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In this talk we discuss the question whether any abelian variety A0 defined over a finite field
κ = Fq admits a CM lifting to characteristic zero.

We will see results by Deuring (1941), Weil (1948), Tate (1966), Honda(1968), a results on
isogenies (1992), and various questions and full answers as given in the book (2014):
Brian Conrad, Ching-Li Chai and Frans Oort:
Complex multiplication and lifting problems.
In short, we see the “flow of mathematics”, the history of this topic from Hasse (1933) to final
answers to these questions (2014).

1 Lifting an endomorphism of an elliptic curve, Deuring 1941

(1.1) Theorem (Deuring, 1941). Let E0 be an elliptic curve over a finite field κ = Fq. Let
β ∈ End(E0) be an endomorphism. The pair (E0, β) can be lifted to characteristic zero.

(1.2) Remark. An elliptic curve E in positive characteristic p is called supersingular if
E ⊗ k has no points of order exactly p (where k is an algebraically closed field); we say E is
ordinary if E ⊗ k does have a point of order exactly p.

For an elliptic curve E over a finite field κ = Fq Deuring proved the following three
possibilities occur for the endomorphism algebra D := End0(E) = End(E)⊗Z Q:

• (ord) The algebra D is an imaginary quadratic field in which p is split; in this case E
is ordinary. In this case End0(E) = End0(E ⊗ k), where k is the algebraic closure of κ.

• (ss D non-maximal) The algebra D is an imaginary quadratic field in which p is split;
in this case E is supersingular. In this case End0(E) $ End0(E ⊗ k).

• (ss D maximal) The algebra D := End0(E) ∼= Q∞,p is the quaternion algebra non-split
precisely above the places ∞ and p of Q. In this case E is supersingular.

Note in particular, that for an elliptic curve over a finite field End(E) % Z; this was unknown
to Hasse in 1933, but observed for the first time by Deuring in 1941.

Note that in case (ss D maximal) the pair (E0,End(0)) cannot be lifted to characteristic zero.
We will encounter this phenomenon many times: the additional structure in characteristic p
is “too large” to be realized in characteristic zero.
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2 The pRH for abelian varieties, Weil 1948

For an abelian variety A over a finite field κ = Fq, with q = pn we write π = πA = FrobA/κ
for the Frobenius “π = Fn”; this map is given on geometric points by “raising all coordinates
to the power q”.

(2.1) Theorem (Weil, 1948). For a simple abelian variety A over a finite field κ = Fq and
any embedding ψ : Q(π)→ C we have

| ψ(π) |= √q (pRH)

This is “the Riemann hypothesis in characteristic p”. I use notation (pRH) in order to distin-
guish this from the classical Riemann Hypothesis (RH).

(2.2) For q = pn we say an algebraic number π is a Weil q-number if it is an algebraic
integer with

| ψ(π) |= √q, ∀ ψ : Q(π)→ C.

Note that End(A) is of finite Z-rank, hence any πA as above is an algebraic integer, and by
(pRH) we see it is a Weil q-number.

(2.3) Note that Weil numbers are easy to construct: either π is real with | π |= √q or π is
non-real, and it is a zero of a polynomial T 2 − βT + q, where β is a totally real number and
ψ(β)2 − 4q < 0 for any embedding ψ into R.

3 CM abelian varieties

(3.1) An abelian variety B over a field K s called simple if 0 and B are the only abelian
subvarieties. The theorem of Poincaré-Weil (valid over any base field) says that any abelian
variety A over K is isogenous over K with a product of simple abelian varieties.

A simple abelian variety B over a field K is said to admit sufficiently many complex
multiplications if there exists a field L with L ⊂ End0(B) and [L : Q] = 2·dim(B). We
abbreviate this by saying that B is a CM abelian variety. An abelian variety A is called a CM
abelian variety if it is isogenous with a product of simple CM abelian varieties. Equivalently:
A is called a CM abelian variety if End0(A) contains a commutative semi-simple subalgebra
of rank 2·dim(A) over Q.

(3.2) CM type. Let B be a simple CM abelian variety over a field K ⊃ Q of characteristic
zero; in this case L = End0(B) is a field (note in positive characteristic this is not true in
general), it is a CM field. The action on B induces a representation on the tangent space

L→ GL(tB,0).

As L is commutative, this action, over C can be described by its characters, and this set, or
equivalently this representation is called the CM type of the CM abelian variety B.

