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Moduli of abelian varieties and p-divisible groups

Ching-Li Chai and Frans Oort

Abstract. This is a set of notes for a course we gave in the second week
of August in the 2006 CMI Summer School at Göttingen. Our main topic is
geometry and arithmetic of Ag ⊗ Fp, the moduli space of polarized abelian
varieties of dimension g in positive characteristic. We illustrate properties of
Ag ⊗Fp, and some of the available techniques by treating two topics: ‘Density
of ordinary Hecke orbits’ and ‘A conjecture by Grothendieck on deformations
of p-divisible groups’.
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We present proofs of two recent results. The main point is that the methods
used for these proofs are interesting. The emphasis will be on the various techniques
available.

In characteristic zero we have strong tools at our disposal: besides algebraic-
geometric theories we can use analytic and topological methods. It would seem that
we are at a loss in positive characteristic. However the opposite is true. Phenomena
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occurring only in positive characteristic provide us with strong tools to study mod-
uli spaces. And, as it turns out again and again, several results in characteristic
zero can be derived using reduction modulo p. The discussion of tools in positive
characteristic will be the focus of our notes.

Here is a list of some of the central topics:

• Serre-Tate theory.
• Abelian varieties over finite fields.
• Monodromy: ℓ-adic and p-adic, geometric and arithmetic.
• Dieudonné modules and Newton polygons.
• Theory of Dieudonné modules, Cartier modules and displays.
• Cayley-Hamilton and deformations of p-divisible groups.
• Hilbert modular varieties.
• Purity of the Newton polygon stratification in families of p-divisible

groups.

The strategy is that we have chosen certain central topics, and for those we took
ample time for explanation and for proofs. Besides that we need certain results
which we label as “Black Box”. These are results which we need for our proofs,
which are either fundamental theoretical results (but it would take too much time
to explain their proofs), or lemmas which are computational, important for the
proof, but not very interesting to explain in a course. We hope that we explain well
enough what every relevant statement is. We write:

BB A Black Box, please accept that this result is true.

Th One of the central results, we will explain it.

Extra A result which is interesting but was not discussed in the course.

Notation to be used will be explained in Section 10. In order to be somewhat
complete we will gather related interesting results, questions and conjectures in
Section 11. Part of our general convention is that K denotes a field of characteristic
p > 0, unless otherwise specified, and k denotes an algebraically closed field.

We assume that the reader is familiar with the basic theory of abelian varieties
at the level of Chapter II of [54] and [55], Chapter 6; we consider abelian varieties
over an arbitrary field, and abelian schemes over a base scheme. Alternative ref-
erences: [16], [81]. For the main characters of our play: abelian varieties, moduli
spaces, and p-divisible groups, we give references and definitions in Section 10.

1. Introduction: Hecke orbits, and the Grothendieck conjecture

In this section we discuss the two theorems we are going to consider.

1.1. An abelian variety A of dimension g over a field K ⊃ Fp is said to be
ordinary if

# (A[p](k)) = pg.

More generally, the number f = f(A) such that # (A[p](k)) = pf is called the
p-rank of A. It is a fact that the p-rank of A is at most dim(A); an abelian variety
is ordinary if its p-rank is equal to its dimension. See 10.10 for other equivalent
definitions.

An elliptic curve E over a field K ⊃ Fp is said to be supersingular if it is not or-
dinary; equivalently, E is supersingular if E[p](k) = 0 for any overfield k ⊃ K. This
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terminology stems from Deuring: an elliptic curve in characteristic zero is said to de-
termine a singular j-value if its endomorphism ring over an algebraically closed field
(of characteristic 0) is larger than Z (therefore of rank 2 over Z), while a supersin-
gular elliptic curve E over an algebraically closed field k ⊃ Fp has rkZ(End(E)) = 4.
Since an elliptic curve is non-singular, a better terminology would be “an elliptic
curve with a singular j-invariant”.

We say an abelian variety A of dimension g over a field K is supersingular if
there exists an isogeny A⊗K k ∼ Eg, where E is a supersingular elliptic curve. An
equivalent definition for an abelian variety in characteristic p to be supersingular
is that all of its slopes are equal to 1/2; see 4.38 for the definition of slopes and the
Newton polygon. Supersingular abelian varieties have p-rank zero. For g = 2 one
can show that (supersingular) ⇔ (f = 0), where f is the p-rank. For g > 2 there
exist abelian varieties of p-rank zero which are not supersingular, see 5.22.

Hecke orbits.

