
Tight bounds for counting colorings parameterised by
cutwidth via matrix ranks

Jesper Nederlof
(slides by Carla Groenland and Isja Mannens)

Utrecht University

Joint work with Isja Mannens, Jesper Nederlof and Krisztina Szilágyi
STACS 2022

May 2, 2022

1 / 29

Tight bounds for counting colorings parameterised by
cutwidth via matrix ranks

Jesper Nederlof
(slides by Carla Groenland and Isja Mannens)

Utrecht University

Joint work with Isja Mannens, Jesper Nederlof and Krisztina Szilágyi
STACS 2022

May 2, 2022

2 / 29

Rank-based approach: General setting

Consider a divide and conquer scheme for comp. problem prob

Suppose it divides global solutions in families A,B of partial solutions

Thus, in the conquer step we need to find a ∈ A and b ∈ B that fit, i.e.
combine into a global solution.

Consider the compatibility matrix M

Rows are indexed by A, columns by B
M[a, b] is 1 if a, b combine to global solution; 0 otherwise

Rank-based approach: Number of relevant partial solutions can be
reduced be at most the ...-rank of M. Moreover, with proper gadgeteering
(so far always in the context of parameterization by width measures), a
matching conditional lower bound can be designed.

For prob, this is the largest permutation submatrix lps(M)

For the #prob, this is the rank of rk(M) over the reals.

For ⊕p-prob, this is the rank of rkp(M) over Zp.

3 / 29

Rank-based approach: General setting

Consider a divide and conquer scheme for comp. problem prob

Suppose it divides global solutions in families A,B of partial solutions

Thus, in the conquer step we need to find a ∈ A and b ∈ B that fit, i.e.
combine into a global solution.

Consider the compatibility matrix M

Rows are indexed by A, columns by B
M[a, b] is 1 if a, b combine to global solution; 0 otherwise

Rank-based approach: Number of relevant partial solutions can be
reduced be at most the ...-rank of M. Moreover, with proper gadgeteering
(so far always in the context of parameterization by width measures), a
matching conditional lower bound can be designed.

For prob, this is the largest permutation submatrix lps(M)

For the #prob, this is the rank of rk(M) over the reals.

For ⊕p-prob, this is the rank of rkp(M) over Zp.

3 / 29

Rank-based approach: General setting

Consider a divide and conquer scheme for comp. problem prob

Suppose it divides global solutions in families A,B of partial solutions

Thus, in the conquer step we need to find a ∈ A and b ∈ B that fit, i.e.
combine into a global solution.

Consider the compatibility matrix M

Rows are indexed by A, columns by B
M[a, b] is 1 if a, b combine to global solution; 0 otherwise

Rank-based approach: Number of relevant partial solutions can be
reduced be at most the ...-rank of M. Moreover, with proper gadgeteering
(so far always in the context of parameterization by width measures), a
matching conditional lower bound can be designed.

For prob, this is the largest permutation submatrix lps(M)

For the #prob, this is the rank of rk(M) over the reals.

For ⊕p-prob, this is the rank of rkp(M) over Zp.

3 / 29

Rank-based approach: General setting

Consider a divide and conquer scheme for comp. problem prob

Suppose it divides global solutions in families A,B of partial solutions

Thus, in the conquer step we need to find a ∈ A and b ∈ B that fit, i.e.
combine into a global solution.

Consider the compatibility matrix M

Rows are indexed by A, columns by B
M[a, b] is 1 if a, b combine to global solution; 0 otherwise

Rank-based approach: Number of relevant partial solutions can be
reduced be at most the ...-rank of M. Moreover, with proper gadgeteering
(so far always in the context of parameterization by width measures), a
matching conditional lower bound can be designed.

For prob, this is the largest permutation submatrix lps(M)

For the #prob, this is the rank of rk(M) over the reals.

For ⊕p-prob, this is the rank of rkp(M) over Zp.

