistent colorings of the j-th child of x and
combines this with the already computed values while updating the accumulators
a, b, c, and w. Notice that the equation adds one to the accumulator b if this
edge is in G[X], i.e., if α,β ∈ {1F

1 ,1M
1 } or α = β = 12.

Next, the algorithm combines the values computed for each of the trees Ti.
This results in the values As(a, b, c,w) that represent the total number of ways
to divide the vertices of ∪ti=1V

ri
i over the sets M , X1∖M , X2, and V ∖X in a way

consistent with p and the coloring s of S such that exactly a vertices are assigned
to X, there are exactly b edges in total between the vertices in X and between the
vertices in X and the vertices in S with color 11 or 12, there are exactly c vertices
in M , and the total weight of these assignments is w (using weight function ω).
It does so in a way similar to how it combined the values for multiple children
of an internal node of a tree: it computes the values Ajs(a, b, c,w) that represent
the same values only restricted to the vertices in ∪ji=1V

ri
i .

This results in the following equation for A1
s(a, b, c,w) that simply sums over

all colorings of r1:
A1
s(a, b, c,w) = ∑

α∈{0,1F
1 ,1M

1 ,12}

Ar1(a, b, c,w,α). (7.3)

Also, computing the values Ais(a, b, c,w) from the values Ai−1
s (a, b, c,w) and the

values Ari(ai, bi, ci,wi, α) can be done using the following equation that is similar
and sums over all values of the accumulators:
Ais(a, b, c,w) = ∑

ai+ai−1=a
bi+bi−1=b
ci+ci−1=c
wi+wi−1=w

Ai−1
s (ai−1, bi−1, ci−1,wi−1) ∑

α∈{0,1F
1 ,1M

1 ,12}

Ari(ai, bi, ci,wi, α). (7.4)
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Finally, we let As(a, b, c,w) be the following values in which the accumulators a
and b also account for vertices in S that are in X, and edges between vertices in
S that are in G[X]. We note that the effect of the vertices in S are not taken
into account in the accumulators c and w: this is done later at Line 7 of the
procedure. It holds that As(a, b, c,w) =

Ats(a−∣{v ∈ S ∶ s(v) ∈ {1F
1 ,1M

1 ,12}}∣, b−∣{uv ∈ E ∶ u, v ∈ {1F
1 ,1M

1 ,12}}∣, c,w,α). (7.5)

As a last step of the main loop, the algorithm computes the total contribution
of the values computed for the current choice of s at Line 7 and adds this to the
intermediate sum r. Here, qcw stands for the number of ways to pick c markers to
be in M from the vertices in S (more specifically, the vertices in s−1({11})) such
that the total weight of the vertices in S is w. Notice that this weight depends
on the choice of the markers. The algorithm sums over all possible number of
markers c that can be chosen and all possible weight sums w. As the procedure
count(G,S, p, k, ω,W,B) computes the number of ((X,M), (X1,X2)) ∈ Cn−k,BW

that are consistent with p, the values of the accumulators can now be fixed: the
number of vertices in X should be n− k, the number of edges in G[X] should be
B, the number of markers should be n−k−B (where we subtract an additional c
as we choose the many markers in S), and the total weight should be W (where
subtract w also to account for the vertices in S).

We note that the values qcw can be computed in the following way. Let S =
{v1, . . . , v∣S∣}, and let Q(c,w, i) be the number of ways to pick c markers from the
vertices in {vj ∶ 1 ≤ j ≤ i ∧ s(vj) = 11} such that the total weight of the vertices
in {v1, . . . , vi} equals w. The values Q(c,w, i) can be computed by the following
recurrence from which the require values follow as qcw = Q(c,w, ∣S∣): Q(c,w,0) = 0,
and for i > 0,Q(c,w, i) =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

Q(c,w, i − 1) if s(vi) = 0,
Q(c − 1,w − ω(vi × {M}), i − 1) +Q(c,w − ω(vi × {F}), i − 1)if s(vi) = 11,
Q(c,w − ω(vi × {F}), i − 1) if s(vi) = 12.

(7.6)

Note that the case where s(vi) = 11 here represents the choice of picking the
marker or not, and that the weights are updated in the two cases that correspond
to that vi ∈X.

We conclude by considering the running time and space requirements of the
procedure count(G,S, p, k, ω,W,B). This is O⋆(3∣S∣) time and polynomial space
because 3∣S∣ coloring s of S are considered and all other operations can be per-
formed in polynomial time and space as all accumulators used in the computations
can only have ∣V ∣O(1) different values. ∎

As a side remark, let us briefly note that without using the isolation lemma at
the last step, the provided algorithm can be easily adjusted to count the number
of connected vertex covers modulo 2. In Chapter 8 we will connect this to the
Strong Exponential Time Hypothesis.
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7.2.2 Connected Vertex Cover Parameterized by Solution Size

Connected Vertex Cover Parameter: k
Input: An undirected graph G = (V,E) and an integer k.
Question: Does there exist a subset X ⊆ V of cardinality at most k such that
G[X] is connected and every edge is incident with at least one vertex from X?

We will denote ∣V ∣ = n. In this section we will prove the following.

Theorem 7.9 There exists a Monte Carlo algorithm with constant one-sided error
probability that solves the Connected Vertex Cover problem in O⋆(2k)
time and polynomial space.

It is worth mentioning that lower bounds for (the parity version of) this prob-
lem will be studied in Chapter 8. Similarly to Subsection 7.2.1, our algorithm uses
a combination of iterative compression and the Cut&Count technique. As the
universe for Algorithm 7 we take the vertex set U = V . Recall that we generate
a random weight function ω ∶ U → {1,2, . . . ,N}, taking N = 2∣U ∣ = 2∣V ∣.
The Cut part. For an integer W we define:

1. RW to be the family of solution candidates of size k and weight W : RW is
the family of sets X ⊆ V such that ∣X ∣ = k, ω(X) = W and X is a vertex
cover of G;

2. SW to be the family of solutions of size k and weight W , i.e., sets X ∈ RW
such that G[X] is connected;

3. CW to be the family of pairs (X, (X1,X2)), where X ∈ RW , v1 ∈ X1 and
(X1,X2) is a consistent cut of G[X].

The Count part. Similarly as in the case of Steiner Tree we note that by
Lemma 7.1 for each X ∈RW there exist 2cc(G[X])−1 consistent cuts of G[X], thus
for any W we have ∣SW ∣ ≡ ∣CW ∣.

It remains to show how to count ∣CW ∣ modulo 2 for everyW in O⋆(2k) time and
O⋆(1) space. For this we will combine the Cut&Count approach with iterative
compression in a way very similar to Subsection 7.2.1. We will often be less
implicit in the description and refer to Subsection 7.2.1. It may be surprising
that we obtain a O⋆(2k) time algorithm while we also know that Connected
Vertex Cover cannot be solved in O⋆(3pw(G)) unless the Strong Exponential
Time Hypothesis fails. The reason is that using iterative compression, we obtain
a special type of path decomposition with only one bag of size ω(1), and we can
make sure that this bag always induces a connected graph. Informally stated,
the latter allows us to reduce the number of states to be considered in this bag.
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Function cvc(G = (V,E), k)
1: Choose a spanning tree T arbitrarily; denote its edges by edges e1 . . . , en−1.
2: Gi ← the graph obtained by contracting en−1, . . . , ei.
3: wi ← the result of contracting ei = (ui, vi) at step i.
4: S0 ← ∅
5: for every 1 ≤ i ≤ ∣V ∣ do invariant: S0 is a cvc of G[V0]
6: Vi ← V (Gi);Si ← Si−1 ∪ {ui, vi} ∖ {wi}
7: found← false; repeat← 0; p← ∅
8: while repeat < ∣V ∣ ∧ found = false do boost error probability
9: repeat← repeat + 1
10: for every v ∈ V do
11: Choose ω(v) ∈ {1, . . . ,2∣V ∣} at random
12: if ∃W,B ∶count(Gi, Si, p, k, ω,W,B) ≡ 1 then
13: found← true
14: for every 0 ≤ j ≤ ∣Vi∣ do write solution to p using self-reduction
15: cX←count(Gi, Si, p[vj →X], k, ω,W )
16: cO←count(Gi, Si, p[vj →O], k, ω,W )
17: Let α ∈ {X,O} s.t. cα ≡ 1
18: p← p[vj → α]
19: if found = false then return no
20: Si ← {v ∈ Vi ∶ p(v) = O}
21: return S∣V ∣

Function count(G = (V,E), S, p, k, ω,W )
1: r ← 0
2: for every s ∈ {0,11,12}S consistent∗ with p do
3: X ′

1 ← s({11});X ′
2 ← s({12});X ′ =X ′

1 ∪X ′
2.

4: s← ∣{(Y, (Y1, Y2)) ∶ Y1 ⊍ Y2 = Y ⊆ V ∖ S ∧ (X ′ ∪ Y, (X ′
1 ∪ Y1,X ′

2 ∪ Y2)) ∈ CW}∣
5: r ← r + s.
6: return r

∗ s ∈ {0,11,12}S is consistent with p if:
∀e ∈ E ∩ S × S ∶ s−1({11,12}) ∩ e ≠ ∅ s can be extended to vertex cover
p−1({X}) ⊆ s−1({11,12})
p−1({O}) ⊆ s−1({0})
(s−1({11}) × s−1({12})) ∩E = ∅ the cut is consistent

Algorithm 9 – Connected Vertex Cover
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Proof (of Theorem 8.13) We will show that the procedure cvc(G,k) from Algorithm 9
requires at most O⋆(2k) time and polynomial space and either returns a connected
vertex cover in the graph G of size at most k or returns NO. We also show that
if the algorithm returns NO, then the probability that there exists a connected
vertex cover of size at most k in G is at most 1/2.

As mentioned before, the proof will be very similar to the one of Theo-
rem 7.4, so we will skip arguments that evidently carry over. The proof has two
parts: we first consider the procedure cvc(G,k) and then consider the procedure
count(G,S, p, k, ω,W ). The second procedure is given a graph G, a connected
vertex cover S in G, a set of requirements on the vertices V represented by p,
the parameter k, a weight function ω ∶ V → {1, . . . ,2∣V ∣}, and a target weight W ,
and it computes the number of pairs (X, (X1,X2)) ∈ CW that are consistent
with the requirements on the vertices V given by p, that is, the number of pairs
(X, (X1,X2)) ∈ CW such that: the vertices v ∈ V with p(v) = X are in the set X
and the vertices v ∈ V with p(v) = O not in X.

Part 1. Consider the procedure cvc(G,k). The only difference with fvs(G,k)
from Subsection 7.2.1 is that the graphs G1, . . . ,Gn are obtained by edge contrac-
tion (that is, replace two adjacent vertices with one vertex and let the neighbor-
hood of the new vertex be the union of the two old neighborhoods) rather than
vertex deletion. Note that like in Section 7.2.1, a solution of the bigger graph
can still be obtained from a solutions of the smaller graph: Gi is obtained from
Gi+1 by contracting an edge ei = (ui, vi) resulting into a vertex wi, and if Si is a
connected vertex cover of Gi, than Si ∪{ui, vi}∖wi is a connected vertex cover of
Gi+1.

Part 2. Now, consider the procedure count(G,S, p, k, ω,W ). Let us start
with analysing its running time. Because of the discussion above, we know that
S is a connected vertex cover of G, and that ∣S∣ ≤ k + 1. On Line 2, we iterate
over all consistent colorings. First observe that since G[S] is connected, the
number of consistent colorings is at most 2∣S∣+1 and they can be enumerated with
polynomial. To see this, note that once the state of a vertex is determined, all
its neighbors have only two states: if a vertex has state 0}, all its neighbors must
have state either 11 or 12}, if a vertex has state {11} all its neighbors must have
state either 0 or 12}, and if a vertex has state {12} all its neighbors must have
state either 0 or 11}. Hence for the running time it suffices to show that Line 4
can be performed in polynomial time. This can be done using standard dynamic
programming, since V ∖S is an independent set (because S is a connected vertex
cover) and hence it can chosen independently whether it’s elements are in X1
and X2. Then, Line 4 can be implemented in polynomial time using standard
dynamic programming as in Section 2.1 with accumulators for the total weight
and size that have to sum up to W and k.

To prove the theorem, it suffices to show that count(G,S, p, k, ω,W ) computes
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the number of pairs (X, (X1,X2)) ∈ CW that are consistent with the requirements
on the vertices V given by p, that is, the number of (X, (X1,X2)) ∈ CW such that:
the vertices v ∈ V with p(v) = X are in the set X and the vertices v ∈ V with
p(v) = O not in X (note that we slightly abuse notation here since we refer CW
as being defined by the G given as argument). It is easy to see that for every
object (X, (X1,X2)) ∈ CW , there is exactly one coloring s where it is accounted
for so the Theorem follows. ∎

7.3 Lower Bounds
In this section we briefly describe a collection of negative results concerning the
possible time complexities for algorithms for connectivity problems parameterized
by treewidth or pathwidth. In order to prevent that this thesis looses focus, we
will only describe one lower bound of each type, and refer to [CNP+11b] for
the other ones mentioned in Table 7.1. Our goal is to complement our positive
results by showing that in some situations the known algorithms (including ours)
probably cannot be further improved.