Important property. Let L be a CM field of degree 2g with L ∼= End0(A) in characteristic
zero, with dim(A) = 2g. Let the action of L on t := tA,0 be given by Φ = {ϕ1, · · · , ϕg} (this
is called the CM type of the action), where ϕj : L→ C. It follows that

ϕ ∈ Φ =⇒ ϕ 6∈ Φ, Φ t Φ = Hom(L,C),
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because
H1(A(C),R) ∼= t⊕ t

is an L-module of rank one. This characterizes CM types; every Φ having this property shows
up as a CM type of a CM abelian variety over C.
Easy example. Suppose L = Q(ζ5); let z ∈ C with z5 = 1, and z 6= 1. The set Hom(L,C) is
given by the four maps ζ5 7→ zj , with 1 ≤ j ≤ 4. In this notation the possible CM types are
{z1, z2}, {z1, z3}, {z2, z4}. Up to conjugation there is only one CM Type in this case.

An isogeny of CM abelian varieties B ∼K C gives “equal” representations: the isogeny gives
an isomorphism End0(B) ∼= End0(C) and it induces an isomorphism tB,0 ∼=K tC,0 in an
equivariant way.

(3.3) An example. Suppose the base field is C, and a curve C is given by Y 5 = X3 − 1.
We see that the genus of C equals g = 4: the map (x, y) 7→ (x) gives a cyclic cover C → P1 of
degree 5, with 4 total ramification points, and the Riemann - Hurwitz formula gives

2g − 2 = 5·(−2) + 4·(5− 1), hence g = 4.

Let J = Jac(C). We see that y 7→ ζ5·y and x 7→ ζ3·y shows

Q(ζ15) ⊂ End0(J); write ζ = ζ15, ζ5 = ζ3, ζ3 = ζ5.

As [Q(ζ15) : Q] = 8 we see that J is a CM abelian variety over C. A basis for the regular
differentials on C is given by

{dx
y2
,
dx

y3
,
dx

y4
,
xdx

y4
}.

The representation, the CM type of J , on this basis is given by

{ζ5·ζ−6 = ζ−1, ζ−4, ζ−7, ζ−2} = {ζ14, ζ11, ζ8, ζ13} = Φ;

we see this is a CM type for Q(ζ15): the complement of Φ indeed is its complex conjugate
{ζ, ζ4, ζ7, ζ2}.

(3.4) Do not use the terminology CM type in positive characteristic. Suppose A
is an abelian variety in characteristic p. We obtain a representation End(A)→ GL(tA,0). This
does not extend to End0(A). This representation factors through End(A)/(p). An isogeny
A ∼K B in general does not give an isomorphism between tA,0 and tB,0. The action of
End(A)/(p) on tA,0 and of End(B)/(p) on tB,0 are not “equal” in many situations. Hence we
should not use the terminology “CM type in positive characteristic”. Actually, as we will see,
it is this change of representation that makes the CM lifting problem hard and interesting and
accessible .– This remarks will be made explicit in a crucial example below. It is one of the
most important details to understand CM liftings.

4 Abelian varieties over a finite field, Tate 1966

Results by Deuring (1941) inspired Tate to prove results on `-adic representations on abelian
varieties over a finite field (starting a whole string of theorems and conjectures). (We will not
discuss the important case of `-adic representations.) One of these is:

(4.1) Theorem (Tate, 1966) Any abelian variety over a finite field is a CM abelian variety.
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(4.2) For a given Weil q-number π = πA with q = pn Tate shows how to compute the
dimension of this simple A and the structure of End0(A) knowing πA: for

Q ⊂ L := Q(π) ⊂ D := End0(A)

the field L is central in the division algebra D,
no real place of L splits in D,
every place prime to p splits in D/L and
for every place v above p in L the Brauer invariant is given by

invB/L ≡ v(πA)
fv
n

(mod 1),

where fv stands for the residue degree at v. See [11], Th. 1 on page 96.

5 Honda - Tate theory, 1968

As proved by Weil (1948) we know that πA is a Weil q-number, and we can define the map

{simple abelian variety over Fq}/ ∼
∼−→ {Weil q−number}/ ∼

Here the left hand ∼ means isogeny of abelian variety, the right hand ∼ stands for conjugacy,
i.e. π ∼ π′ if there exists an isomorphism Q(π) ∼= Q(π′) mapping π to π′. Isogenous abelian
varieties give conjugated Weil numbers; hence this map is well defined.

(5.1) Theorem (Honda, Tate). For q = pn this map is bijective.
Injectivity was proved by Tate and the most important aspect of subjectivity was proved by
Honda (and by Tate showing that indeed this works over a finite field without extending that
field).