3 / 29

Rank-based approach: General setting

Consider a divide and conquer scheme for comp. problem prob

Suppose it divides global solutions in families A,B of partial solutions

Thus, in the conquer step we need to find a ∈ A and b ∈ B that fit, i.e.
combine into a global solution.

Consider the compatibility matrix M

Rows are indexed by A, columns by B
M[a, b] is 1 if a, b combine to global solution; 0 otherwise

Rank-based approach: Number of relevant partial solutions can be
reduced be at most the ...-rank of M. Moreover, with proper gadgeteering
(so far always in the context of parameterization by width measures), a
matching conditional lower bound can be designed.

For prob, this is the largest permutation submatrix lps(M)

For the #prob, this is the rank of rk(M) over the reals.

For ⊕p-prob, this is the rank of rkp(M) over Zp.

3 / 29

Rank-based approach: General setting

Consider a divide and conquer scheme for comp. problem prob

Suppose it divides global solutions in families A,B of partial solutions

Thus, in the conquer step we need to find a ∈ A and b ∈ B that fit, i.e.
combine into a global solution.

Consider the compatibility matrix M

Rows are indexed by A, columns by B
M[a, b] is 1 if a, b combine to global solution; 0 otherwise

Rank-based approach: Number of relevant partial solutions can be
reduced be at most the ...-rank of M. Moreover, with proper gadgeteering
(so far always in the context of parameterization by width measures), a
matching conditional lower bound can be designed.

For prob, this is the largest permutation submatrix lps(M)

For the #prob, this is the rank of rk(M) over the reals.

For ⊕p-prob, this is the rank of rkp(M) over Zp.

3 / 29

Rank-based approach: General setting

Consider a divide and conquer scheme for comp. problem prob

Suppose it divides global solutions in families A,B of partial solutions

Thus, in the conquer step we need to find a ∈ A and b ∈ B that fit, i.e.
combine into a global solution.

Consider the compatibility matrix M

Rows are indexed by A, columns by B
M[a, b] is 1 if a, b combine to global solution; 0 otherwise

Rank-based approach: Number of relevant partial solutions can be
reduced be at most the ...-rank of M. Moreover, with proper gadgeteering
(so far always in the context of parameterization by width measures), a
matching conditional lower bound can be designed.

For prob, this is the largest permutation submatrix lps(M)

For the #prob, this is the rank of rk(M) over the reals.

For ⊕p-prob, this is the rank of rkp(M) over Zp.

3 / 29

Rank-based approach: Specific cases

Gian-Carlo Rota: ”Publish the same result several times”.

Forest connectivity matrix Mk
for :

Rows and columns are indexed by forests on vertex set [k]. Matrix
indicates whether the (multi-set) union forms a tree.

[CNPPRW’11] rk2(Mn
for) = 2k−1 → single-exponential runtime for

many connectivity problems parameterized by tree-width.

[BCKN’13] rk(Mn
for) = 4k → matching counting algo’s

Matchings connectivity matrix Mk
match

Rows and columns indexed by perfect matchings on vertex set [k].
Matrix indicated whether the union forms a single cycle.

[CKN’13] rk2(Mk
match) = lps(Mk

match) = 2k/2−1 → tight upper and
lower bound for Ham Cyc/pw and ⊕2-Ham Cyc/pw .

[CLN’18] rk(Mk
match) ≥ 4k → tight lower bound for #Ham Cyc/pw .

4 / 29

Rank-based approach: Specific cases

Gian-Carlo Rota: ”Publish the same result several times”.

Forest connectivity matrix Mk
for :

Rows and columns are indexed by forests on vertex set [k]. Matrix
indicates whether the (multi-set) union forms a tree.

[CNPPRW’11] rk2(Mn
for) = 2k−1 → single-exponential runtime for

many connectivity problems parameterized by tree-width.

