
𝑐𝑐−sparse depth−d  ∨,∧, ¬,𝑇𝑇𝑇𝑇𝑇𝑇 −circuit 

1. Use base 𝐵𝐵 ≈ log𝑛𝑛 expansion to replace ints 𝑤𝑤(𝑒𝑒) with vectors 𝑤𝑤ℓ′ 𝑒𝑒  
      •  guess carries 𝑐𝑐ℓ to embed addition into ℤ𝑑𝑑 
2. Assume target vector 𝑡𝑡 equals 𝟎𝟎 
3. Define 𝑤𝑤′′ ℎ  so that (+) holds 
 
 
 
4. Guess the weight of every 
    hyperedge in the solution 
 
 
5. Keep only edges with the guessed weight. 
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Fine-Grained Complexity hypotheses and consequences 

Problem 𝒌𝒌-SAT: Given formula in 𝑘𝑘-CNF with 𝑛𝑛 variables, is it satisfiable? 
 
Strong Exponential Time Hypothesis (SETH): 

∀𝜀𝜀 > 0 ∃𝑘𝑘:  𝑘𝑘-SAT has no 𝑂𝑂(2 1−𝜀𝜀 𝑛𝑛)-time algorithm 

Problem Orthogonal Vectors: Given sets 𝐴𝐴,𝐵𝐵 ⊆ {0,1}𝑑𝑑 of size 𝑛𝑛,  
       are any 𝑎𝑎 ∈ 𝐴𝐴, 𝑏𝑏 ∈ 𝐵𝐵 orthogonal?  (∑ 𝑎𝑎𝑖𝑖 ⋅ 𝑏𝑏𝑖𝑖𝑖𝑖 = 0) 
 OV-Hypothesis (OVH) (moderate dimension): 

∀𝜀𝜀, 𝛿𝛿 > 0: OV in 𝑑𝑑 = 𝑛𝑛𝛿𝛿 has no 𝑂𝑂(𝑛𝑛2−𝜀𝜀)-time algorithm 

Hitting Set, Set Splitting, NAE-SAT:  𝑂𝑂∗(2𝑛𝑛) but not 𝑂𝑂∗((2 − 𝜀𝜀)𝑛𝑛)  
Independent Set:  𝑂𝑂∗(2𝑡𝑡𝑡𝑡) but not 𝑂𝑂∗((2 − 𝜀𝜀)𝑡𝑡𝑡𝑡)  

[CDLMNOPSW‘16] 
[LMS‘11] 

Subset Sum:  𝑂𝑂�(𝑛𝑛 + 𝑡𝑡) but not 𝑡𝑡1−𝜀𝜀2𝑜𝑜(𝑛𝑛) [B’17, ABHS’18+] 

No 𝑂𝑂(𝑛𝑛2−𝜀𝜀) algorithm for: Edit Distance, LCS, Diameter-2, Frechet distance, 
        NFA Acceptance, RegExp Matching, ...  

[BI’15,ABVW’15,BK’15,VWR’13,B’14,BI’16,BGL’17] 
No 𝑂𝑂(𝑚𝑚 ⋅ 𝑛𝑛2−𝜀𝜀) algorithm for All Pairs Maxflow [KT’17] 
Dynamic graph algorithms, Hardness of Approximation in P, ... 

Our Contributions 

If SETH fails then: 
there are 𝑂𝑂 2 − 𝜀𝜀 𝑛𝑛 -time algorithms for sparse-TC0-SAT 

If OVH fails then: 
(i) there are 𝑂𝑂 2 − 𝜀𝜀 𝑛𝑛 -time algorithms for sparse-TC1-SAT 
(ii) there are 𝑂𝑂 𝑛𝑛 1−𝜀𝜀 𝑘𝑘 -time algorithms for weighted 𝑘𝑘-Clique 

We find more consequences of falsifying SETH/OVH: 

Thm1 

Thm2 

Reasons to believe in fine-grained hypotheses: 
- decades of effort 
- restricted algorithms cannot refute them 
- falsifying them implies circuit lower bounds 
- falsifying them implies fast algorithms for more problems 

Our focus 

Consequences for Circuit Sat 
𝒞𝒞 =     class of circuits 

𝒞𝒞-SAT: Given a circuit 𝐶𝐶 ∈ 𝒞𝒞 on 𝑛𝑛 variables,  
is 𝐶𝐶 satisfiable?  