The proof by Honda uses CM-theory and complex parametrization of abelian varieties, plus
reduction to characteristic p. For a different proof, not using complex uniformization, see [2].

(5.2) Interesting exercise. Describe all Weil q-numbers appearing for some q and some
elliptic curve over Fq. See [12], Th. 4.1 on page 536, and [9], 14.6

(5.3) An example (the “toy model ”). Suppose p is a prime number with p ≡ 2, 3
(mod 5); equivalently: the prime number p is remains prime in L := Q(ζp). Clearly π = p·ζ5

is a Weil p2-number. Hence by Honda-Tate theory there exists (an isogeny class of) an abelian
variety A with πA ∼ π. We see [L : Q] = 4. This field has no real place; hence the Brauer
invariant above p in D/L equals zero. Hence there is no ramification in D/L, we conclude
L = D and dim(A) = 2. Moreover π5 = (p·ζ5)5 = p5 is real; this shows A⊗ Fp10 is isogenous
with a product of two supersingular elliptic curves.
Try to consider: does A over Fq with q = p2 as given above admit a CM lift to characteristic
zero?

(5.4) Theorem (Honda) For any abelian variety A over κ = Fq there exists a finite exten-
sion κ ⊂ κ′ and an isogeny A⊗κκ′ = A′ ∼κ′ B0 such that B0 admits a CM lift to characteristic
zero.
This is part of (the proof of) the Honda-Tate theory: the surjectivity follows from a construc-
tion of a CM abelian variety in characteristic zero reducing mod p to an abelian variety having
Weil number equal to some power of the given π.
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6 CM lifting questions

Question. Does every abelian variety A0 defined over a finite field κ = Fq admit a CM lifting
to characteristic zero?

We know by Honda that a CM lifting is possible after extending the base field and applying
an isogeny.

• Is a field extension necessary ?

• Is an isogeny necessary?

(6.1) We now know that we have to make this question more precise:

• Do we want a lift to an arbitrary mixed characteristic integral domain?

• Do we want a lift to a normal mixed characteristic integral domain?

(6.2) The residual reflex condition. We will see that the answers to these different
questions are different, see [1], 2.1.5 - 2.1.7.
Example. (We use the toy model.) Let p ≡ 2, 3 (mod 5) and let B0 be any abelian variety
over κ = Fq with q = p2 and πB0 ∼ π := p·ζ5.
Claim. The abelian variety B0/κ does not admit a CM lift to a normal mixed characteristic
integral domain.
Proof. We know End0(B) = L = Q(ζ5); if a CM lift would exist, it would have CM by (an
order in) L = Q(ζ5). Suppose the lift B → Spec(R) is to K ⊃ R → κ = Fq = Fp2 . The CM
abelian variety B := B ⊗R K has CM by L = Q(ζ5). By CM theory in characteristic zero we
know that the field K does contain the reflex field of L. This is a CM field (with possibly
other properties) contained in L. However L only contains two proper subfields:

Q and L0 and the maximal real subfield of L

(this follows because L/Q is Galois with Galois group cyclic of order 4). Conclusion: any field
over which B allows CM by L contains L. Suppose R is normal. Then any residue class field
in characteristic p contains the residue class field of L, which is Fp4 . Because

Fp4 6⊂ κ = Fp2

we derive a contradiction; this shows B0 does admit a CM lift to a normal mixed characteristic
integral domain.

Remark. In Chapter 2 of [1] we see that the residual reflex condition is “the only obstruction”
to the existence of CM lifting up to isogeny over a normal local domain in characteristic zero.

However the previous proof does not exclude the possibility of a lift to a mixed characteristic
integral domain. Let me give you two examples of an integral domain, where normalization
gives a non-trivial extension of the residue class field.
Example. Let κ $ κ′ be a non-trivial algebraic extension of fields. Consider a ring of formal
power series

Γ = {
∑
j

ajT
j | a0 ∈ κ, aj ∈ κ′ ∀j > 0}.
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We see that Γ is a local domain, with residue class field κ and with field of fractions K := Q(Γ).
We show that the integral closure Γ∼ of Γ ⊂ K equals Γ∼ = κ′[[T ]. Indeed, β ∈ κ′ can be
written as β = β·T/T . hence β ∈ K; we conclude K = κ′((T )). Any β ∈ κ′ satisfies its
minimal equation βn =

∑
n>j≥0 γjβ

j . with γj ∈ κ ⊂ Γ. Hence β is integral over Γ. This
shows that the integral closure of Γ inside K equals Γ∼ = κ′[[T ], and the residue class field of
the local ring Γ∼ equals κ′.