The complexity theoretic assumptions used are the Exponential Time Hypoth-
esis (ETH) and the Strong Exponential Time Hypothesis (SETH) (see Chapter 2).

The lower bounds presented below are of two different types. In Section 7.3.1
we discuss several problems that, assuming the Exponential Time Hypothesis
(refer to Chapter 2), do not admit an algorithm running in O⋆(2o(p log p)) time,
where p denotes the pathwidth of the input graph. In Section 7.3.2 we state that,
assuming the Strong Exponential Time Hypothesis (refer to Chapter 2), the base
of the exponent in some of our algorithms cannot be improved further.

7.3.1 Lower bounds assuming ETH: Maximally Disconnected Dominating Set
We have shown that a lot of well-known algorithms running in O⋆(2O(tw(G))) time
can be turned into algorithms that keep track of the connectivity issues, with only
small loss in the base of the exponent. The problems solved in that manner include
Connected Vertex Cover, Connected Dominating Set, Connected
Feedback Vertex Set and Connected Odd Cycle Transversal. Note
that using the markers technique introduced in Section 7.1.2 we can solve similarly
the following artificial generalizations: given a graph G and an integer r, what
is the minimum size of a vertex cover (dominating set, feedback vertex set, odd
cycle transversal) that induces at most r connected components?

We provide evidence that problems in which we would ask to maximize (in-
stead of minimizing) the number of connected components are harder: they prob-
ably do not admit algorithms running in O⋆(2o(p log p)) time, where p denotes the
pathwidth of the input graph.

An overview of all our results can be found in Table 7.1, and all proofs and
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problem definitions can be bound in [CNP+11b]. Here we will only prove the
following:

Theorem 7.10 Assuming ETH, there is no O⋆(2o(p log p)) time algorithm for Cycle
Packing, Max Cycle Cover (both in the directed and the undirected set-
ting) or for Maximally Disconnected Dominating Set. The parameter p
denotes the width of a given path decomposition of the input graph.

The proof goes along the framework introduced by Lokshtanov et al. [LMS11b].
We start our reduction from the k × k Hitting Set problem. By [k] we denote
{1,2, . . . , k}. In the set [k] × [k] a row is a set {i} × [k] and a column is a set
[k] × {i} (for some i ∈ [k]).

k × k Hitting Set Parameter: k
Input: A family of sets S1, S2 . . . Sm ⊆ [k] × [k], such that each set contains at
most one element from each row of [k] × [k].
Question: Is there a set S containing exactly one element from each row such
that S ∩ Si ≠ ∅ for any 1 ≤ i ≤m?

Theorem 7.11 — [LMS11b], Theorem 2.4 Assuming ETH, there is noO⋆(2o(k log k)) time
algorithm for k × k Hitting Set.

In this subsection we provide a reduction from k × k Hitting Set to Maxi-
mally Disconnected Dominating Set. We are given an instance (k,S1, . . . , Sm)
of k × k Hitting Set, called the initial instance, and we are to construct an
equivalent instance (G, `, r) of Maximally Disconnected Dominating Set.

We first set ` ∶= 3k +m and r ∶= k.

Gadgets
We introduce a few simple gadgets used repeatedly in the construction. In all
definitions H = (V,E) is an undirected graph, and the parameters ` and r are
fixed.

Definition 7.4 By adding a force gadget for vertex v ∈ V we mean the following
construction: we introduce ` + 1 new vertices of degree one, connected to v.

Lemma 7.7 If graph G is constructed from graph H = (V,E) by adding a force
gadget to vertex v ∈ V , then v is contained in each dominating set in G of size
at most `.

Proof If D is a dominating set in G, and v ∉D, then all new vertices added in the
force gadget need to be included in D. Thus ∣D∣ ≥ ` + 1. ∎
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Definition 7.5 By adding a one-in-many gadget to vertex set X ⊆ V we mean the
following construction: we introduce `+1 new vertices of degree ∣X ∣, connected
to all vertices in X.

Lemma 7.8 If graph G is constructed from graph H = (V,E) by adding a one-
in-many gadget to vertex set X ⊆ V , then each dominating set in G of size at
most ` contains a vertex from X.

Proof If D is a dominating set in G, and X ∩D = ∅, then all new vertices added
in the one-in-many gadget need to be included in D. Thus ∣D∣ ≥ ` + 1. ∎

We conclude with the pathwidth bound.

Lemma 7.9 LetG be a graph and letG′ be a graph constructed fromG by adding
multiple force and one-in-many gadgets. Assume we are given a path decompo-
sition of G of width p with the following property: for each one-in-many gadget,
attached to vertex set X, there exists a bag in the path decomposition that
contains X. Then, in polynomial time, we can construct a path decomposition
of G′ of width at most p + 1.

Proof Let w be a vertex in G′, but not in G, i.e., a vertex added in one of the
gadgets. By the assumptions of the lemma, there exists a bag Vw in the path
decomposition of G that contains N(w). For each such vertex w, we introduce
a new bag V ′

w = Vw ∪ {w} and we insert it into the path decomposition after the
bag Vw. If Vw is multiplied for many vertices w, we insert all the new bags after
Vw in an arbitrary order.

It is easy to see that the new decomposition is a indeed a path decomposition
of G′, as V ′

w covers all edges incident to w. Moreover, we increased the maximum
size of bags by at most one, thus the width of the new decomposition is at most
p + 1. ∎

Construction
Let Srow

i = {i} × [k] be a set containing all elements in the i-th row in the set
[k] × [k]. We denote S = {Ss ∶ 1 ≤ s ≤ m} ∪ {Srow

i ∶ 1 ≤ i ≤ k}. Note that for each
A ∈ S we have ∣A∣ ≤ k, as each set Si contains at most one element from each row.

First let us define the graphH. We start by introducing vertices pLi for 1 ≤ i ≤ k
and vertices pRj for 1 ≤ j ≤ k. Then, for each set A ∈ S we introduce vertices xAi,j
for all (i, j) ∈ A and edges pLi xAi,j and pRj xAi,j. Let XA = {xAi,j ∶ (i, j) ∈ A}.

To construct graph G, we attach the following gadgets to graph H. For each
1 ≤ i ≤ k and 1 ≤ j ≤ k we attach force gadgets to vertices pLi and pRj . Moreover,
for each A ∈ S we attach one-in-many gadget to the set XA.

We now provide a pathwidth bound on the graph G.
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Lemma 7.10 The pathwidth of G is at most 3k.

Proof First consider the following path decomposition of H. For each A ∈ S we
create a bag

VA = {pLi ∶ 1 ≤ i ≤ k} ∪ {pRj ∶ 1 ≤ j ≤ k} ∪ {xAi,j ∶ (i, j) ∈ A}.

The new decomposition of H consists of all bags VA for A ∈ S in an arbitrary
order. Note that the above decomposition is indeed a path decomposition of H
of width at most 3k − 1 (as ∣A∣ ≤ k for each A ∈ S) and it satisfies conditions for
Lemma 7.9. ∎

From Hitting Set to Dominating Set

Lemma 7.11 If the initial k × k Hitting Set instance was a YES-instance, then
there exists a dominating set D in the graph G, such that ∣D∣ = ` and D induces
exactly r connected components.

Proof Let S be a solution to the initial k×k Hitting Set instance (k,S1, . . . , Sm).
For each A ∈ S fix an element (iA, jA) ∈ S ∩A. Recall that S contains exactly one
element from each row, thus S ∩A ≠ ∅ for all sets A ∈ S. Let us define:

D = {pLi ∶ 1 ≤ i ≤ k} ∪ {pRj ∶ 1 ≤ j ≤ k} ∪ {xAiA,jA ∶ A ∈ S}.

First note that ∣D∣ = 3k +m, as there are k vertices pLi , k vertices pRj , and
∣S ∣ = k +m, since S consists of m sets Ss and k sets Srow

i .
Let us now check whether D is a dominating set in G. Vertices pLi and pRj

for 1 ≤ i, j ≤ k dominate all vertices of the graph H and all vertices added in
the attached force gadgets. Moreover, D ∩XA = {xAiA,jA} for each A ∈ S, thus D
dominates all vertices added in one-in-many gadgets attached to sets XA.

We now prove that G[D] contains exactly r = k connected components. Let
us define for each 1 ≤ j ≤ k:

Dj = {pRj } ∪ {pLi ∶ (i, j) ∈ S} ∪ {xAiA,jA ∶ A ∈ S, jA = j}.

Note that Dj is a partition of D into k pairwise disjoint sets. Moreover, observe
that G[Dj] is connected and, since S contains exactly one element from each row,
no vertices from Dj and Dj′ are adjacent, for j ≠ j′. This finishes the proof of
the lemma. ∎
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From Dominating Set to Hitting Set

Lemma 7.12 If there exists a dominating set D in the graph G, such that ∣D∣ ≤ `
and D induces at least r connected components, then the initial k×k Hitting
Set instance was a YES-instance.

Proof By the properties of the force gadget, D needs to include all forced vertices,
i.e., vertices pLi and pRj for 1 ≤ i, j ≤ k. There are 2k forced vertices, thus we have
` − 2k = k +m vertices left.

By the properties of one-in-many gadgets, D needs to include at least one
vertex from each set XA, A ∈ S. But ∣S ∣ = k + m and sets XA are pairwise
disjoint. Thus, D consist of all forced vertices and exactly one vertex from each
set XA, A ∈ S.

For each 1 ≤ i ≤ k let xS
row
i

i,f(i)
be the unique vertex in D ∩ XSrow

i . Let S =
{(i, f(i)) ∶ 1 ≤ i ≤ k}. We claim that S is a solution to the initial k × k Hitting
Set instance. It clearly contains exactly one element from each row.

Let Dj be the vertex set of the connected component of G[D] that contains
pRj . Note that pLi ∈Dj whenever j = f(i), i.e., (i, j) ∈ S. This implies that ⋃kj=1Dj

contains all vertices pLi . Moreover, as each vertex in XA for A ∈ S is adjacent
to some vertex pRj , the sets Dj are the only connected components of G[D]. As
G[D] contains at least r = k connected components, Dj ≠Dj′ for j ≠ j′.

Let 1 ≤ s ≤ m and let us focus on set Ss ∈ S. Let xSsi,j be the unique vertex in
D∩XSs . Note that xSsi,j connects pLi ∈Df(i) with pRj ∈Dj. As sets Dj are pairwise
distinct, this implies that j = f(i) and (i, j) ∈ S ∩Ss. Thus, the set S hits all the
sets Ss for 1 ≤ s ≤m. ∎

7.3.2 Lower Bounds Assuming SETH: Connected Dominating Set
Following the framework introduced by Lokshtanov et al. [LMS11a], we proved
in [CNP+11b] that an improvement in the base of the exponent in a number of
our algorithms would contradict SETH. Formally, we prove the following type of
a theorem for problems marked in the third column of Table 7.1.

Theorem 7.12 — [CNP+11b] Unless the Strong Exponential Time Hypothesis is false,
there do not exist a constant ε > 0 and an algorithm that given an instance
(G = (V,E), k) together with a path decomposition of the graph G of width p
solves Connected Vertex Cover in O⋆((3 − ε)p) time.

Note that Vertex Cover (without a connectivity requirement) admits a
O⋆(2tw(G)) algorithm whereas Dominating Set, Feedback Vertex Set and
Odd Cycle Transversal admit O⋆(3tw(G)) algorithms and those algorithms
are optimal (assuming SETH) [LMS11a]. To use the Cut&Count technique for
the connected versions of these problems we need to increase the base of the
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exponent by one to keep the side of the cut for vertices in the solution. Our
results show that this is not an artifact of the Cut&Count technique, but rather
an intrinsic characteristic of these problems. An overview of all our results can
be found in Table 7.1

Theorem 7.13 Assuming SETH, there cannot exist a constant ε > 0 and an algo-
rithm that, given an instance (G = (V,E), k) together with a path decomposition
of the graph G of width p, solves the Connected Dominating Set problem
in O⋆((4 − ε)p) time.

Construction
Given ε > 0 and an instance Φ of SAT with n variables and m clauses, we con-
struct a graph G as follows. We assume that the number of variables n is even,
otherwise we add a single dummy variable. We partition variables of Φ into
groups F1, . . . , Fn′ , each of size two, hence n′ = n/2. The pathwidth of G will be
roughly n′.

First, we add to the graph G two vertices r and r∗, connected by an edge. In
the graph G the vertex r∗ is of degree one, thus any connected dominating set of
G needs to include r. The vertex r is called a root.

Second, we take a = m(n + 1) and for each 1 ≤ t ≤ n′ we create a path Pt
consisting of 4a vertices vαt,k and hαt,k, 0 ≤ k < a and 1 ≤ α ≤ 2. On the path Pt the
vertices are arranged in the following order:

v1
t,0, h

1
t,0, v

2
t,0, h

2
t,0, v

1
t,1, . . . , h

2
t,a−1.

Let V and H be the sets of all vertices vαt,k and hαt,k (1 ≤ t ≤ n′, 0 ≤ k < a,
1 ≤ α ≤ 2), respectively. We connect vertices v1

t,0 and all vertices in H to the root
r. To simplify further notation we denote v1

t,a = r, note that h2
t,a−1v

1
t,a ∈ E.

