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Consider

X0

��

� � // X

��

Xη
? _oo

��
{s0} = Spec(κ) �

� // S Spec(K) = {η}? _oo

Here S is an integral scheme, with a closed point s0 ∈ S and generic point η. Further X/S is a
morphism, perhaps with additional structures on X , possibly with conditions on the morphism
X → S (such as flat and several other conditions, depending on the situation). In this diagram
both squares are cartesian, i.e. X0 = Spec(κ)×S X and Xη = Spec(K)×S X .

We say that the special fiber X0 is a specialization of the generic fiber Xη.

If Xη is given, finding such a diagram with certain properties is called “reduction theory”.
Before scheme-theory was invented this was often a practice difficult to describe. E.g. compare
the seminal original paper by Néron on minimal models, see [17], and later understanding of
this topic, such as [1]. – However, the theory of “good and bad reductions” will not be the
focus of this talk. We will consider the opposite:

Suppose X0 given and ask which diagrams as above are possible. Let us agree on terminology
that

• If p = char(κ) > 0 = char(K) we say that Xη is a lifting (to characteristic zero) of X0.

• If char(κ) = char(K) we say that Xη is a deformation of X0

(of course conceptually the same, but let us use this terminology to make life easier). And:

• If the result X/S is a formal scheme we say a formal deformation, or a formal lifting.

• If the result X/S is an algebraic scheme (with possibly extra structure) we say a defor-
mation, or a lifting.
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• Suppose in the diagram above S = Spec(R); it might be this is possible with normal
domain R. However (in the second talk this week) we will encounter a situation where
a lifting to a normal domain is not possible, but where is a lifting is possible (how do
you find an invariant to test this kind of possibilities ?).

• Suppose you want to show that in a certain situation a lifting (to characteristic zero) is
not possible, how do you prove that? what kind of invariant would be suitable to test
this?

• Sometimes lifting to an unramified ring is possible, sometimes ramification is needed (we
will see an example).

Amenability. In this field impressive progress has been made. However, to understand the
beauty and the impact of this part of mathematics it is better not to stare at results, but to
start thinking about questions and methods. Therefore, in this introductory talk I will

formulate questions

and let you think about

possible answers

(many of these will be given in this week) (with apologies to all experts present, who know
this material so well).

When saying “question” or “exercise” below this is just meant to stimulate the reader to
start thinking about this topic; there is no guarantee the problem is solved or not; there is no
guarantee the exercise is easy (for some a solution exist, but you are a genius if you find it in
short time).

In this introduction we only treat a small part of all deformation and lifting problems (and
some of the choices are triggered by my personal taste).

In the rich spectrum of topics we will discuss only:

(1) Liftings and deformations of algebraic curves.

(2) Liftings of algebraic curves and automorphisms.

(3) Deformations of curves and Newton polygons.

(4) Liftings of higher dimensional varieties.

(5) Liftings of abelian varieties.

(6) Deformations of abelian varieties with given Newton polygons

(7) CM liftings of abelian varieties.

Notation. We write k for an algebraically closed field. We write K for a field, and κ for a
field (usually a residue class field, most of the times a field in positive characteristic. When
saying “an algebraic curve” over a field, we will intend a non-singular, absolutely irreducible,
complete algebraic curve, unless otherwise stated. An elliptic curve E over a field K is a curve
of genus one with a chosen rational point 0 ∈ E(K) (please do not give in to the bad habit of
calling every curve of genus one an elliptic curve).
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Methods

(0.1) Easy: equations. Suppose C ⊂ P1
κ is a plane curve; the study of liftings and

deformations as a plane curve is easy (by lifting the coefficients in a defining equation to some
ring R� κ). (More generally this applies to hypersurfaces.)
Exercise. Show any elliptic curve defined over any κ ⊃ Fp can be lifted to characteristic zero.
Question. Let E be an elliptic curve defined over any κ ⊃ Fp. Does a lift of (E,End(E)) to
characteristic zero exist ? (Hint: find a counterexample.)
Question. Let E be an elliptic curve defined over any κ ⊃ Fp, and some b ∈ End(E). Does
a lift of (E, b) to characteristic zero exist ?

