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Rank-based approach: General setting

Consider a divide and conquer scheme for comp. problem prob

Suppose it divides global solutions in families A,B of partial solutions

Thus, in the conquer step we need to find a ∈ A and b ∈ B that fit, i.e.
combine into a global solution.

Consider the compatibility matrix M

Rows are indexed by A, columns by B
M[a, b] is 1 if a, b combine to global solution; 0 otherwise

Rank-based approach: Number of relevant partial solutions can be
reduced be at most the ...-rank of M. Moreover, with proper gadgeteering
(so far always in the context of parameterization by width measures), a
matching conditional lower bound can be designed.

For prob, this is the largest permutation submatrix lps(M)

For the #prob, this is the rank of rk(M) over the reals.

For ⊕p-prob, this is the rank of rkp(M) over Zp.
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Rank-based approach: Specific cases

Gian-Carlo Rota: ”Publish the same result several times”.

Forest connectivity matrix Mk
for :

Rows and columns are indexed by forests on vertex set [k]. Matrix
indicates whether the (multi-set) union forms a tree.

[CNPPRW’11] rk2(Mn
for ) = 2k−1 → single-exponential runtime for

many connectivity problems parameterized by tree-width.

[BCKN’13] rk(Mn
for ) = 4k → matching counting algo’s

Matchings connectivity matrix Mk
match

Rows and columns indexed by perfect matchings on vertex set [k].
Matrix indicated whether the union forms a single cycle.

[CKN’13] rk2(Mk
match) = lps(Mk

match) = 2k/2−1 → tight upper and
lower bound for Ham Cyc/pw and ⊕2-Ham Cyc/pw .

[CLN’18] rk(Mk
match) ≥ 4k → tight lower bound for #Ham Cyc/pw .
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q-list coloring

Given: Graph G = (V ,E ) and for each v ∈ V , a list L(v) ⊆ {1, . . . , q}.

Want: c(v) ∈ L(v) for all v ∈ V such that c(u) 6= c(v) for uv ∈ E .

#q-list col mod p
Given. G graph, lists L(v) ⊆ {1, . . . , q} for all v ∈ V (G ), k ∈ Fp.
Output. What is the number of list colorings of G modulo p?
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Cutwidth

maxσ mini # edges crossing ith cut

8 / 29



Pathwidth

−1 + maxσ mini # left endpoints of edges crossing ith cut
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Hypothesis used for Lower bound

Strong Exponential Time Hypothesis (SETH)

For all ε > 0, there is some k ≥ 3 such that k-SAT cannot be solved in
time O((2− ε)n).

11 / 29



q-coloring parameterised by width

q-col: does a given graph admit a q-coloring?

Treewidth. Dynamic programming: qtwpoly(n).

Also extends to #q-list col.

No (q − ε)twpoly(n) algorithm under SETH.

(Lokshtanov, Marx and Saurabh, 2011)

Cutwidth. Randomised algorithm: 2ctwpoly(n).

Does not extend to #q-list col.

No (2− ε)ctwpoly(n) algorithm under SETH.

(Nederlof, Jansen, 2018)

Present paper builds on some insights from this paper

12 / 29



Our result

For n-vertex graphs of cutwidth ctw , there is an algorithm running in time{
qctwpoly(n) if p does not divide q − 1,

(q − 1)ctwpoly(n) if p divides q − 1.

Furthermore, under SETH there is no (q − ε)ctwpoly(n) resp.
(q − 1− ε)ctwpoly(n) algorithms in these cases.

13 / 29



Coloring compatibility matrix

col(X ) = set of list q-colorings of G [X ].

Bipartite graph (X ,Y ,E ), x ∈ col(X ) and y ∈ col(Y ).

Compatible: x ∼ y if x(u) 6= y(v) for all uv ∈ E .

Coloring compatibility matrix

M[x , y ] =

{
1 if x ∼ y ,

0 if x 6∼ y .

rkp(M) depends on whether p divides q − 1.
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Rank of coloring compatibility matrix

Bipartite graph (X ,Y ,E ), for x ∈ col(X ) and y ∈ col(Y ) q-colorings

M[x , y ] =

{
1 if x ∼ y ,

0 if x 6∼ y .

rkp(M) ≤ (q − 1)|E | if p divides q − 1 and ≤ q|E | otherwise.


y(v) = 1 y(v) = 2 y(v) = 3 y(v) = 4

x(u) = 1 0 1 1 1
x(u) = 2 1 0 1 1
x(u) = 3 1 1 0 1
x(u) = 4 1 1 1 0


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Cutwidth order v1, . . . , vn.

Gi = G [{v1, . . . , vi}], the ith cut gives a bipartite graph (Li ,Ri ).

Xi = Li ∪ {vi}, Yi = N[Xi ] = Ri .

16 / 29



Dynamic programming

Cutwidth order v1, . . . , vn.

Gi = G [{v1, . . . , vi}], the ith cut gives a bipartite graph (Li ,Ri ).

Xi = Li ∪ {vi}, Yi = N[Xi ] = Ri .

For x ∈ col(Xi ),

Ti [x ] = number of extensions of x to Gi

= number of c ∈ col(Gi − Xi ) with c ∼ x

=
∑

c∈col(Gi−Xi ):c∼x

Ti−1[z|Xi−1
].