Definition 1.2. Let A and B be abelian varieties over a field K. Let Γ ⊂ Q be a
subring. A Γ-isogeny from A to B is an element ψ of Hom(A,B)⊗Z Γ which has an
inverse in Hom(B,A)⊗Z Γ, i.e., there exists an element ψ′ ∈ Hom(B,A)⊗Z Γ such
that ψ′ ψ = idA ⊗ 1 in Hom(A,A) ⊗Z Γ and ψψ′ = idB ⊗ 1 in Hom(B,B)⊗Z Γ.

Remark.

(i) When Γ = Q (resp. Γ = Z(p), resp. Z[1/ℓ]), we say that ψ is a quasi-
isogeny (resp. prime-to-p quasi-isogeny, resp. an ℓ-power quasi-isogeny).
A prime-to-p isogeny (resp. ℓ-power isogeny) is an isogeny which is also a
Z(p)-isogeny (resp. a Z[1/ℓ]-isogeny). Here Z(p) = Q∩Zp is the localization
of Z at the prime ideal (p) = pZ.

(ii) A Q-isogeny ψ (resp. Z(p)-isogeny, resp. Z[1/ℓ]-isogeny) can be realized by
a diagram

A
α←− C β−→ B ,

where α and β are isogenies such that there exists an integerN ∈ Γ× (resp.
an integer N prime to p, resp. an integer N ∈ ℓN) such that N ·Ker(α) =
N ·Ker(β) = 0.

Definition 1.3. Let [(A, λ)] = x ∈ Ag(K) be the moduli point of a polarized
abelian variety over a field K.

(i) We say that a point [(B,µ)] = y of Ag is in the Hecke orbit of x if there
exists a field Ω and

a Q-isogeny ϕ : AΩ → BΩ such that ϕ∗(µ) = λ.

Notation: y ∈ H(x). The set H(x) is called the Hecke orbit of x.
(ii) Hecke-prime-to-p-orbits. If in the previous definition moreover ϕ is a Z(p)-

isogeny, we say [(B,µ)] = y is in the Hecke-prime-to-p-orbit of x.
Notation: y ∈ H(p)(x).

(iii) Hecke-ℓ-orbits. Fix a prime number ℓ different from p. We say [(B,µ)] = y
is in the Hecke-ℓ-orbit of x if in the previous definition moreover ϕ is a
Z[1/ℓ]-isogeny.
Notation: y ∈ Hℓ(x).



442 CHING-LI CHAI AND FRANS OORT

(iv) Notation: Suppose that x = [(A, λ)] is a point of Ag,1, i.e., λ is principal.
Write

H(p)
Sp (x) := H(p)(x) ∩ Ag,1 , HSp

ℓ (x) := Hℓ(x) ∩ Ag,1 (ℓ 6= p) .

Remark.

(i) Clearly we have Hℓ(x) ⊆ H(p)(x) ⊆ H(x). Similarly we have

HSp
ℓ (x) ⊆ H(p)

Sp (x) for x ∈ Ag,1.
(ii) Note that y ∈ H(x) is equivalent to requiring the existence of a diagram

(B,µ)
ψ←− (C, ζ)

ϕ−→ (A, λ).

such that ψ∗µ = ζ = ϕ∗λ, where φ and ψ are isogenies, [(B,µ)] = y,
[(A, λ)] = x. If we have such a diagram such that both ψ and ϕ are
Zp-isogenies (resp. Z[1/ℓ]-isogenies), then y ∈ H(p)(x) (resp. y ∈ Hℓ(x).)

(iii) We have given the definition of the so-called Sp2g-Hecke-orbit. One can
also define the (slightly bigger) CSp2g(Z)-Hecke-orbits by the usual Hecke
correspondences, see [28], VII.3, also see 1.7 below.

(iv) The diagram which defines H(x) as above gives representable correspon-
dences between components of the moduli scheme; these correspondences
could be denoted by Sp-Isog, whereas the correspondences considered in
[28], VII.3 could be denoted by CSp-Isog.

1.4. Why are Hecke orbits interesting? Here we work first over Z. A
short answer is that they are manifestations of the Hecke symmetry on Ag. The
Hecke symmetry is a salient feature of the moduli space Ag; methods developed for
studying Hecke orbits have been helpful for understanding the Hecke symmetry.