[BCKN’13] rk(Mn
for) = 4k → matching counting algo’s

Matchings connectivity matrix Mk
match

Rows and columns indexed by perfect matchings on vertex set [k].
Matrix indicated whether the union forms a single cycle.

[CKN’13] rk2(Mk
match) = lps(Mk

match) = 2k/2−1 → tight upper and
lower bound for Ham Cyc/pw and ⊕2-Ham Cyc/pw .

[CLN’18] rk(Mk
match) ≥ 4k → tight lower bound for #Ham Cyc/pw .

4 / 29

Rank-based approach: Specific cases

Gian-Carlo Rota: ”Publish the same result several times”.

Forest connectivity matrix Mk
for :

Rows and columns are indexed by forests on vertex set [k]. Matrix
indicates whether the (multi-set) union forms a tree.

[CNPPRW’11] rk2(Mn
for) = 2k−1 → single-exponential runtime for

many connectivity problems parameterized by tree-width.

[BCKN’13] rk(Mn
for) = 4k → matching counting algo’s

Matchings connectivity matrix Mk
match

Rows and columns indexed by perfect matchings on vertex set [k].
Matrix indicated whether the union forms a single cycle.

[CKN’13] rk2(Mk
match) = lps(Mk

match) = 2k/2−1 → tight upper and
lower bound for Ham Cyc/pw and ⊕2-Ham Cyc/pw .

[CLN’18] rk(Mk
match) ≥ 4k → tight lower bound for #Ham Cyc/pw .

4 / 29

Rank-based approach: Specific cases

Gian-Carlo Rota: ”Publish the same result several times”.

Forest connectivity matrix Mk
for :

Rows and columns are indexed by forests on vertex set [k]. Matrix
indicates whether the (multi-set) union forms a tree.

[CNPPRW’11] rk2(Mn
for) = 2k−1 → single-exponential runtime for

many connectivity problems parameterized by tree-width.

[BCKN’13] rk(Mn
for) = 4k → matching counting algo’s

Matchings connectivity matrix Mk
match

Rows and columns indexed by perfect matchings on vertex set [k].
Matrix indicated whether the union forms a single cycle.

[CKN’13] rk2(Mk
match) = lps(Mk

match) = 2k/2−1 → tight upper and
lower bound for Ham Cyc/pw and ⊕2-Ham Cyc/pw .

[CLN’18] rk(Mk
match) ≥ 4k → tight lower bound for #Ham Cyc/pw .

4 / 29

Rank-based approach: Specific cases

Gian-Carlo Rota: ”Publish the same result several times”.

Forest connectivity matrix Mk
for :

Rows and columns are indexed by forests on vertex set [k]. Matrix
indicates whether the (multi-set) union forms a tree.

[CNPPRW’11] rk2(Mn
for) = 2k−1 → single-exponential runtime for

many connectivity problems parameterized by tree-width.

[BCKN’13] rk(Mn
for) = 4k → matching counting algo’s

Matchings connectivity matrix Mk
match

Rows and columns indexed by perfect matchings on vertex set [k].
Matrix indicated whether the union forms a single cycle.

[CKN’13] rk2(Mk
match) = lps(Mk

match) = 2k/2−1 → tight upper and
lower bound for Ham Cyc/pw and ⊕2-Ham Cyc/pw .

[CLN’18] rk(Mk
match) ≥ 4k → tight lower bound for #Ham Cyc/pw .

4 / 29

Rank-based approach: Specific cases

Gian-Carlo Rota: ”Publish the same result several times”.

Forest connectivity matrix Mk
for :

Rows and columns are indexed by forests on vertex set [k]. Matrix
indicates whether the (multi-set) union forms a tree.

[CNPPRW’11] rk2(Mn
for) = 2k−1 → single-exponential runtime for

many connectivity problems parameterized by tree-width.

[BCKN’13] rk(Mn
for) = 4k → matching counting algo’s

Matchings connectivity matrix Mk
match

Rows and columns indexed by perfect matchings on vertex set [k].
Matrix indicated whether the union forms a single cycle.