Experience shows that on the one hand only working with equations is not sufficient in many
problems. On the other hand as soon as general methods do not give an answer we are looking
for, sometimes we have to do computations, consider equations, coordinates etc. We will see
examples, and we discuss this aspect below.

As you see, many aspects will not be discussed (lifting of K3 surfaces, deformations of singular
curves, and many other interesting cases).

Here is the fist question: let C be an algebraic curve over any κ ⊃ Fp. Does a lift of C to
characteristic zero exist? How do you approach this question? (Probably you do not want to
write equations in the general situation ?)

Kodaira-Spencer

(0.2) Deformation theory. In 1958-1960 Kodaira and Spencer wrote a series of influential
papers on deformation theory. Such ideas where around at that time, e.g. see [14]. If you
want a start on this topic: first read these papers and try to contemplate how to generalize,
how to make considerations more inside the frame work of algebraic geometry.

In the Kodaira-Sencer theory we see that the general ideas are present. However in their
theory they presented a mixture of structures: often the base space was a differentiable many-
fold, and the family a kind of mixture of various geometric structure, with complex analytic
structures on the fibers; ideas were clear, but applications e.g. to mixed characteristic situ-
ations where hard. Please remember that in this days an object like Spec(K[ε]/(ε2) did not
exist. (I want to say, we did not know it.) – Around that time, but before Grothendieck
taught us how to do algebraic geometry, difficult considerations were developed (e.g. in order
to handle bad/good reduction of algebraic varieties modulo p).

Grothendieck and Schlessinger

Grothendieck tried to formulate a general deformation theory, however his approach was not
successful (and luckily now forgotten). However, in his Harvard PhD-thesis M. Schlessinger
formulated a beautiful approach, see [25] (only possible after we had scheme theory):

(0.3) Infinitesimal deformations. Suppose give a field κ and X0 over κ (think of an
algebraic curve, a singular curve, an algebraic variety, an abelian variety, a scheme equipped
with additional structure, just choose your favorite topic).
Equal characteristic. Choose the category Λκ of aritinian local κ-algebras with a given
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κ-homomorphism R� κ.
Unequal characteristic. Suppose κ ⊃ Fp is a perfect field, and let W = W∞(κ) be the
ring of infinite Witt vectors with coordinates in κ (e.g. if κ = Fp, the ring W ∼= Zp is the
ring of p-adic integers). Choose the category Λκ of aritinian local W -algebras with a given
W -homomorphism R� κ.

Consider the category of X → Spec(R) with a given identification X ⊗ κ ∼= X0 with all
structures involved. Formulate the obvious isomorphism concept for such objects. This gives
a covariant functor, contravariant on schemes like Spec(R):

DX0 : Λκ −→ Sets.

In many situations this functor is pro-representable. This is the correct generalization of
Kodaira-Spencer theory inside algebraic geometry. (Even in complex geometry this gives new
ideas and results.)

(0.4) Contemplate about deformations of complex tori, like T0 = Cg/(a lattice) and Sch-
lessinger theory for an abelian variety A0 over C, and compare theories under T0 = A0(C).
Show, in two ways, there exist a complex 2-dimensional torus (the ”generic fiber” in the de-
formation theory just described) not algebraizable (i.e. it is not the torus of complex points
of an abelian variety).

(0.5) Say X0 is a complete non-singular variety over κ. Denote by

ΘX0 = TX0 = HOM(Ω1
X0
,OX0)

the “tangential sheaf” on X0; e.g. see [10], II.8.
The deformation theory is described by the following observations; let R� R′ be a “small

surjection” in Λκ (small: the kernel I ⊂ R′ has the property (max. ideal of R).I = 0); for
every X ′ ∈ DX0(R′)

the fiber of the map DX0(R)→ DX0(R′) is (either empty or)
principally homogenous under H1(X0, TX0)⊗ I,

and

the deformation problem is unobstructed if H2(X0, TX0) = 0.

We see a beautiful and direct generalization of the Kodaira-Spencer theory. For results and
surveys see [5], Exp. III, see [7], 182-12/13, 195-19, 236-19/20, see [9], Chapter 6, see [19],
Section 2.