Third, for each 1 ≤ t ≤ n′ and 0 ≤ k < a we introduce guard vertices p1
t,k, p2

t,k

and qt,k. Each guard vertex is of degree two in G, namely p1
t,k is adjacent to v1

t,k

and v2
t,k, p2

t,k is adjacent to v2
t,k and v1

t,k+1 and qt,k is adjacent to h1
t,k and h2

t,k.
Thus, each guard vertex ensures that at least one of its neighbors is contained in
any connected dominating set in G.

The intuition of the construction made so far is as follows. For each two-
variable block Ft we encode any assignment of the variables in Ft as a choice
whether to take v1

t,k or v2
t,k and h1

t,k or h2
t,k to the connected dominating set in G.

We have finished the part of the construction needed to encode an assignment
and now we add vertices used to check the satisfiability of the formula Φ. Let
C0, . . . ,Cm−1 be the clauses of the formula Φ. For each clause Ci we create (n+1)
vertices ci,j, one for each 0 ≤ j < n+1. Consider a clause Ci and a group of variables
Ft = {x1

t , x
2
t}. If x1

t occurs positively in Ci then we connect ci,j with v1
t,mj+i and if

x1
t occurs negatively in Ci then we connect ci,j with v2

t,mj+i. Similarly, if x2
t occurs

positively in Ci then we connect ci,j with h1
t,mj+i and if x2

t occurs negatively in
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v1
1,0 v2

1,0

h1
1,0 h2

1,0q1,0

p1
1,0 p2

1,0

v1
2,0 v2

2,0

h1
2,0 h2

2,0q2,0
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2,0 p2

2,0
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1,1q1,1
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1,1 p2

1,1

v1
2,1 v2
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Figure 7.2 – Part of the construction for Connected Dominating Set. Dashed
edges are connecting a vertex with the root r. Empty circles represent guard vertices.

Ci then we connect ci,j with h2
t,mj+i. Intuitively, taking the vertex v1

t,mj+i into a
connected dominating set corresponds to setting x1

t to true, whereas taking the
vertex h1

t,mj+i into a connected dominating set corresponds to setting x2
t to true.

We can view the whole construction as a matrix, where each row corresponds
to some group of variables Ft and each column is devoted to some clause in such
a way that each clause gets (n + 1) private columns (but not consecutive) of the
matrix.

Finally, let K = 1 + n′ ⋅ 2a be the size of the connected dominating set we ask
for.

Correctness

Lemma 7.13 If Φ has a satisfying assignment, then there exists a connected
dominating set X in the graph G of size K.

Proof Given a satisfying assignment φ of the formula Φ we construct a connected
dominating set X as follows. For each block Ft = {x1

t , x
2
t} and for each 0 ≤ k < a

we include into X:

1. the vertex v1
t,k if φ(x1

t ) is true, and v2
t,k otherwise;

2. the vertex h1
t,k if φ(x2

t ) is true, and h2
t,k otherwise.

Finally, we put r into X. Note that ∣X ∣ = 1+n′ ⋅2a =K. We now verify that X is
a connected dominating set in G. First, we verify that X dominates all vertices
in G.
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1. r∗ and all vertices in H are dominated by the root r.

2. All guards p1
t,k, p2

t,k and q1
t,k are dominated by X∩(H∪V) (with the possible

exception of p2
t,a−1 that is dominated by r).

3. All vertices in V are dominated by X ∩H (with the possible exception of
v1
t,0 that is dominated by r).

4. Finally, each clause vertex ci,j is dominated by any vertex vαt,mj+i or hαt,mj+i
that corresponds to a variable that satisfies Ci in the assignment φ.

To finish the proof we need to ensure that G[X] is connected. We prove this
by showing that each vertex in X is connected to the root r in G[X]. This is
obvious for vertices in X ∩H, as H ⊆ NG(r). Moreover, for each 1 ≤ t ≤ n′ and
0 ≤ k < a:

1. if v1
t,k ∈ X, then v1

t,k is connected to the root via h2
t,k−1 or h1

t,k, with the
exception of v1

t,0, that is connected to r directly;

2. if v2
t,k ∈X, then v2

t,k is connected to the root via h1
t,k or h2

t,k. ∎

Lemma 7.14 If there exists a connected dominating set X of size at most K in
the graph G, then Φ has a satisfying assignment.

Proof First note that the vertex r∗ ensures that r ∈ X. Moreover, the guard
vertices p1

t,k and qt,k ensure that for each 1 ≤ t ≤ n′ and 0 ≤ k < a at least one
vertex vαt,k and at least one vertex hαt,k (1 ≤ α ≤ 2) belongs to X. As ∣X ∣ ≤ 1+n′ ⋅2a
and we have n′ ⋅ 2a aforementioned guards with disjoint neighborhoods, for each
1 ≤ t ≤ n′ and 0 ≤ k < a exactly one vertex vαt,k and exactly one vertex hαt,k belongs
to X. Moreover, X ⊆ {r} ∪ V ∪H.

For each 0 ≤ k < a we construct an assignment φk as follows. For each block
Ft = {x1

t , x
2
t} we define:

1. φk(x1
t ) to be true if v1

t,k ∈X and false if v2
t,k ∈X;

2. φk(x2
t ) to be true if h1

t,k ∈X and false if h2
t,k ∈X.

We now show that the assignments φk cannot differ much for all indices 0 ≤
k < a. Note that for each block Ft = {x1

t , x
2
t} and 0 ≤ k < a − 1:

1. if φk(x1
t ) is true, then φk+1(x1

t ) is also true, as otherwise v2
t,k, v

1
t,k+1 ∉X and

the guard p2
t,k is not dominated by X;

2. if φk(x2
t ) is true, then φk+1(x2

t ) is also true, as otherwise h2
t,k, h

1
t,k+1 ∉X and

the vertex v2
t,k is either not dominated by X (if v2

t,k ∉X) or isolated in G[X]
(if v2

t,k ∈X).
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For each variable x we define a sequence φ̂x(k) = φk(x), 0 ≤ k < a. From the
reasoning above we infer that for each variable x the sequence φ̂x(k) can change
its value at most once, from false to true. Thus, as a = m(n + 1), we conclude
that there exists 0 ≤ j < n + 1 such that for all 0 ≤ i < m the assignments φmj+i
are equal.

We claim that the assigment φ = φmj satisfies Φ. Consider a clause Ci and
focus on the vertex ci,j. It is not contained in X, thus one of its neighbor is
contained in X. As this neighbor corresponds to an assignment of one variable
that both satisfies Ci (by the construction process) and is consistent with φmj+i =
φ (by the definition of φmj+i), the assignment φ satisfies Ci and the proof is
complete. ∎

Pathwidth Bound
In order to establish the bound on pathwidth of the obtained graph, let us recall
the notion of mixed search game. The technique was used in a similar manner
already in [LMS11a].

Definition 7.6 — [TUK95, LMS11a] In a mixed search game, a graph H is considered
as a system of tunnels. Initially, all edges are contaminated by a gas. An
edge is cleared by placing searchers at both its end-points simultaneously or by
sliding a searcher along the edge. A cleared edge is re-contaminated if there
is a path from an uncleared edge to the cleared edge without any searchers on
its vertices or edges. A search is a sequence of operations that can be of the
following types: (a) placement of a new searcher on a vertex; (b) removal of a
searcher from a vertex; (c) sliding a searcher on a vertex along an incident edge
and placing the searcher on the other end. A search strategy is winning if after
its termination all edges are cleared. The mixed search number of a graph G,
denoted ms(H), is the minimum number of searchers required for a winning
strategy of mixed searching on H.

Proposition 7.2 — [TUK95] For a graph G, pw(H) ≤ms(H) ≤ pw(H) + 1.

Moreover, in our case the presented cleaning strategy easily yields a poly-
nomial time algorithm that constructs a path decomposition of G of width not
greater than the number of searchers used.

Lemma 7.15 The pathwidth of the graph G is at most n′ +O(1). Moreover, a
path decomposition of such width can found in polynomial time.

Proof We give a mixed search strategy to clean the graph with n′ + 9 searchers.
First we put a searcher in the vertex r∗ and slide it to the root r. This searcher
remains there until the end of the cleaning process.

We search the graph in a = m(n + 1) rounds. At the beginning of round k
(0 ≤ k < a) there are searchers on all vertices v1

t,k for 1 ≤ t ≤ n′. Let 0 ≤ i <m and
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0 ≤ j < n + 1 be integers such that k = i +mj. We place a searcher on ci,j. Then,
for each 1 ≤ t ≤ n′ in turn we put 7 searchers on vertices p1

t,k, v2
t,k, p2

t,k, v1
t,k+1, h1

t,k,
h2
t,k and qt,k, and then remove 7 searchers from vertices v1

t,k, p1
t,k, v2

t,k, p2
t,k, h1

t,k, h2
t,k

and qt,k. The last step of the round is removing a searcher from the vertex ci,j.
After the last round the whole graph G is cleaned. Since we reuse 8 searchers in
the cleaning process, n′ + 9 searchers suffice to clean the graph.

Using the above graph cleaning process a path decomposition of width n′ +
O(1) can be constructed in polynomial time. ∎
Proof (Proof of Theorem 7.13) Suppose Connected Dominating Set can be solved
in (4 − ε)p∣V ∣O(1) time provided that we are given a path decomposition of G
of width p. Given an instance of SAT we construct an instance of Connected
Dominating Set using the above construction and solve it using the O⋆((4−ε)p)
time algorithm. Lemma’s 7.13, 7.14 ensure the correctness, whereas Lemma 7.15
implies that the running time of our algorithm is O⋆((4−ε)n/2), however we have
(4 − ε)n/2 = (

√
4 − ε)n and

√
4 − ε < 2. This concludes the proof. ∎

7.4 Concluding Remarks
The main consequence of the Cut&Count technique as presented in this work
could informally be stated as the following rule of thumb:
Rule of Thumb Suppose we are given a graph G = (V,E), a tree decomposition T of
G, and implicitly a set family F of subgraphs of G. Moreover, suppose that for a
bag x ∈ T the behavior (in the sense that how it can be extended to an element of
F) of a partial subgraph S ∩Gx depends only on a (small) interface I(S,x) with
bag Vx. Let θ = maxx∈T ∣{I(S,x) ∶ S ∈ F}∣. Then we can compute minS∈F cc(S) in
O⋆(θO(1)) time.
To clarify, note that a standard dynamic programming for determining whether
F is empty or not runs in O⋆(θO(1)) time, and usually even in O⋆(θ) time. In
fact, the dominant term θO(1) in the claimed running time is a rather cruel upper
bound for the Cut&Count technique as well, as for many problems we can do a
lot better. If θ = ct∣V ∣O(1) with t being the width of T, then for many instances
of the above we have shown solutions running in θ = (c + c′)t∣V ∣O(1) time, where
c′ is, intuitively, the number of states affected by the cuts of the Cut&Count
technique. See also [Pil11] for a further exploration.

For several years it was known that most of the local problems (where by local
we mean that a solution can be verified by checking separately the neighborhood
of each vertex), standard dynamic programming techniques give O⋆(ctw) time
algorithms for a constant c. The main consequence of the Cut&Count technique
as presented in this work is that problems which can be formulated as a local con-
straint with an additional upper bound on the number of connected components
also admit O⋆(ctw) time algorithms. Moreover, many problems cannot be solved
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faster unless the Strong Exponential Time Hypothesis fails. We have chosen not
to pursue a general theorem in the above spirit, as the techniques required to get
optimal constants seem varied and depend on the particular problem.

We have also shown that several problems in which one aims to maximize
the number of connected components are not solvable in O⋆(2o(p log p)) unless the
Exponential Time Hypothesis fails. Hence, assuming the Exponential Time Hy-
pothesis, there is a marked difference between the minimization and maximization
of the number of connected components in this context.

Typically, our results give rise to more new questions than it solves old ones:

Open Question 7 Can Cut&Count be derandomized? For example, can Con-
nected Vertex Cover be solved deterministically in O⋆(ct) on graphs of
treewidth t for some constant c?

Open Question 8 Since general derandomization seems hard, we ask whether it
is possible to derandomize the presented FPT algorithms parameterized by the
solution size for Feedback Vertex Set, Connected Vertex Cover or
Connected Feedback Vertex Set. Note that the tree decomposition con-
sidered in these algorithms is of a very specific type, which could potentially
make this problem easier than the previous one.

Open Question 9 Do there exist algorithms running in time O⋆(ctw(G)) that solve
counting or weighted variants? For example can the number of Hamilto-
nian paths be determined, or the Traveling Salesman Problem solved in
O⋆(ctw(G))?

Open Question 10 Can exact exponential time algorithms be improved using
Cut&Count (for example for Connected Dominating Set, Steiner Tree
and Feedback Vertex Set)?

Open Question 11 All our algorithms for directed graphs run in time O⋆(6t). Can
the constant 6 be improved? Or could it be that it is optimal (again, assuming
SETH)?



