
Case 1 d ≤ 20.86𝑛𝑛 (few distinct sums)
a) Hash mod 𝑂𝑂(𝑑𝑑), which makes t = 𝑂𝑂∗(𝑑𝑑)

By a union bound over all sums from 𝑤𝑤(2[𝑛𝑛]),
introduce false positives with only constant probability

b) Use 𝑂𝑂∗(𝑡𝑡) time poly space algo [LN(STOC’10)]
Interpolates the polynomial 𝑝𝑝 𝑥𝑥 = ∏𝑖𝑖=1

𝑛𝑛 (1 + 𝑥𝑥𝑤𝑤𝑖𝑖)
to determine the coefficient of 𝑥𝑥𝑡𝑡 using inverse DFT

Case 2 d > 20.86𝑛𝑛 (many distinct sums)
a) Upper bound max bin size

Our Contribution

Faster Space-Efficient Algorithms for Subset Sum
Nikhil Bansal1, Shashwat Garg1, Jesper Nederlof1, Nikhil Vyas2

1. Eindhoven University of Technology, Eindhoven, Netherlands 2. Indian Institute of Technology Bombay, India

Bibliography [AKKN(STACS’16)] Austrin, Kaski, Koivisto, Nederlof, Dense Subset Sum may be the hardest [BCM(FOCS’13)] Beame, Clifford, Machmouchi, Element Distinctness, Frequency Moments, and
Sliding Windows [NLZ (MFCS’12)] Nederlof, van Leeuwen, van der Zwaan, Reducing a Target Interval to a Few Exact Queries [SS(SICOMP’81)] Schroeppel, Schamir A T=O(2n/2), S=O(2n/4) Algorithm for Certain
NP-Complete Problems [HS(JACM’74)] Horowitz, Sahni Computing Partitions with Applications to the Knapsack Problem [LN(STOC’10)] Lokshtanov, Nederlof Saving space by algebraization

Proof idea main theoremAbstract

Given integers 𝑤𝑤1, … ,𝑤𝑤𝑛𝑛, 𝑡𝑡,

is there 𝑋𝑋 ⊆ 𝑛𝑛 with 𝑤𝑤 𝑋𝑋 = 𝑡𝑡?

Introduction

We present randomized algorithms that solve Subset Sum and Knapsack
Instances with 𝑛𝑛 items in 𝑂𝑂∗ 20.86𝑛𝑛 time and polynomial space, assuming
random read-only access to exponentially many random bits. Here 𝑂𝑂∗()
omits factor polynomial in the input size.
Underlying these results is an algorithm that determines whether two given
lists of length 𝑛𝑛 with integers bounded by a polynomial in 𝑛𝑛 share a
common value. Assuming random read-only access to random bits, we
show that this problem can be solved using 𝑂𝑂(log𝑛𝑛) space significantly
faster than the trivial 𝑂𝑂(𝑛𝑛2) time algorithm if no value occurs too often in
the same list.

Subset Sum
(SSS) 𝑤𝑤 𝑋𝑋 : = ∑𝑖𝑖∈𝑋𝑋𝑤𝑤𝑖𝑖

𝑤𝑤1, … ,𝑤𝑤12 = {1, 2, 3, 4, 5, 6, 7,
8, 9, 10, 11, 12}, 𝑡𝑡 = 50

Example SSS
instance

Main question: How efficiently can we solve SSS exactly?

Classic DP by [Bellman (50’s)] : 𝑂𝑂∗(𝑡𝑡) time and space
– Improved to 𝑂𝑂∗(𝑡𝑡) time and poly space [LN(STOC’10)]

Instances with small t:
Some known results

Meet-in-the-middle (MitM) [HS(JACM’74)]: 𝑂𝑂∗(2𝑛𝑛/2) time

– In 𝑂𝑂∗(2𝑛𝑛/2) time, 𝑂𝑂∗(2𝑛𝑛/4) space [SS(SICOMP’81)]
– In 𝑂𝑂∗(20.49991𝑛𝑛) time, if ≥ 20.997𝑛𝑛 distinct sums [AKKN(STACS’16)]

Instance with large t (i.e. 𝑡𝑡 = 2𝑛𝑛):

1. Let L = (𝑤𝑤1, … ,𝑤𝑤𝑛𝑛/2) R = (𝑤𝑤𝑛𝑛/2+1, … ,𝑤𝑤𝑛𝑛)
2. Compute all possible 2𝑛𝑛/2 sums
3. For each v ∈ 𝑥𝑥,

check v ∈ 𝑦𝑦
Sort 𝑦𝑦 + binary search in 3:
𝑂𝑂∗(2𝑛𝑛/2) time and space

𝑤𝑤1, … ,𝑤𝑤𝑛𝑛/2 𝑤𝑤𝑛𝑛/2+1, … ,𝑤𝑤𝑛𝑛 𝑅𝑅𝐿𝐿

Much exciting
recent progress!!