[CKN’13] rk2(Mk
match) = lps(Mk

match) = 2k/2−1 → tight upper and
lower bound for Ham Cyc/pw and ⊕2-Ham Cyc/pw .

[CLN’18] rk(Mk
match) ≥ 4k → tight lower bound for #Ham Cyc/pw .

4 / 29

Rank-based approach: Specific cases

Gian-Carlo Rota: ”Publish the same result several times”.

Forest connectivity matrix Mk
for :

Rows and columns are indexed by forests on vertex set [k]. Matrix
indicates whether the (multi-set) union forms a tree.

[CNPPRW’11] rk2(Mn
for) = 2k−1 → single-exponential runtime for

many connectivity problems parameterized by tree-width.

[BCKN’13] rk(Mn
for) = 4k → matching counting algo’s

Matchings connectivity matrix Mk
match

Rows and columns indexed by perfect matchings on vertex set [k].
Matrix indicated whether the union forms a single cycle.

[CKN’13] rk2(Mk
match) = lps(Mk

match) = 2k/2−1 → tight upper and
lower bound for Ham Cyc/pw and ⊕2-Ham Cyc/pw .

[CLN’18] rk(Mk
match) ≥ 4k → tight lower bound for #Ham Cyc/pw .

4 / 29

Rank-based approach: Specific cases

Gian-Carlo Rota: ”Publish the same result several times”.

Forest connectivity matrix Mk
for :

Rows and columns are indexed by forests on vertex set [k]. Matrix
indicates whether the (multi-set) union forms a tree.

[CNPPRW’11] rk2(Mn
for) = 2k−1 → single-exponential runtime for

many connectivity problems parameterized by tree-width.

[BCKN’13] rk(Mn
for) = 4k → matching counting algo’s

Matchings connectivity matrix Mk
match

Rows and columns indexed by perfect matchings on vertex set [k].
Matrix indicated whether the union forms a single cycle.

[CKN’13] rk2(Mk
match) = lps(Mk

match) = 2k/2−1 → tight upper and
lower bound for Ham Cyc/pw and ⊕2-Ham Cyc/pw .

[CLN’18] rk(Mk
match) ≥ 4k → tight lower bound for #Ham Cyc/pw .

4 / 29

Rank-based approach: Specific cases

Gian-Carlo Rota: ”Publish the same result several times”.

Forest connectivity matrix Mk
for :

Rows and columns are indexed by forests on vertex set [k]. Matrix
indicates whether the (multi-set) union forms a tree.

[CNPPRW’11] rk2(Mn
for) = 2k−1 → single-exponential runtime for

many connectivity problems parameterized by tree-width.

[BCKN’13] rk(Mn
for) = 4k → matching counting algo’s

Matchings connectivity matrix Mk
match

Rows and columns indexed by perfect matchings on vertex set [k].
Matrix indicated whether the union forms a single cycle.

[CKN’13] rk2(Mk
match) = lps(Mk

match) = 2k/2−1 → tight upper and
lower bound for Ham Cyc/pw and ⊕2-Ham Cyc/pw .

[CLN’18] rk(Mk
match) ≥ 4k → tight lower bound for #Ham Cyc/pw .

4 / 29

Rank-based approach: Specific cases

Gian-Carlo Rota: ”Publish the same result several times”.

Forest connectivity matrix Mk
for :

Rows and columns are indexed by forests on vertex set [k]. Matrix
indicates whether the (multi-set) union forms a tree.

[CNPPRW’11] rk2(Mn
for) = 2k−1 → single-exponential runtime for

many connectivity problems parameterized by tree-width.

[BCKN’13] rk(Mn
for) = 4k → matching counting algo’s

Matchings connectivity matrix Mk
match

Rows and columns indexed by perfect matchings on vertex set [k].
Matrix indicated whether the union forms a single cycle.