A similar example can be constructed in mixed characteristic: take an algebraic extension
of perfect fields in characteristic p. Let ∆ = W∞(κ′) be the ring of infinite Witt vectors, and

Γ := {δ ∈ ∆ | δ mod p ∈ κ}.

Again, here we see that the residue class field of this local ring Γ equals κ, and the normalization
Γ∼ = ∆ has reside class field κ′.

We will see that such rings naturally appear in our solutions of lifting problems especially
in the case of the CM lifting problem.

(6.3) Exercise Let κ ⊂ κ′ be an extension of fields or arbitrary characteristic. Let Γ be
the ring of power series

∑
j ajT

j with a0 ∈ κ and aj ∈ κ′ ∀j > 0. Under which conditions on
κ ⊂ κ′ is Γ a normal domain?

7 (Almost) ordinary abelian varieties

(7.1) Notation. For an abelian variety A over K ⊃ Fp we write f = f(A) for its p-rank,
i.e. the integer defined by

A[p](k) ∼= (Z/p)f ;

here [p] means taking the kernel by multiplication by p, and k is an algebraically closed field
containing K.
Well known: 0 ≤ f(A) ≤ dim(A), and all values do occur.

Definition. An abelian variety A with f(A) = dim(A) is called an ordinary abelian variety.
An abelian variety A with f(A) = dim(A)− 1 is called an almost ordinary abelian variety.

(7.2) Theorem (Serre and Tate 1964). Let A be an ordinary abelian variety over a perfect
field K ⊃ Fp. The pair (A,End(A)) can be lifted to an abelian variety with these endomor-
phisms in characteristic zero.

(7.3) Theorem (Deuring 1941, FO 1973 and 1985). A CM almost ordinary abelian variety
in positive characteristic can be lifted to a CM abelian variety in characteristic zero.

(7.4) Notation. We write αp for the local-local group scheme in characteristic p. for an
abelian variety A (or a group scheme, or a p-divisible group) over a perfect field κ ⊃ Fp we
write

a(A) = dimκ (Hom(αp, A)) .

8 An isogeny is necessary, 1992

We have seen that ordinary and almost ordinary abelian varieties defined over a finite field
admit CM liftings. We address the question for other abelian varieties.
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(8.1) Theorem (FO, 1992). Let g ∈ Z≥3, and 0 ≤ f ≤ g − 2, and k = Fp. There exist
infinitely many abelian varieties over k of dimension g and p-rank equal to f that do not allow
a CM lift to characteristic zero.

Sketch of a proof. Suppose g ≥ 3 and 0 ≤ f ≤ g − 2 fixed. Construct an abelian variety
A over a finite field κ with dim(A) = g and f(A) = 2, and a(A) = 2 such that there exists
αp ⊂ A with a(A/αp) = 1. Let

Γ := {B | B ∼= (A⊗ k)/α, a(B) = 1}/ ∼= .

Note that
B1 = (A⊗ k)/(ψ1(α)) ∼= B2 = (A⊗ k)/(ψ2(α))

for a(B1) = 1 implies ψ1 = ψ2. As the number a((A ⊗ k)/α) is lower semi-continuous,
and assumes the value one by assumption we see that #(Γ) = ∞. Choose coordinates for
Hom(αp, A); this identifies ψ : αp → A⊗ k as a point in P1(k) and the elements of Γ coming
from αp ⊂ A⊗K give ΓK ⊂ P1(K). Actually, #(P1(k) \ Γ) <∞.

Crucial property. If A⊗ k → (A⊗ k)/ψ(αp) = B has the property with a(B) = 1 then we
can reconstruct this quotient map from B alone: it follows that a(Bt) = 1 and A ∼= (Bt/(αp))

t

canonically.

Next one can show that there exists a finite extension κ ⊂ κ′, and a pro-p-extension κ′ ⊂ Ω
such that if B = (A⊗k)/(ψ(α)) admits a CM lift to characteristic zero, then ψ is defined over
Ω; this part of the proof uses CM-theory in characteristic zero.

From the fact that
#
(
P1(k) \ P1(Ω)

)
=∞

and the description of elements of Γ we see that

# (Γ \ ΓΩ) =∞,

which proves the theorem.

In the book Complex multiplication and lifting problems, Chapter 3, a proof using p-divisible
groups is given, also including the case g = 2 and f = 0.

9 Survey of CM lifting questions and answers

We survey what has been described above, and we give the main theorem of the book Complex
multiplication and lifting problems: Chapter 4.