1 Liftings and deformations of algebraic curves

We show that the theory just exposed solves all problems on deforming and lifting (non-
singular !) algebraic curves. The local moduli problem is pro-representable, it is unobstructed,
because H2(X0, TX0) = 0, hence the local module space gives a formal curve over a formal
power series ring (over K in deformation theory, over W in mixed characteristic deformation
theory). Moreover (this will be discussed later in more generality) this formal curve carries an
effective divisor, and a multiple of this is very ample, hence by (Chow-GAGA-Grothendieck),
to be discussed later, this formal curve comes from a (family of) algebraic curve(s). This last
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step is the analogue, generalization of the classical theorem by Riemann that any Riemann
surface is algebraizable, e.g. see [10], Appendix B.3.

We have complete insight in the problem in this case. The (relative) dimension of the local
deformation space can be computed from the dimension of H1(X0, TX0) and this dimension is
0 (in genus 0), 1 (for elliptic curves) and equal to 3g − 3 (for genus at least two) as Riemann
already computed (over C) in 1857.

After Grothendieck and Mumford constructed fine module spaces for algebraic curves with
level structure we know that these spaces are non-singular (respectively smooth over Spec(Z))
of the given (relative) dimension.

(1.1) Conclusion. The general theory of deformations and liftings of algebraic curves
follows from general principles, the problem is unobstructed, and most questions have clear
answers.

2 Liftings of algebraic curves and automorphisms

This will be one of the main themes of this conference.

(2.1) Exercise (Hurwitz). Let C be an algebraic curve of genus g ≥ 2 over a field of
characteristic zero. Show that

# (Aut(C)) ≤ 84(g − 1).

(2.2) Exercise (Roquette 1970). Consider the curve C given as complete non-singular
model of Y 2 = Xp−X over F5, here p = 5. Compute the genus of C and compute # (Aut(C)).

(2.3) Exercise (1). Let C0 be as in the previous exercise. Does (C0,Aut(C0)) lift to
characteristic zero?
(2). Let N ⊂ Aut(C0) be the subgroup generated by

β = (X 7→ X + 1, Y 7→ Y ) and γ = (X 7→ −X,Y 7→ 2Y );

check these two indeed define automorphisms, and compute the order of N =< β, γ >.
(Observe that #(N) < 84(g − 1).) Does the pair (C0, N) admit a lift to characteristic zero?

(2.4) Exercise (1). Let k ⊃ Fp be an algebraically closed field. Let n ∈ Z≥0. show there
exists a subgroup Gn ⊂ P1

k with Gn ∼= (Z/p)n.
(2) Does the pair (P1

k, Gn) admit a lifting to characteristic zero for n = 2? (Does the answer
depend on the choice of p?)

(2.5) Question. For which curves C0/κ and which G ⊂ Aut(C0) is a lifting to characteristic
zero possible?

Comment. If char(κ) = p > 0 and p does not divide the order of G the deformation / lifting
problem of the pair (C0, G) is unobstructed. In characteristic zero this is related to Riemann’s
uniqueness theorem.

(2.6) Problem. After you have digested methods and results on this topic, try to answer:
is there an example of an algebraic curve C0 in positive characteristic (over a non-algebraically
closed field) and b ∈ Aut(C0) such that the pair (C0, b) cannot be lifted to a normal domain?
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3 Deformations of curves, of abelian varieties and Newton
polygons

(3.1) For an abelian variety A of dimension g over a field κ ⊃ Fp once can define its Newton
Polygon N (A). In case A is defined over Fp this is exactly the NP of the Frobenius endomor-
phism F : A → A(p) ∼= A. For other fields the definition is somewhat more complicated to
give. This invariant is a lower convex polygon in R × R, starting as (0, 0), ending at (2g, g),
and having integral breakpoints (and other properties). It is invariant under isogenies. It is
one of the first invariants describing properties of the p-structure of A. As an example: for an
elliptic curve E in characteristic p its NP either consists of

two edges both having slope equal to 1/2 (the NP is a straight line),
and this is the case iff E is supersingular, or

the two edges have slope 0 and 1, and this is the case iff E is ordinary.

We say a N is symmetric if the slopes 0 ≤ λ ≤ 1 and 1 ≥ 1 − λ ≥ 0 appear with the same
multiplicity. It can be shown that for an abelian variety its NP is symmetric.