Chapter 8

On Problems as Hard as
CNF-Sat

This chapter is based on the following paper:

[CDL+11]. Marek Cygan, Holger Dell, Daniel Lokstahnov, Dániel Marx, Jesper
Nederlof, Yoshio Okamoto, Ramamohan Paturi, Saket Saurabh, and Magnus
Wahlström. On problems as hard as CNF-Sat. 2011. Manuscript

What the field of Exact Algorithms sorely lacks is a complexity-theoretic
framework for showing running time lower bounds. Some problems, such as Inde-
pendent Set andDominating Set have seen a chain of improvements [FGK09,
NvR10, vRNvD09, Rob86, KLR09a], each new improvement being smaller than
the previous. For these problems the running time of the algorithms seems to
converge towards O⋆(cn) for some unknown c. For other problems, such as
Graph Coloring or Steiner Tree, non-trivial solutions have been found (see
[BHK09] and Chapter 3), but improving these algorithms further seems to be out
of reach. For other problems yet, such as CNF-Sat or Hitting Set, no algo-
rithms faster than brute force have been discovered. Currently, there are no tools
available that would allow us to explain why the different problems exhibit the
behavior they do, and developing such tools is of utmost importance for the field
of Exact Algorithms. Preferably, such a tool would allow us to rule out O⋆(cn)
time algorithms for concrete problems, and concrete constants c, under plausible
complexity assumptions.

At this point it is necessary to recall that the Exponential Time Hypothesis
(ETH) (see Chapter 2) is considered a plausible complexity assumption, and as-
suming the ETH a number of running time lower bounds have been proved for ex-
ponential time algorithms [IPZ01], parameterized algorithms [CCF+05, LMS11b]
and approximation schemes [Mar07]. However, currently it does not seem possi-
ble to show lower bounds under the ETH on the form f(n) for problems that do
admit f(n)c time algorithms for some constant c > 1.
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In this chapter we show a number of tight running time lower bounds for
basic problems assuming the Strong Exponential Time Hypothesis (SETH) (see
Chapter 2). Recall that the SETH states that k-CNF-Sat requires O⋆(2n) time
when k goes to infinity. While the SETH is not as well believed as the ETH,
our lower bounds demonstrate that a faster satisfiability algorithm is a barrier to
improving the currently best known algorithms for several well-known problems,
or equivalently, instead of trying to find an improved SAT algorithms, we can also
focus on improving other well-known algorithms. Our most interesting result(1)

is a connection between the possible optimality of several well-known dynamic
programming based algorithms and brute-force algorithms. As we have already
seen in Chapters 2 and 7 such a type of connection has been made already in
[LMS11b, LMS11a] concerning algorithms on graphs of bounded treewidth, but
the challenge of improving these algorithms seems very different from improving
the algorithms studied in this chapter.

Our starting point is our result proved in Section 8.1 that the following state-
ments are equivalent (confer Section 8.1 for the problem definitions):

1. ∃δ < 1 such that k-CNF-Sat is solvable in O⋆(2δn) time for all k,
2. ∃δ < 1 such that Hitting Set for set systems with sets of size at most k

is solvable in O⋆(2δn) time,
3. ∃δ < 1 such that Set Splitting for set systems with sets of size at most k

is solvable in O⋆(2δn) time,
4. ∃δ < 1 such that k-NAE-Sat is solvable in O⋆(2δn) time for all k,
5. ∃δ < 1 such that satisfiability of cn size series-parallel circuits is solvable in
O⋆(2δn) time for all c.

This immediately implies that a 2δn time algorithm for any of the above problems
without the restrictions on clause width or set size would violate SETH. All of
the problems above have O⋆(2n) time brute force algorithms, and hence our
bounds are tight. The equivalences 1− 4 are obtained by a number of novel non-
trivial gadgets, while the equivalence with 5 is obtained by combining a number
of known results.

Then in Section 8.2, we show the aforementioned connection of the possible
optimality of several well-known dynamic programming algorithms and brute-
force algorithms. More specifically, any of the following would imply that SETH
fails (confer Section 8.2 for the problem definitions):

• ∃δ < 1 such that ⊕Set Cover is solvable in O⋆(2δn) time,

• ∃δ < 1 such that ⊕Steiner Tree is solvable in O⋆(2δk) time ,
(1)at least, in the context of this thesis
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CNF-Sat Hitting Set

Set Splitting

Set Cover

Unique CNF-Sat

⊕CNF-Sat

⊕Hitting Set ⊕Set Cover

⊕Set Coverα

Set Coverα
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⊕Steiner Tree

Steiner Tree
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Set
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Sparse-Unique-CNF-Sat
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Figure 8.1 – Overview of all reductions. An arrow denotes that improving the best-
known algorithm for the problem mentioned at the source implies that the best-known
algorithm at the sink can be improved as well. Fat arrowheads indicate our results;
other arrowheads were known before or trivial. The left grey marked area contains all
results discussed in Section 8.1 while the right area contains all results discussed in
Section 8.2. The red arrow indicates an open problem.

• ∃δ < 1 such that ⊕Connected Vertex Cover is solvable in O⋆(2δk)
time [CNP+11a] (see also Section 7.2).

In order to obtain these results we (i) note that it follows from previous results
that significantly improving over brute-force for the ⊕CNF-Sat problem implies
that SETH fails (ii) extend a reduction from Section 8.1 to be parity preserving
(iii) use an elegant, and to our knowledge, new lemma on symmetries of bipartite
graphs to show that ⊕Hitting Set, ⊕Set Cover and Bipartite Indepen-
dent Set are actually the same problem.

Motivated by these results, we furthermore use the hypothesis that Set Cover
cannot be solved in time O⋆(2δn) time for δ < 1 unless SETH fails. In particular,
we show that unless Set Cover can be solved faster than O⋆(2δn) for δ < 1 the
following algorithms can not be improved.

• The O⋆(2n) time algorithm for Set Partition(folklore),

• The O⋆(2k) time algorithm for Steiner Tree [BHKK07, DW72, Ned09]
(see also Chapter 3),

• The O⋆(2k) time algorithm for Connected Vertex Cover [CNP+11a]
(see also Section 7.2), and

• The O⋆(Wn) time algorithm for Subset Sum [Bel54].

The lower bounds for Steiner Tree and Connected Vertex Cover are
particularly interesting, because the currently best algorithms for these problems
were obtained after a chain of improvements. The lower bound for Subset Sum



8.1 On Improving Branching Algorithms 161

concerns an algorithm stemming from the 1950’s taught in most undergraduate
algorithms classes (see also Section 2.1 for more details), but interestingly further
improvements have not been discussed in the literature.

The currently best known algorithms for solving the Steiner Tree and
Connected Vertex Cover problems in fact count the number of solutions
modulo two. Hence our results also indicate that improving over these algorithms
requires completely different methods. On the other hand, the ⊕Set Cover is
very much different from the CNF-sat problem, so our reduction could also be
seen as providing another possible route to improved algorithms for the CNF-sat
problem.

Preliminaries and Notation
We use the notation introduced in Section 1.3. In particular, recall the following
notation: for a set U and positive integer i ≤ U , (U

i
) denotes the family of all

subsets of U of size i. An assignment α∶{v1, . . . , vn}→ {0,1} to n boolean variables
v1, . . . , vn is identified with a set A ⊆ {v1, . . . , vn} as A = {vi ∣ α(vi) = 1}. We will
define the problems studied in such a way that we are looking for an O⋆(2δn)-time
algorithm (and a O⋆(2n)-time algorithm is known), m is a parameter such that
the input representation consists of at most mc bits for some constant c and k is
some structural parameter. Then we use the following notation:

Definition 8.1 For a problem Π with complexity parameter n and second param-
eter k, define σk(Π) as

inf{δ > 0∣∃a O⋆(2δn)-time Monte Carlo algorithm for k-Π.}

Also, define σ(Π) = σ∞(Π) = limk→∞ σk(k-Π).

8.1 On Improving Branching Algorithms
In this section we show that obtaining improved algorithms for combinatorial
problems like Hitting Set, and Set Splitting will imply an improved algo-
rithm for CNF-Sat. In fact, we show that these problems are equivalent, that is,
obtaining an improved algorithm for any one of them would imply an improved
algorithm for the others. First recall the CNF-sat problem from Chapter 2:

k-CNF-Sat Parameter: n
Input: A CNF formula consisting of m clauses of size at most k and on n
variables.
Question: Is there a satisfying assignment?
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Hitting Set Parameter: n
Input: An integer t and a set system F ⊆ 2U where ∣F ∣ = m, ∣U ∣ = n and for
every S ∈ F , ∣S∣ ≤ k
Question: Is there a subset H ⊆ U with ∣H ∣ ≤ t such that H ∩ S ≠ ∅ for every
S ∈ F?

NAE-Sat Parameter: n
Input: A CNF formula consisting of m clauses of size at most k and on n
variables.
Question: Is there an assignment so that each clause contains literal set to
true and a literal set to false?

Set Splitting Parameter: n
Input: A set system F ⊆ 2U where ∣F ∣ =m, ∣U ∣ = n, for every S ∈ F , ∣S∣ ≤ k and
m ≤ f(k)n.
Question: Is there a partition U = U1 ⊍ U2 so that each set S ∈ F satisfies
S ∩U1 ≠ ∅ and S ∩U2 ≠ ∅?

Sparse-Unique-CNF-Sat Parameter: n
Input: A CNF formula consisting of m clauses of size at most k and on n
variables having at most one satisfying assignment, where m ≤ f(k)n.
Question: Is there a satisfying assignment?

Unique-CNF-Sat Parameter: n
Input: A CNF formula of length m, consisting of clauses of size at most k and
on n variables that has either a unique or no satisfying solutions.
Question: Is there a satisfying assignment?

8.1.1 Preliminary Results on CNF-Sat
The following theorem is known.

Theorem 8.1 — [CIKP03],[Tra08] For every constant positive integer k,

σk(CNF-Sat) ≤ σk(Unique-CNF-Sat) +O ( log k
k

) .

Calabro et al. [CIKP03] proved the above theorem with an additive term of
O(log2 k/k) and Traxler [Tra08] generalized it to constraint satisfaction problems
with an improved bound of O(log k/k) in the case of CNF-Sat. Moreover, the
following is a simple corollary of Lemma 2.1.
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Theorem 8.2 For every constant positive integer k and real ε > 0,

σk(Unique-CNF-Sat) ≤ σk(Sparse-Unique-CNF-Sat) + ε.

Moreover, σk(Sparse-Unique-CNF-Sat) ≤ σk(⊕CNF-Sat) since the num-
ber of satisfying assignments of the Sparse-Unique-CNF-Sat problem instance
is odd if and only if it is satisfiable.

8.1.2 From CNF-Sat to Hitting Set
Given a CNF formula ϕ = C1 ∧ . . . ∧Cm over n variables v1, . . . , vn where the Ci
are clauses of size at most k and an odd integer p > 2 that divides n, create the
set system Fϕ,p ⊆ 2U as follows.

1. Let p′ = p+2⌈log p⌉ be an odd integer, let U = {u1, . . . , un′} with n′ = p′ ⋅n/p.

2. Partition the set of variables {v1, . . . , vn} of ϕ into blocks Vi of size p, i.e.
Vi = {vpi+1, . . . , vp(i+1)}.

3. Partition the set U into blocks Ui of size p′, i.e. Ui = {up′i+1, . . . , up′(i+1)}.

4. Arbitrarily choose an injective function ψi∶2Vi → ( Ui
⌈p′/2⌉). This exists since

∣( Ui
⌈p′/2⌉)∣ = ( p′

⌈p′/2⌉) ≥
2p′

p′
≥ 2pp2

p + 2⌈log p⌉ ≥ 2p = ∣2Vi ∣ .

We think of ψi as a mapping that given an assignment to the variables of
Vi associates with it a subset of Ui of size ⌈p′/2⌉.

5. For every X ∈ ( Ui
⌈p′/2⌉) for some i, add the set X to F .

6. For every X ∈ ( Ui
⌊p′/2⌋) for some i such that ψ−1

i ({Ui ∖X}) = ∅, add the set
X to F .

7. For every clause C of ϕ, do the following:

• Let I = {1 ≤ j ≤ n
p ∣ C contains a variable of block Vj};

• For every i ∈ I, define Ai as the set

{X ∈ ( Ui
⌊p′/2⌋) ∣ψ−1

i ({Ui ∖X}) contains an assignment of Vi not satisfying C} ;

• For every tuple (Ai)i∈I with Ai ∈ Ai, add the set ⋃i∈I Ai to F .
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Lemma 8.1 For every p, the number of satisfying assignments of ϕ is equal to
the number of hitting sets of size ⌈p′2 ⌉np of the set system Fϕ,p.

Proof For convenience denote g = n
p . Define ψ∶2V → 2U as ψ(A) = ⋃gi=1ψi(A ∩ Vi).

Note that ψ is injective, since for every i, ψi is injective. Hence to prove the
lemma, it is sufficient to prove that (1) A is a satisfying assignment if and only if
ψ(A) is a hitting set of size ⌈p′2 ⌉g, and (2) no set H ⊆ U of size ⌈p′2 ⌉g is a hitting
set of Fϕ,p if there is no assignment A ⊆ V such that ψ(A) =H.

