Faster Space-Efficient Algorithms for Subset Sum Nikhil Bansal¹, Shashwat Garg¹, Jesper Nederlof¹, Nikhil Vyas² 1. Eindhoven University of Technology, Eindhoven, Netherlands 2. Indian Institute of Technology Bombay, India

Abstract

We present randomized algorithms that solve Subset Sum and Knapsack Instances with n items in $O^*(2^{0.86n})$ time and polynomial space, assuming random read-only access to exponentially many random bits. Here $O^*()$ omits factor polynomial in the input size.

Underlying these results is an algorithm that determines whether two given lists of length n with integers bounded by a polynomial in n share a common value. Assuming random read-only access to random bits, we show that this problem can be solved using $O(\log n)$ space significantly faster than the trivial $O(n^2)$ time algorithm if no value occurs too often in

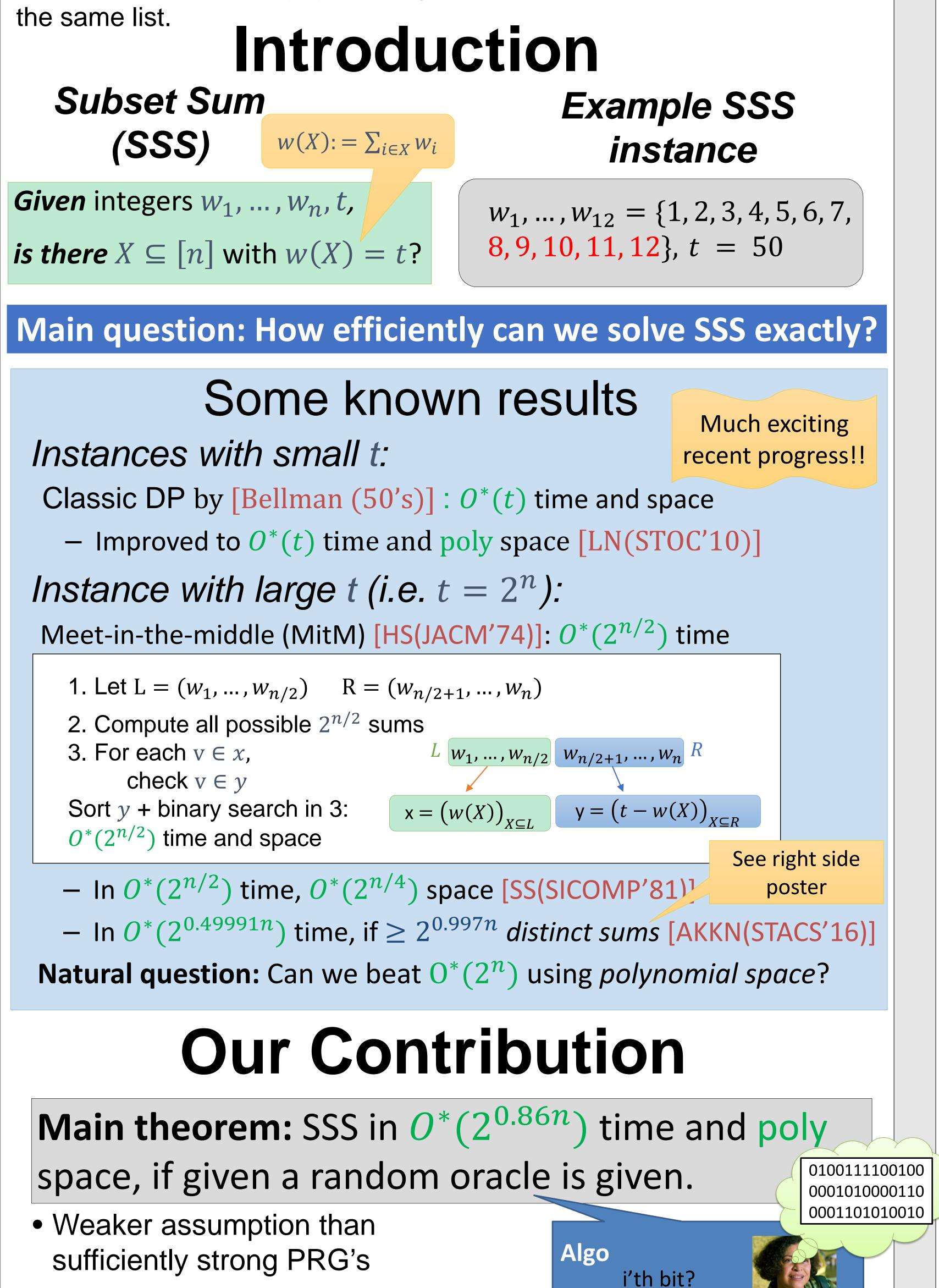
Proof idea main theorem

Let w(2^[n]) = { $w \cdot x : x \in \{0,1\}^n$ } i.e. all possible 2^n sums generated by $w = (w_1, \dots, w_n)$ Let $d = |w(2^{[n]})|$ i.e. # distinct sums **Case 1** d $\leq 2^{0.86n}$ (few distinct sums)