(3.2) A conjecture by Manin, see [15], page 76, Conjecture 2. Is it true that for every
p every possible symmetric NP is realized by an abelian variety in characteristic p ? See [24],
7.11 for results and references.

(3.3) Exercise (Manin). Consider the curve given by Y 2 = X7−X + 1 over F3 ( we mean
the nonsingular, complete model of this affine curve). Compute the NP of its Jacobian

On could try to give an answer to construct enough curves giving all possible sNP’s for
their Jacobian. (We write N (C) instead of N (Jac(C)).) In [15] we see several examples
of Jacobians in positive characteristic realizing a given NP, motivating Manin to pose the
conjecture. However this attempt failed up to now because the following problem is wide
open:

(3.4) Question / open problem. Which NP’s do appear on the moduli space of curves?

(Experience: such questions are easier to answer on Ag ⊗ Fp than on Mg ⊗ Fp.)

As for now we formulate:

(3.5) Conjecture. Suppose given g1 and g2 and symmetric Newton polygons ξ1, ξ2 for
these values. Suppose that ξ1 does appear onMg1 ⊗Fp and ξ2 does appear onMg2 ⊗Fp. We
conjecture that in this case ξ1 ∪ ξ2 does appear on Mg1+g2 ⊗ Fp. (Here ξ1 ∪ ξ2 stands for the
NP having the union of the set of slopes of x1 and ξ2, ordered in non-decreasing order.) See
[23], 8.5.7.

(3.6) A corollary of this conjecture would be that for every p and for every g there exists
a supersingular curve of genus g. This is know in special cases, and this is known (Van der
Geer - Van der Vlugt) for p = 2 and all g.

6



(3.7) Question. It seems that questions which NP do or do not appear onMg⊗Fp depends
on whether we want to answer this for non-hyperelliptic or for hyper elliptic curves. It might
very well be that the answers which NP appear on the moduli space of curves are different in
these to separate cases; examples are scarce, and it seems no general theory does exist. Here
is one example (in one of the most simple cases).
Example. Choose p = 2 and g = 3 and σ = 3·(1, 1) the supersingular NP. There is no
supersingular (non-singular) hyperelliptic curve in this case, and there is a 2-dimensional
moduli space of supersingular (non-singular) non-hyperelliptic curve.

Methods, continued: algebraizability

We have seen that deformation theory as formulated by Schlessinger generalizes classical ideas
and methods. But more classical idea have to be imitated and generalized. Just think of
classical theory of deforming a complex torus, is the result an abelian variety? theory by
Lefschetz, Chow and many others did show us how to proceed in the classical case. Also here
we see this development.

(3.8) Suppose X0 given, and consider the pro-representability of the functor

DX0 : Λκ −→ Sets.

The result is a formal scheme S and a formal scheme X → S. Are we satisfied? in general
this does not answer the quest for (deformation or) lifting to an actual algebraic scheme.

(3.9) Classical theory used an embedding into an algebraic variety, usually a projective
space. On of the central theorems is the Chow-GAGA technique: a complex analytic space,
realized as a closed subset of a projective space is algebraizable (i.e. is the analytic space
underlying an algebraic variety). See [26].

(3.10) The Chow-GAGA-Grothendieck theorem. In [6], III1.5.4 we find the general-
ization in the language of schemes; this result (roughly) says that a formal scheme carrying a
very ample divisor is algebraizable.

Here are some consequences.

The universal family of the formal deformation of an algebraic curve C0 is algebraizable.

The universal family of the formal deformation of a polarized abelian variety is algebraizable.

Serre-Tate theory

(3.11) Let A→ S be an abelian scheme over an arbitrary base. Let p be a prime number.
Consider X = A[p∞]. This is a p-divisible group over S. In many cases X reflects p-adic
properties of the abelian variety A.
Philosophical remark. The objects feels as an arithmetic object, rather than an object in
algebraic geometry.
Exercise. Give a p-divisible group over a field K with p invertible in K, but such that there is
no finite extension K ⊂ K ′ such that there is no isomorphism X ∼= (Qp/Zp)h to a “constant”
p-divisible group.