For the forward direction of (1), note that the sets added in Step 5 are hit
by the pigeon-hole principle since ∣ψi(A ∩ Vi)∣ = ⌈p′2 ⌉. For the sets added in Step
6, consider the following. The set X of size ⌊p′/2⌋ is added because for some i,
ψ−1
i ({Ui ∖X}) = ∅. Thus ψi(A ∩ Vi) automatically hits X. For the sets added

in Step 7, for every clause C the added sets ⋃i∈I Ai are hit by ψi(A ∩ Vi) where
Vi is a group of variables satisfying C in assignment A (and this exists since A is
a satisfying assignment). It is easy to check that ψ(A) has size ⌈p′2 ⌉g since there
are g blocks.

For the reverse direction of (1), let A be an assignment such that ψ(A) is a
hitting set of size ⌈p′2 ⌉g. We show that A is a satisfying assignment of ϕ. Suppose
for the sake of contradiction that a clause C is not satisfied by A, and let I be
as defined in Step 7 for this C. Since ψ(A) is a hitting set, ∣ψ(A) ∩ Ui∣ ≥ p′

2 for
every i because it hits all sets added in Step 5. Even more precise, ∣ψ(A) ∩Ui∣ =
⌈p′2 ⌉ because ∣H ∣ = ⌈p′2 ⌉g and there are g disjoint blocks U1, . . . , Ug. Therefore,
∣Ui∖ψ(A)∣ = ⌊p′2 ⌋, and so Ui∩ψ(A) = Ui∖ (Ui∖ψ(A)) is a member of Ai for every
i. This means that in Step 7 the set ⋃i∈I Ai with Ai = Ui ∖ ψ(A) was added, but
this set is not hit by ψ(A). So it contradicts that ψ(A) is a hitting set.

For (2), let H ⊆ U be a set of size ⌈p′2 ⌉g and assume that there is no assignment
A ⊆ V such that ψ(A) =H. We show that H is not a hitting set of Fϕ,p. For the
sake of contradiction, suppose that H is a hitting set. Then, as in the proof of
the reverse direction of (1), we obtain ∣H ∩Ui∣ = ⌈p′2 ⌉ for every i. Since it hits all
sets added in Step 6, we also know that ψ−1

i ({H ∩Ui}) ≠ ∅ for every i. However,
this contradicts the non-existence of A ⊆ V such that ψ(A) =H. ∎

Theorem 8.3 For every positive integer p,

σk(CNF-Sat) ≤ σpk(Hitting Set) +O ( log p
p

) .

Proof Create the set system Fϕ,p as described above. For a constant p, this clearly
can be done in polynomial time. It is easy to see that the maximum size of
a set of Fϕ,p is at most pk, and thus we can determine the minimum hitting
set of Fϕ,p in O⋆(2σpk(Hitting Set)n′) time, where n′ is the size of the universe of
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Fϕ,p. By Lemma 8.1, ϕ is satisfiable if and only if this quantity is ⌈p′2 ⌉np . Since
n′ = ⌈np ⌉(p + 2⌈log p⌉) = n(1 +O( log p

p )) the theorem follows. ∎

8.1.3 From Hitting Set to Set Splitting to CNF-Sat

Theorem 8.4 For every positive integer p:

σk(Hitting Set) ≤ σmax{p,k}+1(Set Splitting) +O ( log p
p

) .

Proof Let (F , t) be an instance of Hitting Set. We can assume that the universe
U of F has n elements and that p divides n. Let U = U1 ∪̇ . . . ∪̇Un/p be a partition
in which each part has exactly ∣Ui∣ = p elements of the universe U . Let t1, . . . , tn/p
be non-negative integers such that ∑n/p

i=1 ti = t. The ti’s are our current guess for
how many elements of a t-element hitting set will intersect with the Ui’s. The
number of ways to write t as the ordered sum of n/p non-negative integers is
exactly (t+n/p−1

n/p−1 ), which can be bounded by 2O(log p/p)⋅n since t ≤ n. For each choice
of the ti’s, we construct an instance F ′ of Set Splitting as follows.

1. Let R (red) and B (blue) be two special elements and add the set {R,B}
to F ′.

2. For all i with ti < p and for all X ∈ ( Ui
ti+1), add X ∪ {R} to F ′.

3. For every Y ∈ F , add Y ∪ {B} to F ′.

Clearly F ′ can be computed in polynomial time and its universe has n+2 elements.
The sets added in step 2 have size at most p + 1 and the sets added in step 3
have size at most k + 1. Given an algorithm for Set Splitting, we compute F ′

for every choice of the ti’s and we decide Hitting Set in time O∗(2O(log p/p)⋅n ⋅
2σmax{p,k}+1(Set Splitting)⋅n). It remains to show that F has a hitting set of size at
most t if and only if F ′ has a set splitting for some choice of t1, . . . , tn/p.

For the completeness of the reduction, let H be a hitting set of size t and set
ti = ∣Ui ∩H ∣ for all i. Then H ∪ {R} and its complement (U −H) ∪ {B} are a
set splitting of F ′: The set {R,B} added in step 1 is split. The sets X ∪ {R}
added in step 2 are split since at least one of the ti + 1 elements of X ⊆ Ui is not
contained in H. Finally, the sets Y ∪ {B} added in step 3 are split since each
Y ∈ F has a non-empty intersection with H.

For the soundness of the reduction, let (S,S) be a set splitting of F ′. Without
loss of generality, assume that R ∈ S. By the set added in step 1, this means that
B ∈ S. The sets added in step 2 guarantee that Ui∩S contains at most ti elements
for all i. Finally, the sets added in step 3 make sure that each set Y ∈ F has a
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non-empty intersection with S. Thus, S − {R} is a hitting set of F and has size
at most ∑i ti = t. ∎

Observation 8.1 σk(Set Splitting) ≤ σk(NAE-Sat) ≤ σk(CNF-Sat).

Proof For the first reduction, let F be an instance of Set Splitting. We con-
struct an equivalent CNF formula ϕ as follows: For each element in the universe
of F , we add a variable, and for each set X ∈ F we add a clause in which each
variable occurs positively. A characteristic function of a set splitting U = U1 ∪̇U2
is one that assigns 1 to the elements in U1 and 0 to the elements of U2. Observe
that the characteristic functions of set splittings of F stand in one-to-one corre-
spondence to variable assignments that satisfy the NAE-Sat constraints of ϕ.
Thus, any algorithm for NAE-Sat works for Set Splitting, too.

For the second reduction, let ϕ be a NAE-Sat-formula. The standard reduc-
tion to CNF-Sat creates two copies of every clause of ϕ and flips the sign of all
literals in the second copies. Then any NAE-Sat-assignment of ϕ satisfies both
copies of the clauses of ϕ′. On the other hand, any satisfying assignment of ϕ′
sets a literal to true and a literal to false in each clause of ϕ. Thus any algorithm
for CNF-Sat works for NAE-Sat, too. ∎

8.1.4 On Satisfiability for Series-Parallel Circuits
In this section, we show that the satisfiability of series-parallel circuits of size cn
can be decided in time time 2δn for δ < 1 independent of c if and only if SETH
is not true. Here the size of a circuit is the number of gates. However we will
only consider circuits of fan-in 2, and if the fan-in of the circuit is bounded by 2,
then the number of the wires and the number of gates are within a factor 2 of
each other. Our proof is based on a result of Valiant regarding paths in sparse
graphs [Val77]. Calabro [Cal08] discusses various notions of series-parallel graphs
and provides a more complete proof of Valiant’s lower bound on the size of series-
parallel graphs (which he calls Valiant series-parallel graphs) that have “many”
long paths. We remark that the class of Valiant series-parallel graphs is not the
same as the notion of series-parallel graphs [dF97] used most commonly in graph
theory.

In this section a multidag G = (V,E) is a directed acyclic multigraph. Let
input(G) denote the set of vertices v ∈ V such that the indegree of v in G is zero.
Similarly, let O(G) denote the set of vertices v ∈ V such that the outdegree of
v in G is zero. A labeling of G is a function l ∶ V → N such that ∀(u, v) ∈ E,
l(a) < l(b). A labeling l is normal if for all v ∈ input(G), l(a) = 0 and there exists
an integer d ∈ N such that for all v ∈ O(G) ∖ input(G), l(v) = d. A multidag G is
Valiant series-parallel (VSP) if it has a normal labeling l such that

/∃ (u, v), (u′, v′) ∈ E, l(u) < l(u′) < l(v) < l(v′)



8.1 On Improving Branching Algorithms 167

We are interested in lower bounding the size of graphs that contain paths of length
at least m even after removing any set of r edges. For a class C of multidags, we
define

RC(r,m) = {G = (V,E) ∈ C ∣ ∀E′ ⊆ E, ∣E′∣ = r ∃ a path of length m in (V,E −E′)}
SC(r,m) = min{∣E∣ ∣ ∃G = (V,E) ∈ RC(r,m)}

Valiant proves the following lower bound on SVSP(r,m).

Theorem 8.5 — [Val77, Cal08] There exists an integer c0 such that for all integers
m ≥ 1, r ≥ 0, the following holds: if SVSP(r,m) exists, then SVSP(r,m) ≥ c0r lgm.

We say that a boolean circuit C is a VSP circuit if the underlying multidag
of C is a VSP graph. Using the depth-reduction result of the previous theorem,
Valiant showed C can be converted to an equivalent depth-3 unbounded fan-in
OR-AND-OR circuit of size less than 2n. More precisely,

Theorem 8.6 — [Val77] Let C be a VSP circuit of size cn with n input variables.
There is an algorithm A which on input C and a parameter d ≥ 1 outputs an
equivalent depth-3 unbounded fan-in OR-AND-OR circuit C ′ with the following
properties:

1. Fan-in of the top OR gate in C ′ is bounded by 2n/d

2. Fan-in of the bottom OR gates is bounded by 2.22µcd where µ is an absolute
constant.

3. A runs in time O⋆(size(C ′)).

In other words, ∀d ≥ 1, Theorem 8.6 reduces the satisfiability of a cn size VSP
circuit to that of the satisfiability of a disjunction of 2n/d k-CNFs where k ≤ 2.22µcd .
If SETH does not hold, it follows that there exists δ < 1 such that ∀ε > 0, k-SAT
can be decided in time O⋆(2δ+εn) time. Combining these observations, we get the
following theorem.

Theorem 8.7 If SETH does not hold, then ∀ε > 0 the satisfiability of cn size VSP
circuits can be decided in time O⋆(2(δ+ε)n) for some δ < 1.

For the reverse direction, observe that a CNF formula with cn clauses, all of
size at most k can be written as a linear size VSP circuit. Suppose now that
there exists a δ < 1 such that for all c, satisfiability of VSP circuits can be done in
time O(2δn). Then, given an a k-CNF-Sat instance φ we can use Lemma 2.1 to
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reduce φ to the satisfiability of the disjunction of 2εn k-CNFs, each with at most
(kε )3kn clauses. By writing each of these smaller k-CNFs as a cn size VSP circuit
and solving the satisfiability of each circuit in time O(2δn), we can solve the
original CNF-Sat instance in time 2(δ+ε)n. Choosing ε sufficiently small implies
that SETH fails.

Theorem 8.8 If the satisfiability of cn size VSP circuits can be decided in time
poly(n)2δn for δ < 1 independent of c, then SETH fails.

It is also worth noting that an efficient deterministic satisfiability algorithm for
VSP circuits would also imply nonlinear VSP circuit lower bounds by following
Williams’s argument [Wil10].

8.2 On Improving Dynamic Programming Based Al-
gorithms
Let us start with the following problem definitions:

⊕Bipartite Independent Set Parameter: n
Input: A bipartite graph (A ∪ B,E) where ∣A∣ = n, ∣B∣ = m, for every v ∈ B,
d(v) ≤ k and m ≤ f(k)n.
Question: Is the number of independent sets odd?

Set Cover Parameter: n
Input: An integer t and a set system F ⊆ 2U where ∣F ∣ = m, ∣U ∣ = n and for
every S ∈ F , ∣S∣ ≤ k.
Question: Is there a subset C ⊆ F with ∣C∣ ≤ t such that ⋃S∈C S = U?

⊕Set Cover Parameter: n
Input: A set system F ⊆ 2U where ∣F ∣ =m, ∣U ∣ = n, for every S ∈ F , ∣S∣ ≤ k and
m ≤ f(k)n.
Question: Is the number of C ⊆ F with ⋃S∈C S = U odd?

⊕Steiner Tree Parameter: n
Input: An integer n, graph G = (V,E) of maximum degree at most k with
terminals T ⊆ V and m = ∣V ∣ ≤ f(k)n.
Question: Is the number of subsets T ⊆ X ⊆ V with ∣X ∣ ≤ n and G[X] con-
nected odd?
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⊕Set Coverα Parameter: n
Input: An integer t and a set system F ⊆ 2U where ∣F ∣ =m,∣U ∣ = n, t ≤ αn, for
every S ∈ F , ∣S∣ ≤ k and n ≤ f(k)n.
Question: Is the number of C ⊆ F with ∣C∣ = t such that ⋃S∈C S = U odd?

⊕Connected Vertex Cover Parameter: n
Input: An integer n and a graph G = (V,E) with ∣V ∣ = m of maximum degree
at most k and m ≤ f(k)n.
Question: Is the number of sets X ⊆ V such that ∣X ∣ = n, X ∩ e ≠ ∅ for every
e ∈ E and G[X] is connected odd?