[CKN’13] rk2(Mk
match) = lps(Mk

match) = 2k/2−1 → tight upper and
lower bound for Ham Cyc/pw and ⊕2-Ham Cyc/pw .

[CLN’18] rk(Mk
match) ≥ 4k → tight lower bound for #Ham Cyc/pw .

4 / 29

Tight bounds for counting colorings parameterised
by cutwidth via matrix ranks

Jesper Nederlof
(slides by Carla Groenland and Isja Mannens)

Utrecht University

Joint work with Isja Mannens, Jesper Nederlof and Krisztina Szilágyi
STACS 2022

May 2, 2022

5 / 29

q-list coloring

Given: Graph G = (V ,E) and for each v ∈ V , a list L(v) ⊆ {1, . . . , q}.

Want: c(v) ∈ L(v) for all v ∈ V such that c(u) 6= c(v) for uv ∈ E .

#q-list col mod p
Given. G graph, lists L(v) ⊆ {1, . . . , q} for all v ∈ V (G), k ∈ Fp.
Output. What is the number of list colorings of G modulo p?

6 / 29

Tight bounds for counting colorings parameterised
by cutwidth via matrix ranks

Jesper Nederlof
(slides by Carla Groenland and Isja Mannens)

Utrecht University

Joint work with Isja Mannens, Jesper Nederlof and Krisztina Szilágyi
STACS 2022

May 2, 2022

7 / 29

Cutwidth

maxσ mini # edges crossing ith cut

8 / 29

Pathwidth

−1 + maxσ mini # left endpoints of edges crossing ith cut

9 / 29

Tight bounds for counting colorings
parameterised by cutwidth via matrix ranks

Jesper Nederlof
(slides by Carla Groenland and Isja Mannens)

Utrecht University

Joint work with Isja Mannens, Jesper Nederlof and Krisztina Szilágyi
STACS 2022

May 2, 2022

10 / 29

Hypothesis used for Lower bound

Strong Exponential Time Hypothesis (SETH)

For all ε > 0, there is some k ≥ 3 such that k-SAT cannot be solved in
time O((2− ε)n).

11 / 29

q-coloring parameterised by width

q-col: does a given graph admit a q-coloring?

Treewidth. Dynamic programming: qtwpoly(n).

Also extends to #q-list col.

No (q − ε)twpoly(n) algorithm under SETH.

(Lokshtanov, Marx and Saurabh, 2011)

Cutwidth. Randomised algorithm: 2ctwpoly(n).

Does not extend to #q-list col.

No (2− ε)ctwpoly(n) algorithm under SETH.

(Nederlof, Jansen, 2018)

Present paper builds on some insights from this paper

12 / 29

Our result

For n-vertex graphs of cutwidth ctw , there is an algorithm running in time{
qctwpoly(n) if p does not divide q − 1,

(q − 1)ctwpoly(n) if p divides q − 1.

Furthermore, under SETH there is no (q − ε)ctwpoly(n) resp.
(q − 1− ε)ctwpoly(n) algorithms in these cases.

13 / 29

Coloring compatibility matrix

col(X) = set of list q-colorings of G [X].

Bipartite graph (X ,Y ,E), x ∈ col(X) and y ∈ col(Y).

Compatible: x ∼ y if x(u) 6= y(v) for all uv ∈ E .

Coloring compatibility matrix

M[x , y] =

{
1 if x ∼ y ,

0 if x 6∼ y .

rkp(M) depends on whether p divides q − 1.

14 / 29

Coloring compatibility matrix

col(X) = set of list q-colorings of G [X].

Bipartite graph (X ,Y ,E), x ∈ col(X) and y ∈ col(Y).

Compatible: x ∼ y if x(u) 6= y(v) for all uv ∈ E .

Coloring compatibility matrix

M[x , y] =

{
1 if x ∼ y ,

0 if x 6∼ y .

rkp(M) depends on whether p divides q − 1.