7



Exercise. Give two p-divisible groups X,Y over a discrete valuation ring, and a homomor-
phism ϕ : X → Y such that on the generic fibers we have an isomorphism ϕη : Xη

∼→ Yη, but
on the especial fibers ϕ0 : X0

∼→ Y0 this is not an isomorphism.
Exercise. Let A be an ordinary abelian variety of dimension g over an algebraically closed
field k ⊃ Fp. Show that

A[p∞] ∼= (µp∞)g × (Qp/Zp)g .

(3.12) Theorem (Serre and Tate). Let A0 be an abelian variety over a perfect field κ ⊃ Fp
and X0 = A0[p

∞]. The functor

(A, R) 7→ (X , R) with A⊗ κ = X ⊗ κ

for local artin rings R with residue class field κ, is an equivalence of categories.

(3.13) As a corollary: for an ordinary abelian variety A0 over a finite κ as above, its p-
divisible group

X0
∼= (X0)loc × (X0)et

and any complete local ring R� κ admits a lift to X ′×X ′′; this lift by the Serre-Tate theorem
results in a formal abelian scheme A → Spf(R). This formal abelian scheme is algebraizable.
It is a CM lift of A0.
Conclusion. For an ordinary abelian variety over a finite field a CM lift does exist.

An interesting question. Suppose C0 is an algebraic curve in characteristic p, and suppose
its Jacobian A0 = Jac(C0 is ordinary. By Serre-Tate theory there exists a canonical lift A to
characteristic zero; does it follow that A (perhaps after extending its field of definition) is the
Jacobian of an algebraic curve in characteristic zero? Basically the answer to this question is
known.

In a sense the construction of the canonical lift is an arithmetic operation:

(3.14) Exercise (Serre). Take p = 5. Show an elliptic curve E over κ = F5 is supersingular
if and only if j(E) = 0. Hence the j-values 1, 2, 3, 4 ∈ F5 give ordinary elliptic curves; compute
for these curves the ring of endomorphisms; shows these rings have class number equal to one;
determine the j-values of these four canonical lifts. (You might want to consult [29], the last
lines of § 5.)
Remark. A lot of work has been done on determining the canonical lifts and their j-values of
ordinary elliptic curves. In general that problem is hard, but in the particular case of κ = F5

this is easier, because wee know all class number one quadratic fields, see [28], the last lines
of Section 2.

(3.15) Remark. If ` is invertible in a field K (or, on a base S) (and p is an arbitrary prime
number) the notion of p-divisible group −[p∞] and Tate-`-group T`(−) are closely related
(dual in a certain sense). If p is not invertible in K, please do not use the notation Tp(A)
(sometimes used for the “physical Tate model”, confusing).

Methods, continued: a method by Mumford

Comment. As mathematicians we love general theory. For a lifting problem (or a deformation
problem) in many cases there exists a general approach (which does not imply a general
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answer): formulate the correct moduli problem, prove is (pro-)representable and (simply ?)
read off properties of the generic fiber, · · · !?

In some cases this is successful, and we are happy. This general approach was called by
Grothendieck either brute force or “ ... immerse the nut in a softening fluid, and wait until it
opens by itself”. We have the great privilege that Grothendieck considered many cases, and
we can be sure that if an abstract solution is immediate in a case considered by Grothendieck,
“the nut will open simply by itself”, Grothendieck did find it. In other cases, where “the nut
does not open simply by itself” we have to do the job ourselves. For a further discussion see
[32], ”Did earlier thoughts inspire Grothendieck ?”

Suppose a general answer is not easy to find; in order to focus your ideas, consider liftings of
(C0, G) as before (in general an obstructed problem), deformations and liftings of a polarized
abelian variety (A0, µ) where the polarization is not principal, deformations and lifting of a
higher dimensional variety, and other obstructed problems.

(3.16) A method by Mumford. Serre once wrote to me: “ .... one should keep in mind
that a ‘trick’ in year N often becomes a ‘theory’ in year N+20.” Suppose you have a structure
X0 where the general deformation problem is obstructed, where general considerations do not
give “automatically” the answer you are looking for. As far as I know Mumford was the first
to follow the following scheme of thought:

(defo) Start by deforming X0 from a (difficult) situation to a generic fiber Xη; often
this part of the proof involves non-canonical choices, nasty (or interesting ?) computations,
consideration of complicated examples; usually it is hard to perform this part of the proof
before you know many examples inside-out.