In this section we give a reduction that gives some evidence that Set Cover
may not be solvable in time better than 2∣U ∣ = 2n unless CNF-Sat can be. In
particular, we show that ⊕CNF-Sat, ⊕Hitting Set and ⊕Set Cover are
equivalent using an interesting property of the number of independent sets in
a bipartite graph. These equivalences have some surprising corollaries. For ex-
ample, this allows us to conclude that the current best parameterized algorithm
for Connected Vertex Cover, Steiner Tree, presented in [CNP+11a] are
optimal unless there is an improved algorithm for ⊕CNF-Sat.

8.2.1 From ⊕Set Cover to ⊕Hitting Set
Given a CNF formula ϕ over n variables and clauses of size at most k and an odd
integer p > 2 that divides n, we first create the set system Fϕ,p ⊆ 2U as described
in Section 8.1.2. Given the set system Fϕ,p ⊆ 2U , create the set system F ′

ϕ,p as
follows:

8. For every block Ui:

• add a special element ei to the universe,
• for every X ∈ ( Ui

⌊p′/2⌋), add the set X ∪ {ei} to the set family.

Lemma 8.2 The number of hitting sets of the instance Fϕ,p of size ⌈p′/2⌉np is odd
iff the number of hitting sets of the instance F ′

ϕ,p is odd.

Proof Let g = n
p . We first prove that the number of hitting sets of Fϕ,p of size

⌈p′/2⌉g is equal to the number of hitting sets H ′ of F ′
ϕ,p such that ∣H ′ ∩Ui∣ = ⌈p′2 ⌉

for every 1 ≤ i ≤ g. Suppose that H is a hitting set of Fϕ,p of size ⌈p′/2⌉g, then it
is easy to see that H ∪ {e1, . . . , eg} is a hitting set of F ′

ϕ,p since all the sets added
in Step 8 are hit by some ei, and indeed ∣H ′ ∩ Ui∣ = ⌈p′2 ⌉ for every 1 ≤ i ≤ g. For
the reverse direction, suppose H ′ is a hitting set of F ′

ϕ,p such that ∣H ′ ∩Ui∣ = ⌈p′2 ⌉
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for every 1 ≤ i ≤ g, then {e1, . . . , eg} ⊆H ′ since all the sets added in Step 8 are hit
by H ′. And hence we have a bijection between the two families of hitting sets.

For every hitting set H ′ of F ′
ϕ,p and block Ui, we know that ∣H ′ ∩Ui∣ ≥ ⌈p′/2⌉

since otherwise the set Ui ∖H ′ added in Step 5 is not hit by H ′. So it remains to
show that the number of hitting sets H ′ of F ′

ϕ,p such that there is an 1 ≤ i ≤ g with
∣H ′ ∩ Ui∣ > ⌈p′2 ⌉ is even. Given such a hitting set H ′, let γ(H ′) = H ′∆{ei} where
i is the smallest integer such that ∣H ′ ∩Ui∣ > ⌈p′2 ⌉. Obviously γ is its own inverse
and ∣γ(H ′) ∩Ui∣ > ⌈p′2 ⌉ so now it remains to show that γ(H ′) is also a hitting set
of F ′

ϕ,p. To see this, notice that all sets X∪{ei} added in Step 8 where X ∈ ( Ui
⌊p′/2⌋)

are hit since ∣γ(H ′) ∩Ui∣ > ⌈p′2 ⌉ and that those are the only sets containing ei. ∎

Theorem 8.9 For every positive integer p:

σk(⊕CNF-Sat) ≤ σpk(⊕Hitting Set) +O ( log p
p

) .

Proof Create the set system F ′
ϕ,p as described above. For a constant p, this clearly

can be done in polynomial time. Also, from the construction of F ′ it follows that
the number of sets of F ′ is bounded by f(k)n for constant p. Also it is easy to see
that the maximum size of a set of F ′

ϕ,p is at most pk, and thus we can determine
the number of hitting sets modulo 2 of F ′

ϕ,p in O⋆(2σpk(⊕Hitting Set)n′) time where
n′ is the size of the universe of Fϕ,p. Since n′ = ⌈np ⌉(p + 2⌈log p⌉) = n(1 +O( log p

p ))
the theorem follows. ∎

8.2.2 The Flip: ⊕Hitting Set Equals ⊕Set Cover

Lemma 8.3 Let G = (A ∪B,E) be a bipartite graph, then the number of inde-
pendent sets of G is congruent to

∣{X ⊆ A ∶ N(X) = B}∣ modulo 2.

Proof Grouping on their intersection with A, the number of independent sets of
G is equal to

∑
X⊆A

2∣B∖N(X)∣ ≡ ∑
X⊆A

∣B∖N(X)∣=0

20 = ∣{X ⊆ A ∶ N(X) = B}∣

and the lemma follows. ∎
It is worth mentioning that this lemma was inspired by a non-modular variant

from [NvR10, Lemma 2] that we will also discuss in Section 9.1 (see also [vR11,
Proposition 9.1]).
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Theorem 8.10 For every positive integer k,

σk(⊕Hitting Set) =σk(⊕Bipartite Independent Set)=σk(⊕Set Cover).

Proof Given a set system F ⊆ 2U , let G = (F , U,E) be the bipartite graph where
(S, e) ∈ E iff e ∈ S. Note that the number of hitting sets of F is equal to
∣{X ⊆ U ∶ N(X) = F}∣. Then by Lemma 8.3, the number of hitting sets is
equal to the number of independent sets of G modulo 2. And similarly, since the
lemma is symmetric with respect to the two color classes of the bipartite graph,
the number of set covers of F is also equal to the number of independent sets of
G modulo 2. Thus the problems are equivalent. ∎

8.2.3 From ⊕Set Cover to ⊕Steiner Tree and ⊕Connected Vertex Cover
Here, we give reductions from Set Cover to Steiner Tree and the Con-
nected Vertex Cover problem, and then from ⊕Set Cover to ⊕Steiner
Tree and the ⊕Connected Vertex Cover problem. To do this, we will first
need an intermediate result, showing that Set Coverα, that is, Set Cover
with the solution size bounded by αn, is as hard as Set Cover for every α > 0
(and similarly for ⊕Set Cover and ⊕Set Coverα). Given this intermediate
result, the reductions to ⊕Steiner Tree and ⊕Connected Vertex Cover
follow easily.

Theorem 8.11 For any α, ε > 0 we have:

σ(⊕Set Cover) ≤ σ(⊕Set Coverα) + ε .

Proof The reduction transforms the instance (F ′
ϕi,p

, U ′) of ⊕Set Cover into poly-
nomially many instances of the (pkq + z)-⊕Set Coverα problem, for some pos-
itive integers q, z.

In order to find the parity of the number of set covers of the instance (F ′
ϕi,p

, U ′)
we find the parity of the number of set covers of a particular size. That is we
iterate over all possible sizes of a set cover j = 1, . . . , ∣F ′

ϕi,p
∣. Let us assume that we

want to find the parity of the number of set covers of size j and for each positive
integer j′ < j we know the parity of the number of set covers of (F ′

ϕi,p
, U ′) of size

j′. Let q be the smallest integer which is a power of two satisfying ∣F ′ϕi,p∣
q +2 ≤ α∣U ′∣.

We assume that α∣U ′∣ ≥ 3 since otherwise the instance is small and we can solve
it by brute force (recall that α is a constant). Observe that q is upper bounded
by a constant independent of n since ∣F ′

ϕi,p
∣ ≤ c1n and ∣U ′∣ ≥ n.

We create a temporary set system (F0, U0) to ensure that the size of the set
cover we are looking for is divisible by q. Let r = jmod q. We make (F0, U0) by
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taking the set system (F ′
ϕi,p

, U ′) and adding q − r new elements to the universe
U0 and also q − r singleton sets of the new elements to the family F0. Now we
are looking for the parity of the number of set covers of size j0 = j + (q − r) in
(F0, U0). Observe that for each j′ < j0 we know the parity of the number of set
covers of size j′ in (F0, U0) since it is equal to the parity of set covers of size of
(F ′

ϕi,p
, U ′) of size j′ − (q − r) < j which we already know.

To obtain a ⊕Set Coverα instance we set U∗ = U0 and to a family F∗ we
add all unions of exactly q sets from F0. Finally we set t∗ = j0/q which is an
integer since j + (q − r) is divisible by q. Observe that t∗ ≤ j

q + 1 ≤ α∣U ∣ − 1,
by the definition of q, however (F∗, U∗, t∗) might not be a proper instance of
pqk-⊕Set Coverα, since F∗ could be a multiset. Note that each subset of U∗

appears in F∗ at most (2pqk)q = 2pq2k times, since F0 has no duplicates and each
set in F∗ is a union of exactly q sets from F0. To overcome this technical obstacle
we make a new instance (F , U, t), where as U we take U∗ with z = 1+pq2k elements
added, U = U∗ ∪ {e1, . . . , ez}. We use elements {e1, . . . , ez−1} to make sets from
F∗ different in F by taking a different subset of {e1, . . . , ez−1} for duplicates.
Additionally we add one set {e1, . . . , ez} to the family F and set t = t∗ + 1. In
this way we obtain (F , U, t), that is a proper (pqk + z)-⊕Set Coverα instance
since t = t∗ + 1 ≤ α∣U ∣∗ ≤ α∣U ∣. Observe that in the final instance we have
∣U ∣ ≤ n(1 + 2 log p

p ) + q + z and ∣F ∣ ≤ (c1n + q)q + 1.
To summarize the reduction, we took an instance of k-Unique-CNF-Sat,

and after sparsification, each sparsified formula was transformed into an in-
stance of pk-⊕Hitting Set, which was equivalent to pk-⊕Set Cover because
of Lemma 8.3. Next, in each pk-⊕Set Cover instance we iterated over the
size of solution, made the size divisible by q by adding additional elements to
the universe, and created a multiset family F∗ which we made a set family by
differentiating equal sets using additional elements of the universe. Our goal
was to decide whether the initial formula of k-Unique-CNF-Sat instance has a
satisfying assignment, which means that we want to control the correspondence
between the parity of the number of solutions in each part of the construction.
Observe that the only step of the construction which has nontrivial correspon-
dence between the number of solutions of the former and the latter instance is the
grouping step where we transform an instance (F0, U0, j0) into a multiset instance
(F∗, U∗, t∗).

Hence we assume that we know the parity of the number of set covers of size
t∗ = j0/q in (F∗, U∗) as well as the parity of the number of set covers of size j′ for
each j′ < j0 in (F0, U0). Our objective is to compute the parity of the number of
set covers of size j0 in (F0, U0) in polynomial time and for this reason we introduce
a few definitions and claims. Recall that each set in F∗ corresponds to a union
of exactly q sets in F0 and let Γ ∶ F∗ → 2F0 be a function that for each set in F∗

assigns a set of exactly q sets from F0 that it was made of. Moreover let S∗ ⊆ 2F∗

be the set of set covers of size t∗ in (F∗, U∗) and let S0 ⊆ 2F0 be the set of set
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covers of size at most j0 in (F0, U0). We construct a mapping Φ ∶ S∗ → S0 which
maps each set cover A ∈ S∗ to a set cover A0 ∈ S0 such that A0 is exactly the set
of sets from F0 used in the t∗ unions of q sets from F0, that is Φ(A) = ⋃X∈A Γ(X).
In the following lemma we prove that for a set cover A0 ∈ S0, the size of Φ−1(A0)
depends solely on the size of A0.

Claim 8.11.1 Let A0,B0 ∈ S0 such that ∣A0∣ = ∣B0∣. Then ∣Φ−1(A0)∣ = ∣Φ−1(B0)∣.

Proof Let A0 = {X1, . . . ,Xa} be a set from S0, where each Xi ∈ F0. Observe that
for any A ∈ S we have Φ(A) = A0 if and only if ⋃ai=1 Γ(Xi) = A. Consequently
∣Φ−1(A0)∣ is equal to the number of set covers of size t∗ in the set system ((A0

q
),A0)

and hence ∣Φ−1(A0)∣ depends only on the size of A0. ∎
Now we prove that for each set cover A0 ∈ S0 of size j0 an odd number of set

covers from S∗ is mapped by Φ to A0.

Claim 8.11.2 — Folklore For any non-negative integers a, b such that b ≤ a the
binomial coefficient (a

b
) is odd iff ones(b) ⊆ ones(a), where ones(x) is the set of

indices containing ones in the binary representation of x.

Proof Since (a
b
) = a!

b!(a−b)! we infer that (a
b
) is odd iff

∞

∑
i=1

⌊ a
2i

⌋ =
∞

∑
i=1

⌊ b
2i

⌋ +
∞

∑
i=1

⌊a − b
2i

⌋ .

Since for each i we have

⌊ a
2i

⌋ ≥ ⌊ b
2i

⌋ + ⌊a − b
2i

⌋

the binomial coefficient (a
b
) is odd iff for each positive integer i we have ⌊ a2i ⌋ =

⌊ b2i ⌋ + ⌊a−b2i ⌋. This means that (a
b
) is odd iff for each i either ⌊ a

2i−1 ⌋ is odd or ⌊ b
2i−1 ⌋

is even. ∎

Claim 8.11.3 Let A0 ∈ S0 such that ∣A0∣ = j0 then ∣Φ−1(A0)∣ is odd.