To explain what the Hecke symmetry is, we will focus on Ag,1, the moduli space
of principally polarized abelian varieties and the prime-to-p power, the projective

system ofAg,1,n over Z[1/n]. The group Sp2g(A
(p)
f ) of finite prime-to-p adelic points

of the symplectic group Sp2g operates on this tower, and induces finite correspon-
dences on Ag,1; these finite correspondences are known as Hecke correspondences.
By the term Hecke symmetry we refer to both the action on the tower of moduli
spaces and the correspondences on Ag,1. The prime-to-p Hecke orbit H(p)(x)∩Ag,1
is exactly the orbit of x under the Hecke correspondences coming from the group

Sp2g(A
(p)
f ). In characteristic 0, the moduli space of g-dimensional principally po-

larized abelian varieties is uniformized by the Siegel upper half space Hg, consisting
of all symmetric g× g matrices in Mg(C) whose imaginary part is positive definite:
Ag,1(C) ∼= Sp2g(Z)\Hg. The group Sp2g(R) operates transitively on Hg, and the
action of the rational elements Sp2g(Q) give a family of algebraic correspondences
on Sp2g(Z)\Hg. These algebraic correspondences are of fundamental importance
for harmonic analysis on arithmetic quotients such as Sp2g(Z)\Hg.

Remark/Exercise 1.5. (Characteristic zero.) The Hecke orbit of a point in the
moduli space Ag ⊗ C in characteristic zero is dense in that moduli space for both
the metric topology and the Zariski topology.

1.6. Hecke orbits of elliptic curves. Consider the moduli point [E] =
j(E) = x ∈ A1,1

∼= A1 of an elliptic curve in characteristic p. Here A1,1 stands for
A1,1 ⊗ Fp. Note that every elliptic curve has a unique principal polarization.
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(1) If E is supersingular H(x)∩A1,1 is a finite set; we conclude that H(x) is
nowhere dense in A1.

Indeed, the supersingular locus in A1,1 is closed, there do exist or-
dinary elliptic curves, and hence that locus is finite; Deuring and Igusa
computed the exact number of geometric points in this locus.

(2) Remark/Exercise. If E is ordinary, its Hecke-ℓ-orbit is dense in A1,1.
There are several ways to prove this. Easy and direct considerations

show that in this caseHℓ(x)∩A1,1 is not finite; note that every component
of A1 has dimension one, and conclude H(x) is dense in A1.

Remark. For elliptic curves we have defined (supersingular) ⇔ (non-ordinary).
For g = 2 one can show that (supersingular)⇔ (f = 0), where f is the p-rank. For
g > 2 there exist abelian varieties of p-rank zero which are not supersingular, see
5.22.

1.7. A bigger Hecke orbit. We work over Z. We define the notion of CSp-
Hecke orbits on Ag,1. Two K-points [(A, λ)], [(B,µ)] of Ag,1 are in the same CSp-
Hecke orbit (resp. prime-to-p CSp-Hecke orbit, resp. ℓ-power CSp-Hecke orbit) if
there exists an isogeny ϕ : A⊗ k → B ⊗ k and a positive integer n (resp. a positive
integer n which is relatively prime to p, resp. a positive integer which is a power
of ℓ) such that ϕ∗(µ) = n · λ. Such Hecke correspondences are representable by a
morphism Isogg → Ag ×Ag on Ag, also see [28], VII.3.

The set of all such (B,µ) for a fixed x := [(A, λ)] is called the CSp-Hecke

orbit (resp. CSp(A(p)
f )-Hecke orbit, resp. CSp(Qℓ)-Hecke orbit) of x, and denoted

HCSp(x) (resp. H(p)
CSp(x), resp. HCSp

ℓ (x)). Note that

HCSp(x) ⊃ H(p)
CSp(x) ⊃ HCSp

ℓ (x),

HCSp(x) ⊃ H(x), H(p)
CSp(x) ⊃ H(p)(x) and HCSp

ℓ (x) ⊃ Hℓ(x). This slightly bigger
Hecke orbit will play no role in this paper. However, it is nice to see the relation
between the Hecke orbits defined previously in 1.3, which could be called the Sp-
Hecke orbits and Sp-Hecke correspondences, with the CSp-Hecke orbits and CSp-
Hecke correspondences.

Theorem 1.8. Th (Density of ordinary Hecke orbits) Let [(A, λ)] = x ∈ Ag⊗Fp
be the moduli point of a polarized ordinary abelian variety in characteristic p.

(i) If the polarization λ is separable, then
(
H(p)(x) ∩ Ag,1

)Zar
= Ag,1. If

deg(λ) ∈ ℓN for a prime number ℓ 6= p, then (Hℓ(x) ∩ Ag,1)Zar = Ag,1.
(ii) From (i) we conclude that H(x) is dense in Ag, with no restriction on the

degree of λ.