(general theory) Suppose that the situation Xη obtained does admit a solution to the
original problem by “general methods”, then you win. In this conference we we see such an
approach in detail: try to recognize the pattern. In the question of liftings of abelian varieties
(where Mumford proposed this ‘trick’ or ‘theory’) we will discuss this below.

We observe the following problem. Suppose we try to lift some X0 to a local artin ring R,
suppose it is already lifted to X ′ over R′ but then we obtain that the obstruction o(R →
R′, X ′) 6= 0. How to proceed? Maybe changing X ′/R′ will make the obstruction to vanish?
Maybe for whatever change the obstruction remains non-zero? In general, once we encounter
non-zero obstructions other methods see above have to be applied first, and then in the second
part of the method above general methods (existence of moduli spaces, pro-representability
of a deformation functor) are needed, can be of help.

We will see this problem in many situations, and, remarkably, in different situations the
solution can be different. In some of such cases a global approach, an invariant, or something
like that can be of help. Here is a situation where any change of X ′/R′ does not work.

4 Liftings of higher dimensional varieties

We have seen (general theory) that formations / liftings of algebraic curves exist; the two
ingredients were: H2(C0, TC0) = 0 (obstructions vanish: formal liftings are possible) and every
curve admits a very ample divisor (algebraizability is possible). As soon as one of these
conditions (or both) is (are) lost in a more general situation, what can we do?

(4.1) Obstructed liftings of an algebraic varieties (Serre, Illusie, Deligne). In [27]
we find examples of algebraic varieties (of dimension at least two) in positive characteristic p
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such that the formal deformation problem is annihilated by a power of p; in those case even
a formal lifting to a characteristic zero ring is not possible.

In Chapter 8 of [9], written by Illusie, with a letter by Serre in an appendix, these examples
are worked out in more detail. In [4] we see that even in low characteristic there are counter
examples.

5 Deformations and liftings of abelian varieties

(5.1) Theorem (Grothendieck). Let A0 be an abelian variety over a field κ of dimension
dim)A0 = g. The formal deformation space of A0 is a formal scheme, formally smooth, over
κ respectively over W = W∞(κ), of relative dimension g2,

Def(A0, µ) ∼= Spf (W [[Ti,j | 1 ≤ i, j ≤ g]]) .

Although H2(A0, TA0) 6= 0 Grotendieck shows that in this case obstructions vanishes; for
details see [19], Lemma 2.3.2 (for p 6= 2 this is easy: consider the action of multiplication by
−1; try to do this exercise; how would you show obstructions vanish in this case if p = 2 ?).

(5.2) Theorem (Grothendieck, Mumford). (a) Suppose (A0, µ) is a polarized abelian vari-
ety. The deformation space Def(A0, µ) ⊂ Def(A0) can be given by g(g − 1)/2 equations.
(b) In case µ is a separable polarization the deformation problem in mixed characteristics
Def(A0, µ) is formally smooth on g(g + 1)/2 parameters,

Def(A0, µ) ∼= Spf
(
W [[Ti,j | 1 ≤ i, j ≤ g]]/(Ti,j − Tj,i)

)
.

(Note the analogy with the same problem in characteristic zero, and the Riemann symme-
try conditions.) We conclude that any principally polarized abelian variety can be lifted to
characteristic zero.

We indicate the way Grothendieck shows the deformation problem for principally polarized
(p-divisible groups or) abelian varieties (or,more generally for separably polarized abelian
varieties) is unobstructed; this comes as a surprise because for abelian varieties of dimension
at least two H2(A0, TA0) 6= 0. Suppose we already have a lifting X ′ to R′ and R� R′ is a small
surjection. In this quite general situation we want to show that the obstruction o(R→ R′,X ′)
equals zero.

Let us first treat the case char(κ) 6= 2 (although we could treat all cases at the same time).
Consider the homomorphism ι = [−1] on X ′. observe that

o(R→ R′, X ′) ∈ H2(A0,OA0)⊗ tA0 ⊗ I ∼=
(
tA0)dual ∧ (tA0)dualA0

)
⊗ tA0 ⊗ I.

We conclude that
ι∗(o(R→ R′,X ′)) = −o(R→ R′,X ′).

We show that obstructions are invariant under isomorphisms, and we conclude o(R →
R′,X ′) = 0.

