Matrix Scaling

We discuss yet another algorithm for bipartite perfect matching from. The algorithm is not necessarily very fast, but it is shockingly simple:

Algorithm scale $(A) \quad A=\left\{a_{i j}\right\}$ is the $n \times n$ incidence matrix of a bipartite graph G.
Output: Whether G has a perfect matching.
for $100 n^{3} \log n$ steps do

$$
\begin{aligned}
& \text { NormalizeRows }(A) \quad a_{i j} \text { is set to } a_{i j} / r_{i} \text {, where } r_{i} \text { is the row-sum } r_{i}:=\sum_{j=1}^{n} a_{i j} \text {. } \\
& \text { NormalizeColumns }(A) \quad a_{i j} \text { is set to } a_{i j} / c_{j} \text {, where } c_{j} \text { is the column-sum } c_{j}:=\sum_{i=1}^{n} a_{i j} \text {. } \\
& \text { if } r_{i}=\sum_{i=1}^{n} a_{i j} \in[1-1 / n, 1+1 / n] \text { for all } i \text { then return yes } \\
& \text { return no }
\end{aligned}
$$

Algorithm 1: Matrix Scaling Algorithm for Bipartite Perfect Matching
In words, the algorithm alternates between normalizing the rows and columns, and outputs yes if it succeeds in approximately normalizing both the columns and rows simultaneously. To see the connection with perfect matchings, note that if G has a perfect matching M, one can always succeed in normalizing both simultaneously by setting all entries that correspond to the edges of M to 1 (and the other to 0). But note the algorithm will not necessarily output such a matrix. For example, if G is regular it will already stabilize after one round. Here is an example partial sequence of normalizations:

1	1	1
1	0	1
0	1	1

$\frac{1}{3}$	$\frac{1}{3}$	$\frac{1}{3}$
$\frac{1}{2}$	0	$\frac{1}{2}$
0	$\frac{1}{2}$	$\frac{1}{2}$

$\frac{3}{5}$	$\frac{2}{5}$	$\frac{2}{7}$
$\frac{2}{5}$	0	$\frac{3}{7}$
0	$\frac{3}{5}$	$\frac{3}{7}$

$\frac{21}{45}$	$\frac{14}{45}$	$\frac{10}{45}$
$\frac{14}{29}$	0	$\frac{15}{29}$
0	$\frac{21}{36}$	$\frac{15}{36}$

Lemma 1. If $\operatorname{scale}(A)=$ yes, then G has a perfect matching.
Proof. Let $A=\left\{a_{i j}\right\}$ denote the matrix after the last iteration of the algorithm, and r_{i} and c_{i} denote the corresponding row/columns-sums. Thus, $r_{i} \in[1-1 / n, 1+1 / n]$ and $c_{j}=1$ for every i, j. Suppose G has no perfect matching. Let $X:=\left\{x_{1}, \ldots, x_{n}\right\}$ and $Y:=\left\{y_{1}, \ldots, y_{n}\right\}$ be the two parts of G (so $|X|=|Y|=n$). By König's theorem, G has a vertex cover C of size at most $n-1$. Let $X_{C}:=\left\{i: x_{i} \in C\right\}$ and $Y_{C}:=\left\{i: y_{i} \in C\right\}$. Since $a_{i j}>0$ only if $\left\{x_{i}, y_{j}\right\} \in E(G)$, we have that

$$
\sum_{1 \leq i \leq n} c_{i} \leq \sum_{i \in X_{C}} \sum_{j \in N(i)} a_{i j}+\sum_{j \in Y_{C}} \sum_{i \in N(j)} a_{i j} \leq(1+1 / n)\left|X_{C}\right|+\left|Y_{C}\right| \leq|C|+|C| / n<n,
$$

which contradicts that $c_{i}=1$ for every i.

