MORE CONSEQUENCES OF FALSIFYING SETH							
A	ND THE OR	THOGONAL	VECTORS	CONJE	CTUR	Ε	
	Amir Abboud, IBM Research.	Karl Bringmann, Max Planck Institute for Informatics.	Holger Dell, Saarland University.	Jesper Ned Eindhoven University	of Technology.		
	USA	Germany	M2CI, Germany	Netherland	ds		
	Fine-Grained Complexity hypotheses and consequences		Consequences for Clique problems				
	Problem <i>k</i> -SAT: Given formula in <i>k</i> -CNF with <i>n</i> variables, is it satisfiable? Strong Exponential Time Hypothesis (SETH):		(Weighted) k-Clique in Hypergr r-hypergraph: $G = (V, E)$ with $E \subseteq \binom{V}{r} \cdot \circ \circ$	aphs ergraph = graph			
	$\forall \varepsilon > 0 \exists k: k$ -SAT has no $O(2^{(1-\varepsilon)n})$ -ti	ime algorithm	<i>k</i> -Clique in <i>r</i> -hypergraph: Find vertices $v_1,, v_k$ s.t. for any $e \subseteq \{v_1,, v_k\}$ of size	e r we have $e \in E$			

Hitting Set, Set Splitting, NAE-SAT: $O^*(2^n)$ but not $O^*((2-\epsilon)^n)$ [CDLMNOPSW'16]

Independent Set: $O^*(2^{tw})$ but not $O^*((2-\varepsilon)^{tw})$ Subset Sum: $\tilde{O}(n+t)$ but not $t^{1-\epsilon}2^{o(n)}$

[LMS'11] [B'17, ABHS'18+]

[KT'17]

Our focus

 x_n

Thm

Problem Orthogonal Vectors: Given sets $A, B \subseteq \{0,1\}^d$ of size n,

are any $a \in A, b \in B$ orthogonal? $(\sum_i a_i \cdot b_i = 0)$

OV-Hypothesis (OVH) (moderate dimension): $\forall \varepsilon, \delta > 0$: OV in $d = n^{\delta}$ has no $O(n^{2-\varepsilon})$ -time algorithm

No $O(n^{2-\varepsilon})$ algorithm for: Edit Distance, LCS, Diameter-2, Frechet distance, NFA Acceptance, RegExp Matching, ...

[BI'15,ABVW'15,BK'15,VWR'13,B'14,BI'16,BGL'17]

No $O(m \cdot n^{2-\varepsilon})$ algorithm for All Pairs Maxflow

Dynamic graph algorithms, Hardness of Approximation in P, ...

Reasons to believe in fine-grained hypotheses:

- decades of effort
- restricted algorithms cannot refute them
- falsifying them implies circuit lower bounds
- falsifying them implies fast algorithms for more problems

Our Contributions

 $O(n^{k-\varepsilon})$ not known for Neg-k-Clique in graphs or k-Clique in 3-hypergraphs

Problem Negative-*k***-Clique:** Given edge-weighted graph *G* is there a k-Clique with negative 3 total edge-weight?

 $O(n^{0.79k})$ known for k-Clique in graphs [NP'85]

Neg-*k***-Clique-Hypothesis:** $\forall \varepsilon > 0, k \ge 3$: Neg-k-Clique has no $O(n^{k-\varepsilon})$ algorithm

Troo Edit Distanco is not in	$O(m^{3}-\varepsilon)$			
Maximum Maight Destande				
Maximum Weight Rectangle				
is not in $O(n^{d-\varepsilon})$	[BDT'16]			
Viterhi's Algorithm cannot be improved				
to time $O(t n^{2-\epsilon})$	[BT,12]			

OVH fails $\implies O(n^{k-\varepsilon})$ for Neg-k-Clique in r-hypergraphs,

for any $k \gg r$ and weights bounded by $n^{f(k)}$

Proof outline Thm 2(ii)