𝑥𝑥1 𝑥𝑥2 𝑥𝑥𝑛𝑛 … 

𝐶𝐶 
∧ 

∨ ∨ 

¬ ¬ 
𝜔𝜔(𝒞𝒞) =    inf{ 𝑤𝑤 | 𝒞𝒞-SAT is in time 𝑂𝑂∗(2𝑡𝑡⋅𝑛𝑛) } 

lim
𝑘𝑘→∞

𝜔𝜔 𝑘𝑘−CNF = 1 SETH: 

lim
𝑘𝑘,𝑐𝑐→∞

𝜔𝜔 𝑐𝑐−sparse 𝑘𝑘−CNF = 1 
⟺ 

[IPZ’01] 

sparsification 
lemma 

previously similar results known for sparse (formulas / AC0 / VSP-circuits) 
[SS’12,DW’13,CDLMNOPSW‘16] 

lim
𝑐𝑐,𝑑𝑑→∞

𝜔𝜔                                                                                   = 1 ⟺ 
not known to be in time 2𝑛𝑛/𝑛𝑛𝜔𝜔(1) for 𝑐𝑐 = 100,𝑑𝑑 = 4 

OVH fails ⟹ lim
𝑐𝑐,𝑑𝑑→∞

𝜔𝜔 𝑐𝑐−sparse depth− 𝑑𝑑 log𝑛𝑛  ∨,∧, ¬,𝑇𝑇𝑇𝑇𝑇𝑇 −circuit < 1 

sparse TC0 
circuits 

sparse TC1 
circuits 

Amir Abboud, Karl Bringmann, Holger Dell, Jesper Nederlof 

Proof techniques:  • Refinement of techniques from proof of Cook-Levin theorem 
• Valiant’s depth reduction 

Consequences for Clique problems 
(Weighted) k-Clique in Hypergraphs 

𝑂𝑂(𝑛𝑛𝑘𝑘−𝜀𝜀)  not known for Neg-𝒌𝒌-Clique in graphs or 𝒌𝒌-Clique in 3-hypergraphs 

𝒓𝒓-hypergraph: 
𝐺𝐺 = (𝑉𝑉,𝐸𝐸) with E ⊆ 𝑉𝑉

𝑟𝑟  

𝒌𝒌-Clique in 𝒓𝒓-hypergraph: 

Find vertices 𝑣𝑣1, … , 𝑣𝑣𝑘𝑘 s.t.  
for any 𝑒𝑒 ⊆ {𝑣𝑣1, … , 𝑣𝑣𝑘𝑘} of size 𝑟𝑟 we have 𝑒𝑒 ∈ 𝐸𝐸 

𝑂𝑂(𝑛𝑛0.79𝑘𝑘) known for 𝒌𝒌-Clique in graphs [NP’85] 

2-hypergraph = graph 

Problem Negative-𝒌𝒌-Clique: 

Neg-𝒌𝒌-Clique-Hypothesis: 
∀𝜀𝜀 > 0,𝑘𝑘 ≥ 3: Neg-𝑘𝑘-Clique has 
no 𝑂𝑂(𝑛𝑛𝑘𝑘−𝜀𝜀) algorithm 

Given edge-weighted 
graph 𝐺𝐺 is there a 
k-Clique with negative 
total edge-weight? 

Tree Edit Distance is not in 𝑂𝑂(𝑛𝑛3−𝜀𝜀) 

Maximum Weight Rectangle 
    is not in 𝑂𝑂(𝑛𝑛𝑑𝑑−𝜀𝜀) 

Viterbi’s Algorithm cannot be improved 
to time 𝑂𝑂(𝑡𝑡 𝑛𝑛2−𝜀𝜀) 

[BGMW’18] 

[BDT’16] 

[BT’17] 

OVH fails ⟹  𝑂𝑂(𝑛𝑛𝑘𝑘−𝜀𝜀) for Neg-𝒌𝒌-Clique in 𝒓𝒓-hypergraphs, 
    for any 𝑘𝑘 ≫ 𝑟𝑟 and weights bounded by 𝑛𝑛𝑓𝑓(𝑘𝑘) 

Proof outline Thm 2(ii) 