Exercise. In the general case, including the case of residue characteristic 2, use the auto-
mophism of X ′ given by (x, y) 7→ (x+ y, y) and show o(R→ R′, X ′) = 0. For details see [19],
2.2: local moduli for abelian varieties.
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(5.3) Exercise. Show there exist abelian varieties over an algebraically closed field not
allowing a principal polarization.
Question. Observe that any elliptic curve admits a principal polarization. I expect the
following to be true: for any abelian variety A of dimension at least 2 over an algebraically
closed field k there exists an isogeny A ∼ B such thatB does not admit a principal polarization.

(5.4) Grothendieck was interested in the question whether any abelian variety could be lifted
to characteristic zero. See [31], page 67, [16], page 704, [32], page 260. At some point (1965),
probably Grothendieck had the following example in mind; we will discuss this example, which
will also show up in a disguise in the CM lifting problem.

(5.5) An example: supersingular abelian surfaces. Consider κ ⊃ Fp and a supersingu-
lar elliptic curve E over κ. We know that αp ⊂ E; actually this characterizes supersingularity
for elliptic curves; we have that this finite subgroup scheme is the kernel of F : E → E(p).
Moreover Homκ(αp, αp) ∼= κ). Fixing coordinates by fixing αp ⊂ E we see that

Homκ(αp, E × E) = P1(κ).

For any t ∈ P1(κ) we obtain an abelian surface

αp
t
↪→ E × E � At := (E × E)/t(αp).

At first sight this seems weird. For example for t = [t : 1] ∈ P1(Fp(t)), where t is a transcen-
dental, we obtain an abelian surface with CM, however it cannot be defined over a finite field.
Exercise. Does this At (with any polarization it) allow a lift to characteristic zero ?

(5.6) If you want to see an answer to the question of liftability of abelian varieties in this
special case, or in the general case of lifting abelian varieties to characteristic zero, and if you
want to see how Mumford’s method works in this case, see [18]. In this proof, as initiated
by Mumford, and written up by the authors of [18], first a deformation of an abelian variety
in equi-characteristic to an ordinary abelian variety is constructed (a difficult, non-canonical
construction); then the theory of Serre-Tate canonical liftings ends the construction.

From these results it follows that Def(A0, µ) is a complete intersection scheme, having
relative dimension g(g + 1)/2.

(5.7) Question. Is there an A0 be an abelian variety over κ ⊂ Fp that does not allow a
lifting to a normal domain?

6 Deformations of abelian varieties with given Newton poly-
gons

Grotendieck showed that under specialization of abelian varieties in positive characteristics
“NP’s go up”, see [8], [12], Th. 2.3.1 on page 143. Grothendieck conjectured the converse
(actually for p-divisible groups, also called Barsotti-Tate groups):

(6.1) A conjecture by Grothendieck. Suppose given a p-divisible group X0 and NP’s
ζ = N (X0) and τ “below” ζ (i.e. no point of τ is strictly above ζ). There does exist a
deformation (in equal characteristic) of X0 with generic fiber N (Xη) = τ . See [8], page 150.
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Discusion. Here again we see the general pattern. The deformation spaceWτ (Def(X0)), con-
sidering only NP’s equal or above τ , is (pro-)representable. In order to prove this Grothendieck
conjecture we want to show there is at least one fiber with NP equal to τ . Experience shows
that it is hard to read off the NP over an arbitrary base. How do you proceed? It seems that
“... immerse the nut in a softening fluid, but here it does not open by itself ...” (and as far as
I know, Grothendieck did not come back to this question).

Then you can consider the case of a quasi-polarized p-divisible group (or of a polarized
abelian variety). Does a deformation to a given NP exist? (An analog inspired by the conjec-
ture by Grothendieck). What do you think the outcome will be?

For references to results see [3], Sections 7 and 8, see [24], Section 8.
It turned out this was a beginning of unravelling fine structures, stratifications and folia-

tions on the moduli space of polarized abelian varieties in positive characteristic, as started
by Manin, Grothendieck, Katz and many others.

7 CM liftings of abelian varieties

We say an abelian variety A of dimension g over a field K admits sufficiently many complex
multiplications (or, A is a CM abelian variety), if End0(A) contains a semi-simple commutative
sub algebra of rank 2g over Q. (A further discussion will be given later this week.) Tate showed
that any abelian variety over a finite field is a CM abelian variety.