Proof Since ∣Φ−1(A0)∣ is equal to the number set covers of size t∗ in the set system
((A0

q
),A0) and ∣A0∣ = j0 = t∗q we infer that ∣Φ−1(A0)∣ is equal to the number of

unordered partitions of A0 into sets of size q. Hence ∣Φ−1(A0)∣ = ∏t∗−1
i=0 (j0−1−iq

q−1 ).
Since j0 is divisible by q, and q is a power of 2, using Lemma 8.11.2 we have
∣Φ−1(A0)∣ ≡ 1(mod 2). ∎

For j = 1, . . . , j0 by sj let us denote the parity of the number of set covers of
(F0, U0) of size j modulo 2. Recall that we know the value of sj for each j < j0
and we want to compute sj0 knowing also ∣S∗∣mod 2. By Claim 8.11.1 we can
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define dj for j = 1, . . . , j0, that is the value of ∣Φ−1(A0)∣mod 2 for a set A0 ∈ S0 of
size j. By Claim 8.11.3 we know that dj0 equals one. Thus modulo 2 we have the
following congruence.

∣S∗∣ = ∑
A0∈S0

∣Φ−1(A0)∣ ≡
j0

∑
j=1
sjdj = sj0 +

j0−1
∑
j=1

sjdj .

Hence knowing ∣S∗∣mod 2 and all values sj for j < j0 in order to compute sj0 it is
enough to compute all the values dj, what we can do in polynomial time thanks
to the following claim.

Claim 8.11.4 For each j = 1, . . . , j0 we can calculate the value of dj in polynomial
time.

Proof Again we use that fact that for a set A0 ∈ S0 we have ∣Φ−1(A0)∣ is equal to
the number set covers of size t∗ in the set system ((A0

q
),A0). Using the inclusion-

exclusion principle modulo 2 we obtain the following formula when ∣A0∣ = j.

∣Φ−1(A0)∣ ≡ ∑
X⊆A0

∣{H ⊆ (X
q
)∣∣H∣ = t∗}∣ =

j

∑
i=0

(j
i
)((

i
q
)
t∗

),

Where the second equality follows by grouping all summands X ⊆ A0 with ∣X ∣ = i
for every 0 ≤ i ≤ ∣A0∣. ∎

Consequently by solving a polynomial of n number of instances of ⊕Set Coverα
with universe size bounded by n(1+ 2 log p

p )+ q + z and set family size bounded by
(c1n+ q)q + 1 we verify whether the initial formula φ has a satisfying assignment,
which finishes the prove of Theorem 8.1. ∎

Corollary 8.1 For any α > 0 we have:

σ(⊕Set Cover) ≤ σ(⊕Set Coverα) .

We can now obtain the following two results by standard Karp-reductions.

Theorem 8.12 For every α > 0,

σ(Set Coverα) ≤ σ(Steiner Tree) + α,and
σ(⊕Set Coverα) ≤ σ(⊕Steiner Tree) + α.

Proof Given an instance of Set Coverα consisting of a set system (F , U) and
integer i, let G′ be the graph obtained from the incidence graph of (F , U) by
adding a vertex s universal to F with a pendant vertex u, and define the terminal
set to be U∪{u}. It is easy to see that the number of Steiner trees of size ∣U ∣+i+1 is
equal to the number of set covers of (F , U) of size i. Hence the theorem follows.∎
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Theorem 8.13 For every α > 0,

σ(Set Coverα) ≤ σ(Connected Vertex Cover) + α, and
σ(⊕Set Coverα) ≤ σ(⊕Connected Vertex Cover) + α.

Proof Given an instance (F , U) of Set Coverα, we create an instance of Con-
nected Vertex Cover where G is obtained from the incidence graph of (F , U)
by adding a vertex s adjacent to all vertices corresponding to sets and adding
pendant vertices for every element of U ∪ {s}.

It is easy to see that for every i, there exists a set cover of (F , U) of size i ≤ αn
iff there exists a connected vertex cover of G of size at most i + ∣U ∣ + 1 ≤ ∣U ∣(1 +
α) + 1 since we can take without loss of optimality all vertices having a pendant
vertex, and then connecting these vertices is equivalent to covering all elements
of U with sets in F . Hence, an O⋆(2σ(Connected Vertex Cover)n) time algorithm
for Connected Vertex Cover implies an O⋆(2(σ(Connected Vertex Cover)+α)n)
time algorithm for Set Coverα.

For the parity case, let us study the number of connected vertex covers of size
j of G for every j. Similar to the previous case, note that for any connected vertex
cover C, C ∩ F must be a set cover of (F , U) by the connectivity requirement.
Hence we group all connected vertex covers in G depending on which set cover
in (F , U) their intersection with F is. Let cj be the number of connected vertex
covers of G of size j and si be the number of set covers of size i in (F , U), then:

cj =
j−∣U ∣−1

∑
i=1

si(
∣U ∣ + 1

j − i − ∣U ∣ − 1)

It is not hard to see that si modulo 2 can be determined in polynomial time once
(c1, . . . , ci+∣U ∣+1) modulo 2 are computed by recovering s1 up to si in increasing
order, since for i = j − ∣U ∣ − 1 we have ( ∣U ∣+1

j−i−∣U ∣−1) = 1.
Thus, if in time O⋆(2σ(Connected Vertex Cover)n) we can compute the number

of connected vertex covers of size n modulo 2, we can compute the parity of all
(c1, . . . , ci+∣U ∣+1) and hence the parity of si in O⋆(2(σ(Connected Vertex Cover)+α)n).∎

8.2.4 From Set Cover to Set Partition and Subset Sum

Connected Vertex Cover Parameter: n
Input: An integer n and a graph G = (V,E) with ∣V ∣ = m of maximum degree
at most k and m ≤ f(k)n.
Question: Is there a subset X ⊆ V such that ∣X ∣ ≤ n, X ∩ e ≠ ∅ for every e ∈ E
and G[X] is connected?
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Set Partition Parameter: n
Input: An integer t and a set system F ⊆ 2U where ∣F ∣ = m,∣U ∣ = n, for every
S ∈ F , ∣S∣ ≤ k and m ≤ f(k)n.
Question: Is there a subset C ⊆ F with ∣C∣ ≤ t such that ⋃S∈C S = U and for
every S,S′ ∈ F with S ≠ S′, S ∩ S′ = ∅?

Subset Sum Parameter: n
Input: Integers a1, . . . , am ∈ Z+ such that the number of 1’s in the bit represen-
tation of every ai is at most k and a target integer t on n bits.
Question: Is there a subset X ⊆ {1, . . . ,m} with ∑i∈X ai = t?

Theorem 8.14 For every positive integer k,

σk(Set Cover) ≤ σk(Set Partition).

Proof Let (F , t) be an instance of Set Cover. Create an instance (F ′, t) of Set
Partition by for every S ∈ F adding all subsets of S to F ′. Clearly (F ′, t) has
a set partitioning of size at most t if and only if (F , t) has a set cover of size at
most t. Since the size of the sets in F is bounded by k, the reduction runs in
polynomial time. ∎

Theorem 8.15 For every positive integer k,

σk(Set Partition) ≤ σk+log k+1(Subset Sum).

Proof Let (F , t) be an instance of Set Partition, F ⊆ 2U . We create an instance
of Subset Sum as follows. Let the target integer t′ for Subset Sum have a bit
expansion consisting of three fields: First, as the most significant bits, a field
coding the value of t, to check the cardinality of the solution C ⊆ F ; second, a
field of length log t + logn containing the value n, to check the total size of all
sets in C; finally, a field of length log t + n containing n ones. The paddings of
length log t serve to isolate the fields from each other. For every Si ∈ F , we create
an integer ai with the same field division as t′, where the first field encodes 1, the
second field encodes ∣Si∣, and the third field contains a one in position j if and
only if uj ∈ Si. We argue that the resulting Subset Sum instance is positive if
and only if F contains a partitioning of U using exactly t sets.

Clearly, if C ⊆ F partitions U and ∣C∣ = t, then the integers ai corresponding
to Si ∈ C sum to t′. The first field sums to t by cardinality of C, the second sums
to n, and in the third field the non-zero digits are simply partitioned between
the ai.
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So let A be a collection of integers ai that sum to t′. By the first field, we
have ∣A∣ ≤ t; thus the padding of length log t is enough to isolate the fields, and we
have ∣A∣ = t. By the same argument on the second field, the sum over all ai ∈ A
of the number of non-zero bits in the third field is exactly n. Now, the only way
that the third field can actually contain n true bits is if the true bits in the third
field are partitioned among the ai. Thus, C = {Si ∶ ai ∈ A} is a set partitioning
of U of cardinality exactly t.

By looping over all t0 ≤ t for the Set Partition instance, this solves the
problem. Note that the length of the bit string t′ is n+O(logn), which disappears
into the asymptotics, and the number of set bits in the ai is bounded by k+ log k+
1. ∎

8.3 Conclusions and Further Work
In this paper we showed that for several problems on covering and packing, the
current known algorithms cannot be improved unless we get a faster algorithm for
either CNF-Sat or ⊕CNF-Sat. Thus, we have created a class of combinatorial
problems that are equivalent to CNF-Sat. The obvious open question is the
following:

Open Question 12 Is σ(CNF-Sat) ≤ σ(Set Cover)?

In Figure 8.1, the fundamental difference between the two grey areas is that
in the left area the known efficient algorithms are OPP algorithms and in the
other area it is not known:

Open Question 13 — Paturi[Pat10], orginally asked for HAMILTONIAN PATH Is there an OPP
algorithm with one-sided error probability at most 1−2−O(n) for any problem in
the right grey area of Figure 8.1?

See Chapter 2 for the definition of an OPP algorithm.
It would be nice to obtain lower bounds on the running time of some graph

problems like Dominating Set or Independent Set. In Chapter 9 we will
give a observation in this direction. It is worth mentioning that related to Sec-
tion 8.1.4, very recently [SS11] proved that if SETH is false, then there exists a
O⋆(2δn)-time algorithm for the Circuit Sat problem restricted to circuits on n
variables of constant depth and size linear in n.
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Chapter 9

Concluding Remarks

Here we will, on a very high level, relate the chapters of this thesis to each
other and propose some further research. Before this, we will elaborate on a
result published in [NvR10] and give a couple of small observations related to
Section 8.2.2.

9.1 More on Symmetry of Bipartite Graphs
In Section 8.2.2 we have seen that by a simple combinatorial property of sym-
metry of bipartite graphs (refer to Lemma 8.3), it followed that ⊕Hitting Set,
⊕Bipartite Independent Set, and ⊕Set Cover are equivalent (refer to The-
orem 8.10). This was especially interesting since for ⊕Hitting Set the fastest
known algorithm is exhaustive search while for Set Cover this is naive dynamic
programming (and inclusion-exclusion), so in this case, by Lemma 8.3 improving
over exhaustive search for ⊕Hitting Set is equivalent to improving over naive
dynamic programming for ⊕Set Cover, so the duality suggested in Section 2.2
is in this case very concrete.

Here, we would like to state a variant of Lemma 8.2.2, not exploiting the prop-
erties of parity versions that appeared in [NvR10], actually inspired Lemma 8.2.2,
and may be useful for further research. Also we would like to mention one more
consequence of Lemma 8.3 concerning branching algorithms for Independent
Set and Dominating Set.

Given a graph G = (V,E), and A,B ⊆ V with A∩B = ∅, and integers 0 ≤ i ≤ ∣A∣
and 0 ≤ j ≤ ∣B∣, we define bi,j(A,B) as follows:

bi,j(A,B) = ∣{X ⊆ A ∶ ∣X ∣ = i ∧ ∣N(X) ∩B∣ = j}∣

Consider the following computation task: we are given a bipartite graph G =
(V = A ⊍ B,E) and are asked to compute bi,j(A,B) for every 0 ≤ i ≤ ∣A∣ and
0 ≤ j ≤ ∣B∣. In [vR11] this is called the #Partial Red Blue Dominating
Set problem and is easy to see that if we take n = ∣A∣ as complexity parameter,
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this generalizes the (counting variant of) the Hitting Set problem (bi,∣B∣(A,B)
is the number of ‘hitting sets’ of size i). On the other hand, if we are asked
to compute the number of bj,i(B,A) for every 0 ≤ i ≤ ∣A∣ and 0 ≤ j ≤ ∣B∣ (and
again take the complexity parameter to be n = ∣A∣), this generalizes the (counting
variant of) the Set Cover problem (b∣B∣,i(B,A) is the number of ‘set covers’
of size i). Similarly to Theorem 8.10 we show that the two problems solved by
entirely different techniques are intimately connected:

Lemma 9.1 Given a graphG = (V,E), and A,B ⊆ V with A∩B = ∅, the following
holds:

bi,j(A,B) =
∣A∣

∑
k=0

∣B∣

∑
l=0

(−1)l+j−∣B∣( l

∣B∣ − j)(
∣A∣ − k
i

)bl,k(B,A)

This lemma also appears in [NvR10] and [vR11, Subsection 9.2.1.]. Using
Lemma 9.1 we can always choose to compute the values bi,j(A,B) or bi,j(B,A),
since given either one we can compute the other in polynomial time. Hence, we
obtain the following corollary:

Corollary 9.1 Let G = (A⊍B,E). For every δ < 1, there exists an O⋆(2δ∣A∣)-time
algorithm that computing bij(A,B) for every i, j if and only if there exists an
O⋆(2δ∣B∣) algorithm computing bij(A,B) for every i, j.