Chain of reductions

r-hypergraphs

ExactWeight-2k-Clique

2*k*-Clique 2*r*-hypergraphs

 $\begin{vmatrix} \sum_{e \subseteq C} w'_{\ell}(e) = 0 & \forall \ell \\ \Leftrightarrow \sum_{\ell} (\sum_{e \subseteq C} w'_{\ell}(e))^{2} = 0 \\ \Leftrightarrow \sum_{e_{1}, e_{2} \subseteq C} \sum_{\ell} w'_{\ell}(e_{1}) \cdot w'_{\ell}(e_{2}) = 0 \\ \Leftrightarrow \sum_{h \subseteq C, |h| = 4} w''(h) = 0 \end{vmatrix}$

Reduce threshold to exact target by rounding

[VW'09, NLZ'12]

OV

We find more consequences of falsifying SETH/OVH:

If SETH fails then: Thm1 there are $O((2 - \varepsilon)^n)$ -time algorithms for sparse-TC⁰-SAT

If OVH fails then:

Thm2 (i) there are $O((2 - \varepsilon)^n)$ -time algorithms for sparse-TC¹-SAT (ii) there are $O(n^{(1-\varepsilon)k})$ -time algorithms for weighted k-Clique

Consequences for Circuit Sat

class of circuits C =

- Given a circuit $C \in C$ on *n* variables, C-SAT: is *C* satisfiable?
- inf{ $w \mid C$ -SAT is in time $O^*(2^{w \cdot n})$ } $\omega(\mathcal{C}) =$

 $\lim_{k \to \infty} \omega(k - \text{CNF}) = 1$ SETH:

sparsification $\lim_{k,c\to\infty} \omega(c-\text{sparse }k-\text{CNF}) = 1$ lemma [IPZ'01]

If (G, w) has a positive k-clique, then: (G, w) has a k-clique of weight t for some $t \in \{1, 2, ..., k^r\}$ $\left(G, \left|\frac{w}{2}\right|\right)$ has a positive k-clique \rightarrow solve $k^r \log W = O(\log n)$ instances of ExactWeight-k-Clique

- Removing weights by increasing arity inspired by [ALW'14] 2 Fix r = 2 for simplicity (the same arguments extend for r > 2)
- 1. Use base $B \approx \log n$ expansion to replace ints w(e) with vectors $w'_{\ell}(e)$ • guess carries c_{ℓ} to embed addition into \mathbb{Z}^d
- 2. Assume target vector t equals $\mathbf{0}$ 3. Define w''(h) so that (+) holds

Now the weights are significantly reduced (i.e. at most polylog(n))

4. Guess the weight of every hyperedge in the solution

 $polylog(n)^{O(k^4)}$ overhead

5. Keep only edges with the guessed weight.

Encode Constraint Satisfaction problem as Orthogonal Vectors

Fix r = 2 for simplicity (same arguments extend for r > 2)

A contains a vector $a = a(u_1, ..., u_k)$ for B contains a vector $b = b(v_1, ..., v_k)$ for every k-clique $\{v_1, \dots, v_k\}$ of G every k-clique $\{u_1, \dots, u_k\}$ of G

We have a dimension for every tuple (i, j, u, v) with $i, j \in [k], \{u, v\} \in V^2 \setminus E$: $a_{(i,j,u,v)} = \begin{cases} 1 & \text{if } u_i = u \\ 0 & 0W_i \end{cases}$ $b_{(i,j,u,v)} = \begin{cases} 1 & \text{if } v_j = v \\ 0 & \text{ow.} \end{cases}$ *a*, *b* are non-orthogonal $\Leftrightarrow \exists$ dimension (i, j, u, v) such that $u_i = u$ and $v_j = v$

 $\Leftrightarrow (u_1, \dots, u_k, v_1, \dots, v_k)$ is no 2k-clique

The OV instance is on $n = O(|V|^k)$ vectors of dimension $d = O(|V|^2)$

previously similar results known for sparse (formulas / AC⁰ / VSP-circuits) [SS'12,DW'13,CDLMNOPSW'16]

sparse TC0

circuits

 x_1

 x_2

Proof techniques: • Refinement of techniques from proof of Cook-Levin theorem Valiant's depth reduction