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Fine-Grained Complexity hypotheses and consequences Consequences for Clique problems
Weighted) k-Clique in Hypergraphs

Problem k-SAT: Given formula in k-CNF with n variables, Is it satisfiable? A (Weig ) . P (“L,p —
r-hypergraph: éhypeﬁifph;w@

Strong Exponential Time Hypothesis (SETH): G=WV,E)ywthECc (K) °”

L Ve > 0 3k: k-SAT has no 0(201=9™)-time algorithm y k-Clique in r-hypergraph:

Find vertices vy, ..., v S.L
forany e € {v,, ..., v} Of size r we have e € E

N - . . )
Hitting Set, Set Splitting, NAE-SAT: 0*(2") butnot 0*((2 — ¢)™) [CDLMNOPSW'16] 0 (n°7°%) known for k-Clique in graphs [NP'85]
Independent Set: 0*(2*") but not 0*((2 — &)™) [LMS‘11] - ’ f ' | ) ' ot ]
\Subset Sum: 5(n+t) but not $1-£20() 817, ABHS’18+:/ O(n*~%) not known for Neg-k-Clique In graphs or k-Cliqgue In 3-hypergraphs
N Problem Negative-k-Clique: it Di i i 3-¢
Problem Orthogonal Vectors: Given sets 4, B € {0,1}¢ r:)f size |Tfl; ) /Given edgegiweighted 1 3 \ /Tree Edit Distance Is not in O[glGI\/I\)N’Q
. are any a € 4,b € B orthogonal? (%; a; - b; = 0) graph G is there a Maximum Weight Rectangle
OV-Hypothesis (OVH) (moderate dimension): Cli h " _ _ i |
L Ve, 8 > 0: OV in d = n® has no 0(n?~¢)-time algorithm y “-1que With Negative s ) IS notin O(n™"°) [BDT'16]
total edge-weight? - o | |
_ L Viterbi's Algorithm cannot be improved
N e Neg-k-Clique-Hypothesis: . _
. i~ . . ¥/ 0k>3N k-Cli h to time O(t n? ) IBT'17]
" No 0(n?~%) algorithm for: Edit Distance, LCS, Diameter-2, Frechet distance, 2 e = ey Aique nas K /
NFA Acceptance, RegExp Matching, ... \”0 O(n"~") algorithm /
[BI'15,ABVW’15,BK'15,VWR’13,B'14,BI'16,BGL’17]
No O(m - n*~¢) algorithm for All Pairs Maxflow [KT'17]
\_ Dynamic graph algorithms, Hardness of Approximation in P, ... Y,
Reasons to believe in fine-grained hypotheses: Proof outline Thm 2(i1)
- decades of effort : :
- restricted algorithms cannot refute them Our focus Chain of reductlc:ns L .
- falsifying them implies circuit lower bounds " " Neg-2k-Clique | 1 [ Exactweight-2k-Clique | 2 2k-Clique 3 (ov)
- falsifying them implies fast algorithms for more problems \ r-hypergraphs ) \ r-hypergraphs ) '\ 2r-hypergraphs )
Our COntrlbUthnS 1 | Reduce threshold to exact target by rounding [VW’'09, NLZ'12]

If (G,w) has a positive k-clique, then:

(G,w) has a k-cligue of weight t for some t € {1,2, ..., k"}
or

(G, E‘) has a positive k-cligue
— solve k" log W = O(logn) instances of ExactWeight-k-Clique

2 | Removing weights by increasing arity inspired by [ALW'14]
Fix r = 2 for simplicity (the same arguments extend for r > 2)

1. Use base B = logn expansion to replace ints w(e) with vectors w,(e)

Conseq uences for Circuit Sat e guess carries ¢, to embed addition into Z¢
2. Assume target vector t equals 0 T o W} (e) =0 V¢

3. Define w''(h) so that (+) holds , , 0
— —
Now the weights are significantly Zf(ZQQC We (e))

/ /
reduced (i.e. at most polylog(n)) | | < Zel,eng 2.oWpley) - wy(ez) =0

- e . W” h —
4. Guess the weight of every (+) ZhEC,IhI—4 ( ) 0

hyperedge In the solution

C = class of circuits

C-SAT: Given a circuit C € C on n variables,
IS C satisfiable?

w(C) = Inf{w]|C-SAT Isintime 0*(2"") }

SETH: Ilim w(k—CNF) =1

— sparse TCO
sparsification lim w(c—sparse k—CNF) = 1 ba "
lemma k,c—o0 CIrCults

[IPZ'01] O

polylog(n)°®™ overhead

5. Keep only edges with the guessed weight.

3 | Encode Constraint Satisfaction problem as Orthogonal Vectors
Fix r = 2 for simplicity (same arguments extend for r > 2)

previously similar results known for sparse (formulas / AC° / VSP-circuits) A contains a vector a = a(uq, ..., u;) for B contains a vector b = b(vy, ..., v for
[SS'12,DW’13,CDLMNOPSW*16]

every k-cligue {u4, ..., u;} of G every k-cligue {v4, ..., vy} of G

\\ We have a dimension for every tuple (i, j,u, v) with i,j € [k], {u, v} € V* \ E:

sparse TC1 Al a.. :{1 ifu; =u b (1 ifvy=vw
clrcuits (l’]’u’v) O OW. (l,],u,v) R O OW.
Proof techniques: « Refinement of techniques from proof of Cook-Levin theorem a, b are non-orthogonal < 3 dimension (i, j,u,v) suchthatu; =u and v; = v
« Valiant’s depth reduction < (U, oo, Ug, Vq, -0, V) 1S NO 2k-Clique

The OV instance is on n = 0(|V|*) vectors of dimension d = 0(|V|?)
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