14 / 29

Coloring compatibility matrix

col(X) = set of list q-colorings of G [X].

Bipartite graph (X ,Y ,E), x ∈ col(X) and y ∈ col(Y).

Compatible: x ∼ y if x(u) 6= y(v) for all uv ∈ E .

Coloring compatibility matrix

M[x , y] =

{
1 if x ∼ y ,

0 if x 6∼ y .

rkp(M) depends on whether p divides q − 1.

14 / 29

Rank of coloring compatibility matrix

Bipartite graph (X ,Y ,E), for x ∈ col(X) and y ∈ col(Y) q-colorings

M[x , y] =

{
1 if x ∼ y ,

0 if x 6∼ y .

rkp(M) ≤ (q − 1)|E | if p divides q − 1 and ≤ q|E | otherwise.


y(v) = 1 y(v) = 2 y(v) = 3 y(v) = 4

x(u) = 1 0 1 1 1
x(u) = 2 1 0 1 1
x(u) = 3 1 1 0 1
x(u) = 4 1 1 1 0



15 / 29

Rank of coloring compatibility matrix

Bipartite graph (X ,Y ,E), for x ∈ col(X) and y ∈ col(Y) q-colorings

M[x , y] =

{
1 if x ∼ y ,

0 if x 6∼ y .

rkp(M) ≤ (q − 1)|E | if p divides q − 1 and ≤ q|E | otherwise.


y(v) = 1 y(v) = 2 y(v) = 3 y(v) = 4

x(u) = 1 0 1 1 1
x(u) = 2 1 0 1 1
x(u) = 3 1 1 0 1
x(u) = 4 1 1 1 0



15 / 29

Cutwidth order v1, . . . , vn.

Gi = G [{v1, . . . , vi}], the ith cut gives a bipartite graph (Li ,Ri).

Xi = Li ∪ {vi}, Yi = N[Xi] = Ri .

16 / 29

Dynamic programming

Cutwidth order v1, . . . , vn.

Gi = G [{v1, . . . , vi}], the ith cut gives a bipartite graph (Li ,Ri).

Xi = Li ∪ {vi}, Yi = N[Xi] = Ri .

For x ∈ col(Xi),

Ti [x] = number of extensions of x to Gi

= number of c ∈ col(Gi − Xi) with c ∼ x

=
∑

c∈col(Gi−Xi):c∼x

Ti−1[z|Xi−1
].

Table size |col(Xi)| = q|Xi | ≤ qctw+1.

17 / 29

Dynamic programming

Cutwidth order v1, . . . , vn.

Gi = G [{v1, . . . , vi}], the ith cut gives a bipartite graph (Li ,Ri).

Xi = Li ∪ {vi}, Yi = N[Xi] = Ri .

For x ∈ col(Xi),

Ti [x] = number of extensions of x to Gi

= number of c ∈ col(Gi − Xi) with c ∼ x

=
∑

c∈col(Gi−Xi):c∼x

Ti−1[z|Xi−1
].

Table size |col(Xi)| = q|Xi | ≤ qctw+1.

17 / 29

Representative sets

Idea. Compute smaller table ‘representative’ of bigger table.

Coloring compatibility matrix Mi of bipartite graph on between Xi and Yi .
For y ∈ col(Yi), ∑

x∈col(Xi)

Ti [x]Mi [x , y] = (T t
i Mi)[y]

gives the number of c ∈ col(Gi) compatible with y .

T ′i is Mi -representative for Ti if T t
i Mi ≡p (T ′i)

tMi .

18 / 29

Representative sets

Idea. Compute smaller table ‘representative’ of bigger table.

Coloring compatibility matrix Mi of bipartite graph on between Xi and Yi .
For y ∈ col(Yi), ∑

x∈col(Xi)

Ti [x]Mi [x , y] = (T t
i Mi)[y]

gives the number of c ∈ col(Gi) compatible with y .