Natural question: Can we beat O∗(2𝑛𝑛) using polynomial space?

Main theorem: SSS in 𝑂𝑂∗(20.86𝑛𝑛) time and poly
space, if given a random oracle is given.

𝑝𝑝𝑝𝑝𝑝𝑝𝑦𝑦(𝑛𝑛) time

Algo

0100111100100
0001010000110
0001101010010

0/1

i’th bit?

• Weaker assumption than
sufficiently strong PRG’s

Thm: Binary LP on 𝑛𝑛 vars, 𝑝𝑝(𝑛𝑛/ log2 𝑛𝑛)
constraints in time 𝑂𝑂∗ 20.86𝑛𝑛 and poly
space, if given a random oracle Oracle stores random bits for us!

Main theorem generalizes to

• Follows by combining Main theorem with [NLZ (MFCS’12)]

Also, random* 3SUM is solved in 𝑂𝑂(𝑛𝑛2.5) time and 𝑂𝑂 log𝑛𝑛 space
*see the paper

See right side
poster

x = 𝑤𝑤 𝑋𝑋 𝑋𝑋⊆𝐿𝐿
y = 𝑡𝑡 − 𝑤𝑤 𝑋𝑋 𝑋𝑋⊆𝑅𝑅

𝑏𝑏𝑚𝑚𝑚𝑚𝑚𝑚 = 𝑚𝑚𝑚𝑚𝑥𝑥𝑣𝑣 |{𝑥𝑥 ∈ {0,1}𝑙𝑙:𝑤𝑤 ⋅ 𝑥𝑥 = 𝑣𝑣}|
𝒘𝒘 𝒅𝒅 𝒃𝒃𝒎𝒎𝒎𝒎𝒎𝒎 Histogram

0 0 0 0 0 1 32

1 2 4 8 16 32 1

1 2 3 4 5 16 3

Lemma AKKN(STACS’16)]:
𝑑𝑑 ⋅ 𝑏𝑏𝑚𝑚𝑚𝑚𝑚𝑚 ≤ 21.5𝑛𝑛

• Subset Sum distribution
smooth: cool AC result!

• Proved via simple
connection to `Uniquely
Decodable Code Pairs’

• As d > 20.86𝑛𝑛, we obtain
𝑏𝑏𝑚𝑚𝑚𝑚𝑚𝑚 ≤ 20.64𝑛𝑛

Let w(2[𝑛𝑛]) = {𝑤𝑤 ⋅ 𝑥𝑥 : x ∈ 0,1 𝑛𝑛}
i.e. all possible 2𝑛𝑛 sums generated by 𝑤𝑤 = 𝑤𝑤1, … ,𝑤𝑤𝑛𝑛
Let 𝑑𝑑 = |𝑤𝑤(2[𝑛𝑛])| i.e. # distinct sums

Given list 𝑧𝑧 of 𝑚𝑚 ints, find two
positions with equal ints, if exist

Element Distinctness (ED)

b) Use Floyd’s cycle finding
Idea: Use MitM without sorting. Need to solve problem similar to

5 3 4 3 2 10 7 8 1 6

Ex. ED instance

Repeat:
1. Define z as the concatenation of x and y
2. (Almost) uniformly sample a solution of ED instance 𝑧𝑧
3. Check if `fake’ solution or a real SSS solution

Thm [BCM(FOCS’13)]: ED in
�𝑂𝑂(𝑚𝑚1.5) time, 𝑂𝑂(log𝑚𝑚)
space, if given random oracle

How to sample fast in step 2.? We extend the following surprising result:

Thm: LD In �𝑂𝑂 𝑚𝑚 𝑓𝑓 time and 𝑂𝑂(log𝑚𝑚) space,
if given f ≥ 𝑓𝑓(𝑥𝑥,𝑦𝑦) and random oracle

Given lists 𝑥𝑥,𝑦𝑦, find two
indices 𝑖𝑖, 𝑗𝑗 s.t. 𝑥𝑥𝑖𝑖 equals 𝑦𝑦𝑗𝑗.

List Disjointness (LD)

5 3 5 8 8 7

Ex. LD instance

4 3 6 2 1 6

And obtain an algorithm for the following general problem

𝑥𝑥 y
Denoting 𝑓𝑓 𝑥𝑥,𝑦𝑦 = ∑𝑣𝑣=1𝑚𝑚 |𝑥𝑥−1 𝑣𝑣 |2 + |𝑦𝑦−1 𝑣𝑣 |2 for #fake sols, we get

i

j

s

Crux: 𝑂𝑂 #𝑓𝑓𝑚𝑚𝑓𝑓𝑓𝑓 𝑠𝑠𝑝𝑝𝑝𝑝𝑠𝑠 ≤ 𝑂𝑂(20.89𝑛𝑛) by max bin bound!

Main ingredient of BCM
Floyd’s `turtle and hare’

	Slide Number 1