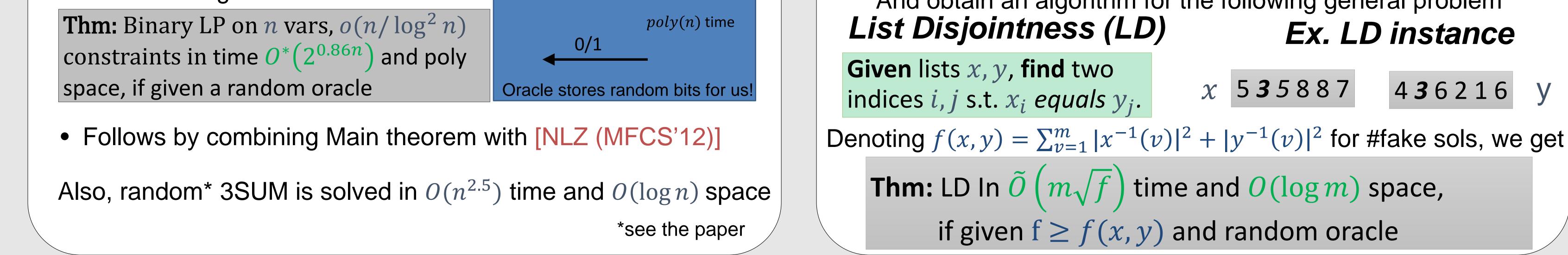
a) Hash mod O(d), which makes $t = O^*(d)$

By a union bound over all sums from $w(2^{[n]})$, introduce false positives with only constant probability **b)** Use $O^*(t)$ time **poly** space algo [LN(STOC'10)] Interpolates the polynomial $p(x) = \prod_{i=1}^{n} (1 + x^{w_i})$ to determine the coefficient of x^t using inverse DFT **Case 2** d > $2^{0.86n}$ (many distinct sums) a) Upper bound max bin size $b_{max} = max_{v} | \{x \in \{0,1\}^{l} : w \cdot x = v\} |$ Lemma AKKN(STACS'16)]: \boldsymbol{b}_{max} Histogram d W $d \cdot b_{max} \leq 2^{1.5n}$ 00000 32 1 Subset Sum distribution smooth: cool AC result! 124816 32 1 Proved via simple connection to `Uniquely **Decodable Code Pairs'** 12345 16 3 • As $d > 2^{0.86n}$, we obtain $b_{max} \le 2^{0.64n}$ **b)** Use Floyd's cycle finding Idea: Use MitM without sorting. Need to solve problem similar to Element Distinctness (ED) **Ex. ED instance Given** list *z* of *m* ints, **find** two 5 **3** 4 **3** 2 10 7 8 1 6 positions with equal ints, if exist Repeat: 1. Define z as the concatenation of x and y 2. (Almost) uniformly sample a solution of ED instance z3. Check if `fake' solution or a real SSS solution) by max bin bound! Crux: (How to sample fast in step 2.? We extend the following surprising result: Thm [BCM(FOCS'13)]: ED in $\tilde{O}(m^{1.5})$ time, $O(\log m)$ Main ingredient of **BCM** space, if given random oracle Floyd's `turtle and hare' And obtain an algorithm for the following general problem

V



Main theorem generalizes to



Bibliography [AKKN(STACS'16)] Austrin, Kaski, Koivisto, Nederlof, Dense Subset Sum may be the hardest [BCM(FOCS'13)] Beame, Clifford, Machmouchi, Element Distinctness, Frequency Moments, and Sliding Windows [NLZ (MFCS'12)] Nederlof, van Leeuwen, van der Zwaan, Reducing a Target Interval to a Few Exact Queries [SS(SICOMP'81)] Schroeppel, Schamir A T=O(2^{n/2}), S=O(2^{n/4}) Algorithm for Certain NP-Complete Problems [HS(JACM'74)] Horowitz, Sahni Computing Partitions to the Knapsack Problem [LN(STOC'10)] Lokshtanov, Nederlof Saving space by algebraization.