T ′i is Mi -representative for Ti if T t
i Mi ≡p (T ′i)tMi .

18 / 29

Reducing the table size

T ′i is Mi -representative for Ti if T t
i Mi ≡p (T ′i)tMi .

If we know T ′i [x] = 0, we do not need to compute it.

Linear algebra =⇒ there exists such T ′i with |supp(T ′i)| ≤ rankp(Mi).

1 2 3

1 : a 0 1 1
2 : b 1 0 1
3 : c 1 1 0

1 2 3

1 : a + c 0 1 1
2 : b + c 1 0 1

3 : 0 1 1 0

Can we efficiently compute T ′i ?

Can we exploit the zeros?

Maintain R ⊆ Xi such that T ′i [x] = 0 if x(v) = q for some v ∈ R.

T ′i fully reduced if {v ∈ Xi : deg(v) = 1} ⊆ R.

19 / 29

Reducing the table size

T ′i is Mi -representative for Ti if T t
i Mi ≡p (T ′i)tMi .

If we know T ′i [x] = 0, we do not need to compute it.

Linear algebra =⇒ there exists such T ′i with |supp(T ′i)| ≤ rankp(Mi).

1 2 3

1 : a 0 1 1
2 : b 1 0 1
3 : c 1 1 0

1 2 3

1 : a + c 0 1 1
2 : b + c 1 0 1

3 : 0 1 1 0

Can we efficiently compute T ′i ?

Can we exploit the zeros?

Maintain R ⊆ Xi such that T ′i [x] = 0 if x(v) = q for some v ∈ R.

T ′i fully reduced if {v ∈ Xi : deg(v) = 1} ⊆ R.

19 / 29

Reducing the table size

T ′i is Mi -representative for Ti if T t
i Mi ≡p (T ′i)tMi .

If we know T ′i [x] = 0, we do not need to compute it.

Linear algebra =⇒ there exists such T ′i with |supp(T ′i)| ≤ rankp(Mi).

1 2 3

1 : a 0 1 1
2 : b 1 0 1
3 : c 1 1 0

1 2 3

1 : a + c 0 1 1
2 : b + c 1 0 1

3 : 0 1 1 0

Can we efficiently compute T ′i ?

Can we exploit the zeros?

Maintain R ⊆ Xi such that T ′i [x] = 0 if x(v) = q for some v ∈ R.

T ′i fully reduced if {v ∈ Xi : deg(v) = 1} ⊆ R.

19 / 29

Reducing the table size

T ′i is Mi -representative for Ti if T t
i Mi ≡p (T ′i)tMi .

If we know T ′i [x] = 0, we do not need to compute it.

Linear algebra =⇒ there exists such T ′i with |supp(T ′i)| ≤ rankp(Mi).

1 2 3

1 : a 0 1 1
2 : b 1 0 1
3 : c 1 1 0

1 2 3

1 : a + c 0 1 1
2 : b + c 1 0 1

3 : 0 1 1 0

Can we efficiently compute T ′i ?

Can we exploit the zeros?

Maintain R ⊆ Xi such that T ′i [x] = 0 if x(v) = q for some v ∈ R.

T ′i fully reduced if {v ∈ Xi : deg(v) = 1} ⊆ R.

19 / 29

Table size

Number of x : X → {1, . . . , q} with x(v) 6= q for all v ∈ R is at most

(q − 1)|R|q|X |−|R|.

For each x we have a table entry Ti [x].
Since |X \ R| ≤ 1

2(ctw − |R|), this is at most (q − 1)ctw .

20 / 29

Table size

Number of x : X → {1, . . . , q} with x(v) 6= q for all v ∈ R is at most

(q − 1)|R|q|X |−|R|.

For each x we have a table entry Ti [x].
Since |X \ R| ≤ 1

2(ctw − |R|), this is at most (q − 1)ctw .