Neg-𝟐𝟐𝒌𝒌-Clique 
𝒓𝒓-hypergraphs 

ExactWeight-𝟐𝟐𝒌𝒌-Clique  
𝒓𝒓-hypergraphs 

𝟐𝟐𝒌𝒌-Clique  
𝟐𝟐𝒓𝒓-hypergraphs OV 

1 2 3 
Chain  of  reduct ions 

1 
If (𝐺𝐺,𝑤𝑤) has a positive 𝑘𝑘-clique, then: 

(𝐺𝐺,𝑤𝑤) has a 𝑘𝑘-clique of weight 𝑡𝑡 for some 𝑡𝑡 ∈ 1,2, … , 𝑘𝑘𝑟𝑟  

𝐺𝐺, 𝑡𝑡
2

 has a positive 𝑘𝑘-clique 
or 

⟶ solve 𝑘𝑘𝑟𝑟 log𝑊𝑊 = 𝑂𝑂 log𝑛𝑛  instances of ExactWeight-𝑘𝑘-Clique 
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Reduce threshold to exact target by rounding 

Removing weights by increasing arity 

[VW’09, NLZ’12] 

inspired by [ALW’14] 
Fix 𝒓𝒓 = 𝟐𝟐 for simplicity (the same arguments extend for 𝒓𝒓 > 𝟐𝟐) 

⟺ ∑ ∑ 𝑤𝑤ℓ′ 𝑒𝑒1 ⋅ 𝑤𝑤ℓ′ 𝑒𝑒2ℓ𝑒𝑒1,𝑒𝑒2⊆𝐶𝐶 = 0 

∑ 𝑤𝑤ℓ′ 𝑒𝑒𝑒𝑒⊆𝐶𝐶 = 0  ∀ℓ 
⟺ ∑ ∑ 𝑤𝑤ℓ′ 𝑒𝑒𝑒𝑒⊆𝐶𝐶

2 = 0ℓ  

⟺ ∑ 𝑤𝑤′′ ℎℎ⊆𝐶𝐶, ℎ =4 = 0 
(+) 

Now the weights are significantly 
reduced (i.e. at most 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝(𝑛𝑛)) 

𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑛𝑛 𝑂𝑂(𝑘𝑘4) overhead 

3 Encode Constraint Satisfaction problem as Orthogonal Vectors 
Fix 𝒓𝒓 = 𝟐𝟐 for simplicity (same arguments extend for 𝒓𝒓 > 𝟐𝟐) 

𝐴𝐴 contains a vector 𝑎𝑎 = 𝑎𝑎(𝑢𝑢1, … ,𝑢𝑢𝑘𝑘) for 
every 𝑘𝑘-clique {𝑢𝑢1, … ,𝑢𝑢𝑘𝑘} of 𝐺𝐺 

𝐵𝐵 contains a vector 𝑏𝑏 = 𝑏𝑏(𝑣𝑣1, … , 𝑣𝑣𝑘𝑘) for 
every 𝑘𝑘-clique {𝑣𝑣1, … , 𝑣𝑣𝑘𝑘} of 𝐺𝐺 

We have a dimension for every tuple (𝑖𝑖, 𝑗𝑗,𝑢𝑢, 𝑣𝑣) with 𝑖𝑖, 𝑗𝑗 ∈ [𝑘𝑘], 𝑢𝑢, 𝑣𝑣 ∈ 𝑉𝑉2 ∖ 𝐸𝐸: 

𝑎𝑎(𝑖𝑖,𝑗𝑗,𝑢𝑢,𝑣𝑣) = �1 if 𝑢𝑢𝑖𝑖 = 𝑢𝑢
0 ow.  𝑏𝑏(𝑖𝑖,𝑗𝑗,𝑢𝑢,𝑣𝑣) = �1 if 𝑣𝑣𝑗𝑗 = 𝑣𝑣

0 ow.
 

The OV instance is on 𝑛𝑛 = 𝑂𝑂 𝑉𝑉 𝑘𝑘  vectors of dimension 𝑑𝑑 = 𝑂𝑂 𝑉𝑉 2  
 

𝑎𝑎, 𝑏𝑏 are non-orthogonal ⟺ ∃ dimension (𝑖𝑖, 𝑗𝑗,𝑢𝑢, 𝑣𝑣) such that 𝑢𝑢𝑖𝑖 = 𝑢𝑢 and 𝑣𝑣𝑗𝑗 = 𝑣𝑣 
         ⟺ (𝑢𝑢1, … ,𝑢𝑢𝑘𝑘 , 𝑣𝑣1, … , 𝑣𝑣𝑘𝑘) is no 2𝑘𝑘-clique 
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