(7.1) Question. Does every abelian variety A0 defined over a finite field admit a CM lifting
(to characteristic zero) ?

(7.2) An easy counterexample. One can ask whether any CM abelian variety in positive
characteristic does allow a CM lifting. Let t be a transcendental over Fp and left A0 given as
A0 = (E × E)/t(αp) as before. We see that A0 cannot be defined over a finite field. However
any CM abelian variety in characteristic zero is defined over a number field. The existence of
a CM lift of this A0 would give a contradiction.

This simple-minded example does not answer the CM lifting question directly. However in 1992
in the paper [21] we see that the examples inspires to give infinitely many counterexamples
tot the lifting problem (actually for any g > 2). This again is an example of an obstructed
lifting problem, where a general approach does not give a satisfactory answer. Later in the
week I will further discuss this lifting problem and tell you the story of the complete answer
that can be given to CM lifting questions.

(7.3) Exercise. Suppose E is a supersingular elliptic curve over F2. Let F : E → E(p) ∼= E
be its Frobenius morphism. Does there exist a lifting of (E,F ) to an unramified domain ?

(7.4) A miracle. We have seen a difficult problem: algebraizability of formal liftings. We
have seen in the Serre-Tate theory of lifting ordinary abelian varieties there is automatic.
More generally: a CM lift, a priori being formal, is algebraizable under the condition that the
CM algebra acts via a CM Type, see [2], Theorem 2.2.3.

(7.5) An obvious remark. Liftability of an abelian variety is proved by first deforming
to an ordinary abelian variety. Of course, this idea fails for the CM case, because a “CM
deformation” does not perform what you would require.
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Conclusion. We have seen:

• Lifting algebraic curves and principally polarized abelian varieties is possible, as follows
from general theory.

• (We will see this week what the answer is to the question of lifting an algebraic curve
with some group of automorphisms ... remember the Mumford approach.)

• Lifting higher dimensional algebraic varieties in general is not possible.

• Lifting abelian varieties,

CM lifting of abelian varieties after an appropriate isogeny,

and deforming principally polarized abelian varieties to a given NP

are possible,

but proofs are involved, and do not follow from general theory only.
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Appendix. Text of an email 9-VIII-2014 by Deligne (reproduced here with his permission)
to P. Blass.
The argument of Serre showing that in char. p no integral cohomology can exist can be used
to exhibit a smooth surface S in char. 2 (or 3) such that no smooth surface S′ mapping to S,
whose function field is a purely inseparable extension of k(S), can be lifted to char. 0.

The criterion used is the following. Suppose S has an etale Galois covering S1 with Galois
group G and that the `-adic H1 of S1, as a representation of G, has no Q-form. The same
then holds for S′ : S1 pulls back to an etale Galois covering S′1 of S′, and S1 and S′1 have the
same H1. For a liftable surface, to have such a covering is impossible: if the surface lifts, the
covering lifts too, the H1 of the lifting of the covering would be the previous H1, with the
same action of G, but now a Betti cohomology gives a Q-form.

It remains to find such a S. Start with the supersingular elliptic curve E of char. 2 (or 3).
Its automorphism group G is of order 24 (the units of a maximal order the obvious Q-form of
the quaternions) (or ...). The action of G on H1(E) has no Q-form. Take a curve C on which
G acts freely. The example is S := (E×C)/G, with covering E×C. The representation of G
on H1(E ×C) = H1(E)×H1(C) has no Q-form. Indeed, for a representation with a rational
character, having a Q-form means that some (complex) irreducible components come with a
multiplicity divisible by some integer, and one uses that the representation on H1(C) has a
Q-form : it is a multiple of the regular plus two copies of the trivial representation (by the
Lefschetz trace formula).
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To find C : start with the regular representation of G, call it R, and the projective space P
at infinity. G acts on P with a unique fixed point. Take a general iterated hyperplane section
of dimension one of P/G, and C := its inverse image in P . Best, Pierre Deligne

Frans Oort
Mathematical Institute
Pincetonplein 5
NL - 3584 CC Utrecht
The Netherlands
email: f.oort@uu.nl
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