It remains to prove the harder direction. That is, if G has a perfect matching, the condition on Line 4 will be met. We introduce a parameter of the matrix A, the so-called permanent, that measures progress of the algorithm towards the simultaneous normalization. Formally, we define

$$
\operatorname{per}(A):=\sum_{\pi \in S_{n}} \prod_{i=1}^{n} a_{i, \pi(i)}
$$

where S_{n} denotes the set of all permutations of $\{1, \ldots, n\}$. We now prove 3 properties of the progress of $\operatorname{per}(A)$ during the algorithm:

First, note that if G has a perfect matching and if A is the adjacency matrix of G, the corresponding permutation contributes 1 to $\operatorname{per}(A)$. As normalization divides each entry by at most n, we obtain that if A is the matrix after the first row-normalization, then

$$
\begin{equation*}
\operatorname{per}(A) \geq 1 / n^{n} \tag{1.1}
\end{equation*}
$$

Second, we show that $\operatorname{per}(A)$ increases significantly if $r_{i} \notin(1-1 / n, 1+1 / n)$ for some i. If B is the result of $\operatorname{NormalizeRows}(A)$ and if r_{i} are the row sums of A (where A is column-normalized), then

$$
\begin{equation*}
\operatorname{per}(B) \geq \frac{\operatorname{per}(A)}{\prod_{i=1}^{n} r_{i}}, \tag{1.2}
\end{equation*}
$$

as every product has exactly one term per row. Without loss of generality we assume $r:=r_{1} \notin$ $(1-1 / n, 1+1 / n)$. By the AM-GM inequality ${ }^{1}$ we have

$$
\prod_{i=1}^{n} r_{i} \leq r\left(\frac{n-r}{n-1}\right)^{n-1}=r\left(1+\frac{1-r}{n-1}\right)^{n-1} \leq r \exp (1-r) \leq \exp (1-r+\ln r) .
$$

The latter is increasing for $r<1$ and decreasing for $r>1$, and is thus maximized when r is close as possible to 1 , i.e. $r \in\{1-1 / n, 1+1 / n\}$. By Taylor approximation $\ln (1+x) \leq x-x^{2} / 2+x^{3} / 3$,

$$
\begin{equation*}
1-\left(1-\frac{1}{n}\right)+\ln \left(1-\frac{1}{n}\right) \leq \frac{-2}{n}+\frac{1}{2 n^{2}}-\frac{1}{3 n^{3}}, \quad \text { and } \quad 1-\left(1+\frac{1}{n}\right)+\ln \left(1+\frac{1}{n}\right) \leq-\frac{1}{2 n^{2}}+\frac{1}{3 n^{3}}, \tag{1.3}
\end{equation*}
$$

and thus $\prod_{i=1}^{n} r_{i} \leq \exp \left(-1 / n^{2}\right)$, for large enough n.
Third, if A is row (or, similarly, column) normalized, then

$$
\begin{equation*}
\operatorname{per}(A)=\sum_{\pi \in S_{n}} \prod_{i=1}^{n} a_{i, \pi(i)} \leq \sum_{f:\{1, \ldots, n\} \rightarrow\{1, \ldots, n\}} \prod_{i=1}^{n} a_{i, f(i)}=\prod_{i=1}^{n} r_{i} \leq \sum_{i=1}^{n} r_{i} / n \leq 1 \tag{1.4}
\end{equation*}
$$

where we use the AM-GM inequality in the penultimate inequality.
Combining (1.1)-(1.4) we obtain that the algorithm returns yes if a perfect matching exists: If not it would increase $\operatorname{per}(A)$ with a factor $\exp \left(1 / n^{2}\right)$ in all $100 n^{3} \log (n)$ iterations by (1.2) and (1.3) (amounting to a $\exp (100 n \log (n))$ multiplicative factor), but that contradicts that it starts with $\operatorname{per}(A) \geq 1 / n^{n}$ (by (1.1)) and stops with $\operatorname{per}(A) \leq 1$ (by 1.4).

Literature: Nathan Linial, Alex Samorodnitsky, and Avi Wigderson. A deterministic strongly polynomial algorithm for matrix scaling and approximate permanents. Combinatorica, 20(4):545568, Apr 2000.

[^0]
[^0]: ${ }^{1}$ Recall it says that $\left(\prod_{i=1}^{l} x_{i}\right)^{1 / l} \leq \sum_{i=1}^{l} x_{i} / l$.

