
Lecture Notes by Jesper Nederlof, 2019

Matrix Scaling

We discuss yet another algorithm for bipartite perfect matching from. The algorithm is not neces-
sarily very fast, but it is shockingly simple:

Algorithm scale(A) A = {aij} is the n× n incidence matrix of a bipartite graph G.

Output: Whether G has a perfect matching.
1: for 100n3 log n steps do

2: NormalizeRows(A) aij is set to aij/ri, where ri is the row-sum ri :=
∑n

j=1 aij .

3: NormalizeColumns(A) aij is set to aij/cj , where cj is the column-sum cj :=
∑n

i=1 aij .

4: if ri =
∑n

i=1 aij ∈ [1− 1/n, 1 + 1/n] for all i then return yes
5: return no

Algorithm 1: Matrix Scaling Algorithm for Bipartite Perfect Matching

In words, the algorithm alternates between normalizing the rows and columns, and outputs yes
if it succeeds in approximately normalizing both the columns and rows simultaneously. To see
the connection with perfect matchings, note that if G has a perfect matching M , one can always
succeed in normalizing both simultaneously by setting all entries that correspond to the edges of
M to 1 (and the other to 0). But note the algorithm will not necessarily output such a matrix.
For example, if G is regular it will already stabilize after one round. Here is an example partial
sequence of normalizations:

1 1 1

1 0 1

0 1 1

1
3

1
3

1
3

1
2 0 1

2

0 1
2

1
2

3
5

2
5

2
7

2
5 0 3

7

0 3
5

3
7

21
45

14
45

10
45

14
29 0 15

29

0 21
36

15
36

· · ·

Lemma 1. If scale(A) = yes, then G has a perfect matching.

Proof. Let A = {aij} denote the matrix after the last iteration of the algorithm, and ri and ci
denote the corresponding row/columns-sums. Thus, ri ∈ [1 − 1/n, 1 + 1/n] and cj = 1 for every
i, j. Suppose G has no perfect matching. Let X := {x1, . . . , xn} and Y := {y1, . . . , yn} be the two
parts of G (so |X| = |Y | = n). By König’s theorem, G has a vertex cover C of size at most n− 1.
Let XC := {i : xi ∈ C} and YC := {i : yi ∈ C}. Since aij > 0 only if {xi, yj} ∈ E(G), we have that∑

1≤i≤n
ci ≤

∑
i∈XC

∑
j∈N(i)

aij +
∑
j∈YC

∑
i∈N(j)

aij ≤ (1 + 1/n)|XC |+ |YC | ≤ |C|+ |C|/n < n,

which contradicts that ci = 1 for every i.

1

It remains to prove the harder direction. That is, if G has a perfect matching, the condition on
Line 4 will be met. We introduce a parameter of the matrix A, the so-called permanent, that
measures progress of the algorithm towards the simultaneous normalization. Formally, we define

per(A) :=
∑
π∈Sn

n∏
i=1

ai,π(i),

where Sn denotes the set of all permutations of {1, . . . , n}. We now prove 3 properties of the
progress of per(A) during the algorithm:

First, note that if G has a perfect matching and if A is the adjacency matrix of G, the corre-
sponding permutation contributes 1 to per(A). As normalization divides each entry by at most n,
we obtain that if A is the matrix after the first row-normalization, then

per(A) ≥ 1/nn (1.1)

Second, we show that per(A) increases significantly if ri /∈ (1− 1/n, 1 + 1/n) for some i. If B is the
result of NormalizeRows(A) and if ri are the row sums of A (where A is column-normalized), then

per(B) ≥ per(A)∏n
i=1 ri

, (1.2)

as every product has exactly one term per row. Without loss of generality we assume r := r1 /∈
(1− 1/n, 1 + 1/n). By the AM-GM inequality1 we have

n∏
i=1

ri ≤ r

(
n− r

n− 1

)n−1
= r

(
1 +

1− r

n− 1

)n−1
≤ r exp(1− r) ≤ exp(1− r + ln r).

The latter is increasing for r < 1 and decreasing for r > 1, and is thus maximized when r is close
as possible to 1, i.e. r ∈ {1− 1/n, 1 + 1/n}. By Taylor approximation ln(1 + x) ≤ x− x2/2 + x3/3,

1− (1− 1
n) + ln(1− 1

n) ≤ −2n + 1
2n2 − 1

3n3 , and 1− (1 + 1
n) + ln(1 + 1

n) ≤ − 1
2n2 + 1

3n3 , (1.3)

and thus
∏n
i=1 ri ≤ exp(−1/n2), for large enough n.

Third, if A is row (or, similarly, column) normalized, then

per(A) =
∑
π∈Sn

n∏
i=1

ai,π(i) ≤
∑

f :{1,...,n}→{1,...,n}

n∏
i=1

ai,f(i) =

n∏
i=1

ri ≤
n∑
i=1

ri/n ≤ 1, (1.4)

where we use the AM-GM inequality in the penultimate inequality.
Combining (1.1)-(1.4) we obtain that the algorithm returns yes if a perfect matching exists: If

not it would increase per(A) with a factor exp(1/n2) in all 100n3 log(n) iterations by (1.2) and (1.3)
(amounting to a exp(100n log(n)) multiplicative factor), but that contradicts that it starts with
per(A) ≥ 1/nn (by (1.1)) and stops with per(A) ≤ 1 (by 1.4).

Literature: Nathan Linial, Alex Samorodnitsky, and Avi Wigderson. A deterministic strongly
polynomial algorithm for matrix scaling and approximate permanents. Combinatorica, 20(4):545–
568, Apr 2000.

1Recall it says that (
∏l

i=1 xi)
1/l ≤

∑l
i=1 xi/l.

2

	Matrix Scaling