20 / 29

Upper bound sketch

Algorithm. Initialise for i = 1. For i = 2, . . . , n,

Ensure T ′i−1 fully reduced.

Compute T ′i from T ′i−1.

Lemma 1. If v ∈ Xi degree 1, then can compute T ′ representative for T
with set of reduced vertices R ∪ {v} in time O((q − 1)|R|q|Xi |−|R|).

(Proof of Lemma 1 uses p divides q − 1.)

Lemma 2. If T ′i−1 representative for Ti−1 and fully reduced, then can
compute T ′i representative for Ti in time O((q − 1)ctw).

21 / 29

Upper bound sketch

Algorithm. Initialise for i = 1. For i = 2, . . . , n,

Ensure T ′i−1 fully reduced.

Compute T ′i from T ′i−1.

Lemma 1. If v ∈ Xi degree 1, then can compute T ′ representative for T
with set of reduced vertices R ∪ {v} in time O((q − 1)|R|q|Xi |−|R|).

(Proof of Lemma 1 uses p divides q − 1.)

Lemma 2. If T ′i−1 representative for Ti−1 and fully reduced, then can
compute T ′i representative for Ti in time O((q − 1)ctw).

21 / 29

Upper bound sketch

Algorithm. Initialise for i = 1. For i = 2, . . . , n,

Ensure T ′i−1 fully reduced.

Compute T ′i from T ′i−1.

Lemma 1. If v ∈ Xi degree 1, then can compute T ′ representative for T
with set of reduced vertices R ∪ {v} in time O((q − 1)|R|q|Xi |−|R|).

(Proof of Lemma 1 uses p divides q − 1.)

Lemma 2. If T ′i−1 representative for Ti−1 and fully reduced, then can
compute T ′i representative for Ti in time O((q − 1)ctw).

21 / 29

Lower bound

Under SETH, #CSP(q, r) mod p cannot be solved in (q − ε)npoly(n,m)
for some r [Lampis, ’20 (and others?)]

n variables, m constraints
Constraints {1, . . . , q}r → {0, 1} depend on at most r variables.
Count number of satisfying assignments mod p.

22 / 29

One column per constraint; one row per variable.

Cutwidth = n + O(1), number of vertices = poly(n,m).

23 / 29

Want: number of q-colorings equals number of satisfying assignments.

“Identify a q-coloring with an assignment; check and copy.”

24 / 29

25 / 29

26 / 29

Exploiting invertibility

Fix c2, c3 colorings of v1,2 and v1,3 respectively. The number of extensions
of these colorings to the red graph equals

∑
c ′2

f [c2, c
′
2]M[c ′2, c3] = fM = M−1M = I ,

if we can set f [c2, c
′
2] = M−1[c ′2, c2].

27 / 29

Exploiting invertibility

Fix c2, c3 colorings of v1,2 and v1,3 respectively. The number of extensions
of these colorings to the red graph equals∑

c ′2

f [c2, c
′
2]M[c ′2, c3] = fM = M−1M = I ,

if we can set f [c2, c
′
2] = M−1[c ′2, c2].

27 / 29

Counting connected edge sets

Given G = (V ,E), how many X ⊆ E (G) are there for which (V ,X) is
connected?

Tutte polynomial can link this to number of q-colorings.

=⇒ under SETH there is no (p − ε)ctwpoly(n) algorithm.

‘Correct’ running times: pctwpoly(n), ppwpoly(n), ptwpoly(n).

28 / 29

Summary

Running time for counting modulo p the number of q-list colorings of
n-vertex graphs of cutwidth ctw is{

qctwpoly(n) if p does not divide q − 1,

(q − 1)ctwpoly(n) if p divides q − 1.

The rank over Fp of the matrix Jq − Iq (zeros on the diagonal, ones
everywhere else) is{

q if p does not divide q − 1,

q − 1 if p divides q − 1.

29 / 29