By Honda (1968) we know that a CM lift can be achieved for an abelian variety over a finite
field after extending the field and performing an isogeny. Note that in the Honda theory the
isogeny is chosen after extending the field.

Isog. We know (1992) that an isogeny is necessary there are many abelian varieties over
k = Fp that do not allow a CM lift (but these are abelian varieties with f ≤ g − 2).

ResReflCond. We know there exist abelian varieties over a finite field that do not allow
a CM lift to a a normal mixed characteristic integral domain, the residual reflex condition:
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asking for a lift to a normal domain, in general extending the field and applying an isogeny is
necessary.

(9.1) Theorem (B.Conrad-Chai-FO 2014).Let A be an abelian variety over a finite field κ.
There exists an isogeny A ∼κ B0 such that B0 admits a CM lift to characteristic zero.

The proof uses many pages of preparations, plus more than 50 pages, and I will not try to
indicate a proof here. However it might be instructive to see (part of the methods) in a sketch
of the proof in a special case.

(9.2) The toy model allows a CM lifting after a κ-isogeny. We start with κ = Fp2
with p ≡ 2, 3 (mod 5), and π = p·ζ5. Using Honda-Tate theory we choose an abelian variety
A over κ with πA ∼ π = p·ζ5. Note that dim(A) = 2 is a κ-simple abelian surface, and
Z[p·ζ5] ⊂ End(A) and End0(A) = Q(ζ5); moreover A is supersingular, and A ⊗ k ∼ E × E,
where E is a supersingular elliptic curve over k = Fp. We write here ζ = ζ5.

Using a technique called Serre’s tensor construction we can choose an isogeny A ∼κ B0 with

End(B0) = Z[ζ].

We are going to show that B0 satisfies the conclusion of the theorem, i.e. B0 can be CM lifted
to characteristic zero (but not lifting the whole of End(B0) along), showing the theorem in
this special case.

Here are some aspects of the proof in case of this example.

• We have a(B0) = 2; the action of Z[ζ] for t := tB0,0 is on t ⊗ k given, up to conjugacy,
by {ζ, ζ4}. Side remark: it follows that the pair (B0,End(B0)) cannot be lifted to
characteristic zero (!!).

• Choose an eigenspace ψ(αp) ⊂ (B0 ⊗ k) for the Z[ζ]-action. Define C0, over k, by the
exact sequence

0→ αp
ψ−→ B0 ⊗ k −→ C0 = (B0 ⊗ k)/ψ(αp)→ 0.

• Then a(C0) = 1.

• Then End(C0) ∼= Z[ζ], and the action on tC0,0 is given, up to conjugacy, by {ζ, ζ3}.

• The pair (C0,End(C0)) can be lifted to characteristic zero as an ablian scheme (C,Z[ζ])
over a ring K ⊃ R→ k (use CM theory).

• Assume (after a finite base extension) that C ⊗K has a rational point s ∈ C(K) of order
exactly p and assume R is a discrete valuation ring. Consider the subgroup Z/p ∼=<
s >= N ⊂ C ⊗K, and its flat extension N ⊂ C.

• Claim B := C/N has the property B⊗ k ∼= B0⊗ k. Here we crucially use a(C0) = 1 and
the fact that B0 ⊗ k → C0 can be canonically reconstructed from αp ⊂ C0.

• Conclusion. We have constructed a CM lift of B0⊗k. However, remark that Z+pZ[ζ] ⊂
End(B) but Z[ζ] is not contained in End(B) (!!).
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• Conclusion. We see that B0 admits a CM lift to characteristic zero: use the theory of
moduli. Note that we see here that the lift can be given over the subring Γ ⊂ R of all
elements of R mapping to κ (a typically non-normal ring). (And we know a CM lifting
of B0/κ to a normal domain is not possible.) 2

Warning, remark. Hidden in considerations above is the fact that, although algebraization
of formal abelian schemes is difficult and often not possible, this is possible for “CM formal
abelian schemes” in case the action of the CM algebra is via a CM Type, see [1], Theorem
2.2.3.

Remark. In the toy model we saw that the condition OL ⊂ End(B0) was sufficient for the
existence of a CM lift in this case. At the time of writing [1] we did not know whether this
condition would ensure CM liftability in all cases. (We called this (sCML), the strong CM
lifting question.) However, later, Taisong Jing in his UPenn PhD-thesis gave examples of
abelian varieties B0 in positive characteristic with CM by L, such that OL ⊂ End(B0), where
this B0 does not admit a CM lifting. See
https://www.math.upenn.edu/~taisong/

Strong CM Lifting Problem I, and II.
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