Let U be a set and let P1, P2 . . . , Pn be subsets of U . The sets P1, P2, . . . , Pn can
be thought of as properties. We define for a partitioning R⊍O⊍F = {1,2, . . . , n}
and integer 0 ≤ t ≤ n:

at(R,O,F ) = ∣{e ∈ U ∣ ∣R[e]∣ = t ∧ ∣F [e]∣ = 0}∣

where we denote R[e] = {i ∈ R ∣ e ∈ Pi} and F [e] = {i ∈ F ∣ e ∈ Pi}. We can say
that e ∈ U is counted in at(R,O,F ) if it satisfies (i.e., is contained in) exactly t of
the properties in R (the required properties) and none of the properties in F (the
forbidden properties). Now, the following holds for every R⊍O⊍F = {1,2, . . . , n}
and integers 0 ≤ i, t ≤ n:

at(R∪{i},O,F ) = at(R,O,F∪{i})+(at−1(R,O∪{i}, F )−at−1(R,O,F∪{i})) (9.1)

To see this holds recall that the set of elements e ∈ U accounted for on the left-
hand side is the set all elements contained in exactly t required properties and
none of the forbidden properties. This set can be partitioned into the elements
e ∉ Pi which is accounted for at at(R,O,F ∪ {i}) and the elements e ∈ Pi. The
elements e ∈ Pi accounted for on the left-hand are exactly the elements that are
accounted for at−1(R,O∪{i}, F ) but are not accounted for in at−1(R,O,F ∪{i})).
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If one expands the recurrence (9.1), then the following natural variation on the
inclusion/exclusion formula can be obtained for computing at(R,O,F ) similarly
to the proof of (3.1):

at(R,O,F ) = ∑
X⊆R

(−1)∣X ∣−∣R∣+t( ∣X ∣
∣R∣ − t)a0(∅,O ∪ (R ∖X), F ∪X)

To see this, consider the branching tree after exhaustively applying the recurrence
(9.1). Let X be a set of forbidden properties, i.e., the set of properties that go
into the first or third branch when branching. We consider the set of leaves of
this tree where X is the set of forbidden properties. For each such leaf, we have
lowered the parameter t exactly t times, thus we have taken ∣R∣− t times the first
branch and ∣X ∣ − ∣R∣ + t times the second branch. As a result, we have ( ∣X ∣

∣R∣−t
)

such leaves, and the contribution of each leaf to the sum in the root is multiplied
exactly ∣X ∣ − ∣R∣ + t times by −1.
Proof (of Lemma 9.1) Now we will give a similar formula, where at(R,O,F ) is re-
placed by bi,j(A,B). We substitute U with the set of all subsets of A of size i
and for a vertex v ∈ B, Pv are all elements of U that contain a neighbor of v. In
this way, we obtain the following formula summing over all sets of vertices X ⊆ B
that correspond to the blue vertices that we forbid to be dominated:

bi,j(A,B) = ∑
X⊆B

(−1)∣X ∣−∣B∣+j( ∣X ∣
∣B∣ − j)bi,0(A ∖N(X),∅)

= ∑
X⊆B

(−1)∣X ∣−∣B∣+j( ∣X ∣
∣B∣ − j)(

∣A ∖N(X)∣
i

)

The second equality here follows from the definition of bi,j(A,B): (∣A∖N(X)∣

i
) equals

the number of ways to choose i red vertices that have no forbidden neighbors.
If we now group the summands of the summation by the size of A ∩N(X)

and the size of X, then we obtain the following equation:

bi,j(A,B) =
∣A∣

∑
k=0

∣B∣

∑
l=0

∑
X⊆B

∣A∩N(X)∣=k,∣X ∣=l

(−1)l−∣B∣+j( l

∣B∣ − j)(
∣A∣ − k
i

)

=
∣A∣

∑
k=0

∣B∣

∑
l=0

(−1)l−∣B∣+j( l

∣B∣ − j)(
∣A∣ − k
i

) ∑
X⊆B

∣A∩N(X)∣=k,∣X ∣=l

1

(applying the definition of bj,i(B,A))

=
∣A∣

∑
k=0

∣B∣

∑
l=0

(−1)l+j−∣B∣( l

∣B∣ − j)(
∣A∣ − k
i

)bl,k(B,A).

∎
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We would also like to mention some consequences of Lemma 8.3 for branching
algorithms. In a graph G = (V,E), and independent set is a subset X such that
u, v ∈X → (u, v) ∉ E and a dominating set is a set X such that for every v ∈ V it
holds that N[v] ∩X ≠ ∅. Consider the following problems:

Dominating Set Parameter: n
Input: A graph G = (V,E) with ∣V ∣ = n and target weight t.
Question: Is there a dominating set X ⊆ V with ∣X ∣ ≤ t?

⊕Weighted Dominating Set Parameter: n
Input: A graph G = (V,E) with ∣V ∣ = n, weight function ω ∶ V → {0, . . . ,N},
and target weight t with N polynomial in n..
Question: Is the number of dominating sets X ⊆ V with ω(X) = t odd?

⊕Weighted Independent Set Parameter: n
Input: A graph G = (V,E) with ∣V ∣ = n, weight function ω ∶ V → {0, . . . ,N},
and target weight t with N polynomial in n.
Question: Is the number of independent sets X ⊆ V with ω(X) = t odd?

It is known that Dominating Set can be solved in O⋆(1.4969n) [vRB11],
with slightly slower algorithms for counting extensions [vRNvD09, NvR10]. The
currently fastest algorithm for the Independent Set problem is O⋆(1.2132n)
[KLR09b]. Also there are algorithms known for counting the number of maxi-
mum weight independent sets (to the author’s knowledge, the algorithm given in
[Wah08] running in O⋆(1.2377) time is currently the fastest known). Unfortu-
nately, the author is not aware of any work on ⊕Weighted Independent Set,
even with leaving out the ‘parity’ part (that is, counting the number of indepen-
dent sets of exactly a given weight).

Theorem 9.1 If ⊕Weighted Independent Set can be solved in O⋆(αn) time
then ⊕Weighted Dominating Set can be solved in O⋆(α2n) time.

Proof Suppose we are given a graph G = (V,E) with ∣V ∣ = n, a weight function
ω ∶ V → {0, . . . ,N} and a target weight t. Create the graph I = (V ∪V ′,E′) where
V ′ is a copy of V (and the copy of v is denoted by v′) and (v,w′) ∈ E′ if and only
if w ∈ N[v]. Let ω(v′) = 0 for every v ∈ V . Then count the number of independent
sets of weight t in I modulo 2 in O⋆(α2n) time. By the same arguments as in
the proof of Lemma 8.3, this is equal to the number of dominating sets of G of
weight exactly t modulo 2. ∎
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Theorem 9.2 If ⊕Weighted Dominating Set can be solved in O⋆(αn) time
then there exists a Monte-Carlo algorithm with constant one-sided error proba-
bility that solves Dominating Set in O⋆(αn) time.

Proof The algorithm for Dominating Set is the following: given a graph G =
(V,E) and an integer t, choose ω(v) ∈ {1, . . . ,2∣V ∣} uniformly and independently
at random for every v ∈ V . Let ω′(v) = ω(v) + (2∣V ∣)2 + 1. Use the algorithm
for ⊕Weighted Dominating Set to compute for every weight 1 ≤ w ≤ t(2∣V ∣+
(2∣V ∣)2 +1) the parity of the number of dominating sets of weight w with respect
to ω′. Return YES if for some w the number of dominating sets of weight w is
odd, and NO otherwise.

Let us analyse the correctness of the above algorithm. Note that for every
X ⊆ V ,

∣X ∣((2∣V ∣)2 + 1) < ω′(X) ≤ ∣X ∣((2∣V ∣)2 + 1) + ∣X ∣2∣V ∣.

Hence there exists a dominating set X of G such that ω′(X) ≤ t(2∣V ∣+(2∣V ∣)2+1)
if and only if G has a dominating set of size at most t. Consequently, if the
algorithm returns YES then G has a dominating set of size at most t. In the other
direction let us assume that G has a dominating set of size at most t. Let F be
the family of all dominating sets of G of minimum size. By Lemma 4.2, there
will be a unique dominating set X0 in F minimizing ω with probability at least 1

2
and hence for w = ω(X0)+ ∣X0∣((2∣V ∣)2 +1) the algorithm detects an odd number
of dominating sets and thus returns YES. ∎

9.2 Conclusion
Upper bounds
In this thesis, we have seen that transformations are very useful to improve over
the naive way of evaluating a dynamic programming recurrence. The transfor-
mations we have encountered are naturally divided into two classes:

First are the invertible transformations that we used to save space. We first
briefly discussed the well-known fact that, informally stated, if we implicitly
have a small number of exponentially(1) large matrices A1, . . . ,Al and want to
compute one specific entry of their product (or another formula/circuit on the
matrices A1, . . . ,Al), a matrix that diagonalizes all A1, . . . ,Al simultaneously
would be very helpful for obtaining space efficient algorithms. We saw several
examples where the diagonalizing matrix is a Fourier-transformation or Möbius-
transformation matrix. These kind of algorithms transform the dynamic program-
ming table into one of same size, but with easier logical dependence between the

(1)that is, exponential in the input size
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table entries. It would be interesting to see how far this type of approach can
bring us towards resolving Open Question 1.

Second are hashing methods. Here we implicitly transform the dynamic pro-
gramming table into a smaller one using varying arguments in order to save time.
Then we can use naive dynamic programming or sometimes apply transforma-
tions of the first class discussed here to compute the appropriate answer. The
most notable example, the Color-coding technique has been proven already very
powerful in history of theoretical computer science. Besides Color-coding, there
are the approaches that rely on cancellation modulo 2:

• the Koutis-Williams approach: hash the subset lattice to find a non-zero
entry in the dynamic programming table indexed with a subset of size at
least k, and

• Björklund’s cycle reversal technique (not explained in this thesis, see [Bjö10b])
and the Cut&Count approach: hash the set partition lattice to find non-
zero entries in the dynamic programming table indexed with a partition
consisting of at least k partition classes.

Could it be that these approaches can be unified by a single hash function on
lattices?

A main advantage of the Color-coding approach is that it works equally well
for cardinality problems (for example Longest Path) as for problems with ex-
ponentially large weights (for example, Weighted Longest Path). See also
Open Question 9. Are there different kind of hash functions that have these prop-
erties and can be used as alternatives to the cancellation modulo 2 techniques?
We also saw that the elementary hash functions of working modulo a randomly
chosen prime or hashing by a randomly chosen matrix could be helpful to speedup
sparse dynamic programming in some settings. Here we are stuck at the moment
for problems such as CNF-Sat, but we did see a promising ring that could be
used to hash to in Section 6.3.1.

A very nice open question we would like mention here is the following:

Open Question 14 Is there an algorithm that given a graph G and a tree decompo-
sition of G of width at most t, solves the Independent Set problem in O⋆(2ct)
time and O⋆(1) space? Or, would such a result have surprising complexity the-
oretic consequences?

Even a connection with Open Question 1 would be interesting. This question
was explicitly asked in [LMS11c], and also in [Ned10]. See [LMS11c] for related
observations and open questions.
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Open Question 15 Is one of the algorithms for Subset Sum presented in Chap-
ters 5 and 6 practical? Could it compete, or even be improved to compete with
Bellman’s algorithm?

Open Question 16 Do other useful embeddings of the min-sum semiring more ef-
ficient than the embedding in the polynomial ring exist? Or are there other
techniques for applying transformations to dynamic programming algorithms
over the min-sum semiring?

Lower Bounds
For some upper bounds given in this thesis, we gave a matching lower bound,
thus completely determining the complexity of the problem assuming the SETH.
For some other upper bounds, such as for the Steiner Tree parameterized by
the number of terminals and Connected Vertex Cover parameterized by
the solutions size we gave some indication that these might be optimal under the
SETH (at least, we showed that giving improved algorithms for their counting
versions is not possible under the SETH).

An interesting consequence of the techniques of Section 8.2.2 is that improv-
ing over exhaustive search for parity problems is equivalent to improving over
exhaustive search for dynamic programming problems. On the other hand, for
the problems studied in Chapter 8, no relation between exhaustive search and
dynamic programming is known for the decision problems. How can we establish
such a connection? One possible approach (but perhaps not the easiest one) to
find such connections could be by attacking the following open question:

Open Question 17 Is σ(⊕Set Cover) ≤ σ(Set Cover)? Is σ(⊕CNF-Sat) ≤
σ(CNF-Sat)?

Also, we can try to attack the following question from both the lower bound
and upper bound perspective:

Open Question 18 Can it be determined in O⋆((3 − ε)k) whether a graph has a
Feedback Vertex Set of size at most k? Or can we find a connection with
the SETH (perhaps using the tools of Chapter 8)?
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