Table size |col(Xi )| = q|Xi | ≤ qctw+1.
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Representative sets

Idea. Compute smaller table ‘representative’ of bigger table.

Coloring compatibility matrix Mi of bipartite graph on between Xi and Yi .
For y ∈ col(Yi ), ∑

x∈col(Xi )

Ti [x ]Mi [x , y ] = (T t
i Mi )[y ]

gives the number of c ∈ col(Gi ) compatible with y .

T ′i is Mi -representative for Ti if T t
i Mi ≡p (T ′i )

tMi .
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Reducing the table size

T ′i is Mi -representative for Ti if T t
i Mi ≡p (T ′i )tMi .

If we know T ′i [x ] = 0, we do not need to compute it.

Linear algebra =⇒ there exists such T ′i with |supp(T ′i )| ≤ rankp(Mi ).

1 2 3

1 : a 0 1 1
2 : b 1 0 1
3 : c 1 1 0

1 2 3

1 : a + c 0 1 1
2 : b + c 1 0 1

3 : 0 1 1 0

Can we efficiently compute T ′i ?

Can we exploit the zeros?

Maintain R ⊆ Xi such that T ′i [x ] = 0 if x(v) = q for some v ∈ R.

T ′i fully reduced if {v ∈ Xi : deg(v) = 1} ⊆ R.

19 / 29
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Table size

Number of x : X → {1, . . . , q} with x(v) 6= q for all v ∈ R is at most

(q − 1)|R|q|X |−|R|.

For each x we have a table entry Ti [x ].
Since |X \ R| ≤ 1

2(ctw − |R|), this is at most (q − 1)ctw .
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Upper bound sketch

Algorithm. Initialise for i = 1. For i = 2, . . . , n,

Ensure T ′i−1 fully reduced.

Compute T ′i from T ′i−1.

Lemma 1. If v ∈ Xi degree 1, then can compute T ′ representative for T
with set of reduced vertices R ∪ {v} in time O((q − 1)|R|q|Xi |−|R|).

(Proof of Lemma 1 uses p divides q − 1.)

Lemma 2. If T ′i−1 representative for Ti−1 and fully reduced, then can
compute T ′i representative for Ti in time O((q − 1)ctw ).

21 / 29



Upper bound sketch

Algorithm. Initialise for i = 1. For i = 2, . . . , n,

Ensure T ′i−1 fully reduced.

Compute T ′i from T ′i−1.

Lemma 1. If v ∈ Xi degree 1, then can compute T ′ representative for T
with set of reduced vertices R ∪ {v} in time O((q − 1)|R|q|Xi |−|R|).

(Proof of Lemma 1 uses p divides q − 1.)

Lemma 2. If T ′i−1 representative for Ti−1 and fully reduced, then can
compute T ′i representative for Ti in time O((q − 1)ctw ).

21 / 29



Upper bound sketch

Algorithm. Initialise for i = 1. For i = 2, . . . , n,

Ensure T ′i−1 fully reduced.

Compute T ′i from T ′i−1.

Lemma 1. If v ∈ Xi degree 1, then can compute T ′ representative for T
with set of reduced vertices R ∪ {v} in time O((q − 1)|R|q|Xi |−|R|).

(Proof of Lemma 1 uses p divides q − 1.)

Lemma 2. If T ′i−1 representative for Ti−1 and fully reduced, then can
compute T ′i representative for Ti in time O((q − 1)ctw ).

21 / 29



Lower bound

Under SETH, #CSP(q, r) mod p cannot be solved in (q − ε)npoly(n,m)
for some r [Lampis, ’20 (and others?)]

n variables, m constraints
Constraints {1, . . . , q}r → {0, 1} depend on at most r variables.
Count number of satisfying assignments mod p.

22 / 29



One column per constraint; one row per variable.

Cutwidth = n + O(1), number of vertices = poly(n,m).
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Want: number of q-colorings equals number of satisfying assignments.

“Identify a q-coloring with an assignment; check and copy.”

24 / 29



25 / 29



26 / 29



Exploiting invertibility

Fix c2, c3 colorings of v1,2 and v1,3 respectively. The number of extensions
of these colorings to the red graph equals

∑
c ′2

f [c2, c
′
2]M[c ′2, c3] = fM = M−1M = I ,

if we can set f [c2, c
′
2] = M−1[c ′2, c2].
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Counting connected edge sets

Given G = (V ,E ), how many X ⊆ E (G ) are there for which (V ,X ) is
connected?

Tutte polynomial can link this to number of q-colorings.

=⇒ under SETH there is no (p − ε)ctwpoly(n) algorithm.

‘Correct’ running times: pctwpoly(n), ppwpoly(n), ptwpoly(n).
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Summary

Running time for counting modulo p the number of q-list colorings of
n-vertex graphs of cutwidth ctw is{

qctwpoly(n) if p does not divide q − 1,

(q − 1)ctwpoly(n) if p divides q − 1.

The rank over Fp of the matrix Jq − Iq (zeros on the diagonal, ones
everywhere else) is{

q if p does not divide q − 1,

q − 1 if p divides q − 1.
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