See Theorem 9.1. This theorem was proved by Ching-Li Chai in 1995; see [9],
Theorem 2 on page 477. Although CSp-Hecke orbits were used in [9], the same
argument works for Sp-Hecke orbits as well. We present a proof of this theorem;
we follow [9] partly, but also present a new insight which was necessary for solving
the general Hecke orbit problem. This final strategy will provide us with a proof
which seems easier than the one given previously. More information on the general
Hecke orbit problem can be obtained from [10] as long as [13] is not yet available.

Exercise 1.9. (Any characteristic.) Let k be any algebraically closed field (of
any characteristic). Let E be an elliptic curve over k such that End(E) = Z. Let
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ℓ be a prime number different from the characteristic of k. Let E′ be an elliptic
curve such that there exists an isomorphism E′/(Z/ℓ)

k
∼= E. Let λ be the principal

polarization on E, let µ be the pullback of λ to E′, hence µ has degree ℓ2, and let
µ′ = µ/ℓ2, hence µ′ is a principal polarization on E′. Note that [(E′, µ′)] ∈ H(x).
Show that [(E′, µ′)] 6∈ HSp(x).

Exercise 1.10. Let E be an elliptic curve in characteristic p which is not super-
singular (hence ordinary); let µ be any polarization on E, and x := [(E, µ)]. Show
HSp(x) is dense in A1.

1.11. (1) Let Isogg,Sp be the moduli space which classifies diagrams of polarized
g-dimensional abelian schemes

(B,µ)
ψ←− (C, ζ)

ϕ−→ (A, λ)

in characteristic p such that ψ∗µ = ζ = ϕ∗λ. Consider a component I of Isogg,Sp

defined by diagrams as in 1.7 with deg(ψ) = b and deg(ϕ) = c. If b is not divisible
by p, the first projection Ag ← I is étale; if c is not divisible by p, the second
projection I → Ag is étale.

(2) Consider Isogord
g,Sp ⊂ Isogg,Sp, the largest subscheme (it is locally closed) lying

over the ordinary locus (either in the first projection, or in the second projection,
which is the same).

Exercise. Show that the two projections (Ag)ord ← Isogord
g,Sp → (Ag)ord are both

surjective, finite and flat.

(3) Extra Let Z be an irreducible component of Isogg,Sp over which the polar-
izations µ, λ are principal, and such that ζ is a multiple of a principal polarization.
Then the projections Ag,1 ← Z → Ag,1 are both surjective and proper. This fol-
lows from [28], VII.4. The previous exercise (2) is easy; the fact (3) here is more
difficult; it uses the computation in [56].

1.12. We explain the reason to focus our attention on Ag,1 ⊗ Fp, the moduli
space of principally polarized abelian varieties in characteristic p.

(1) BB In [56] it has been proved that (Ag)ord is dense in Ag = Ag ⊗ Fp.
(2) We show that for an ordinary [(A, λ)] = x we have

(Hℓ(z) ∩ Ag,1)Zar
= Ag,1 ∀z ∈ Ag,1 =⇒ (H(x))

Zar
= Ag.

Work over k. In fact, consider an irreducible component T of Ag. As proved in
[56] there is an ordinary point y = [(B,µ)] ∈ T . By [54], Corollary 1 on page 234,
we see that there is an isogeny (B,µ)→ (A, λ), where λ is a principal polarization.
By 1.11 (2) we see that density of Hℓ(x)∩Ag,1 in Ag,1 implies density of Hℓ(x)∩T
in T .

Therefore, from now on we shall be mainly interested in Hecke orbits in the
principally polarized case.

Theorem 1.13. Extra (Ching-Li Chai and Frans Oort) For any [(A, µ)] = x ∈
Ag ⊗ Fp with ξ = N (A), the Hecke orbit H(x) is dense in the Newton polygon
stratum Wξ(Ag ⊗ Fp).

A proof will be presented in [13]. For a definition of Newton polygon strata
and the fact that they are closed in the moduli space, see 1.19, 1.20. Note that in
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case f(A) ≤ g−2 the ℓ-Hecke orbit is not dense inWξ(Ag⊗Fp). In [68], 6.2 we find
a precise conjectural description of the Zariski closure of Hℓ(x); that conjecture has
now been proven and it implies 1.13.

Lemma 1.14. BB (Chai) Let [(A, λ)] = x ∈ Ag,1. Suppose that A is super-

singular. Then H(p)(x) ∩ Ag,1 is finite, therefore Hℓ(x) ∩ Ag,1 is finite for every
prime number ℓ 6= p. Conversely if Hℓ(x)∩Ag,1 is finite for a prime number ℓ 6= p,
then x is supersingular.

See [9], Proposition 1 on page 448 for a proof. Note that H(x) equals the whole
supersingular Newton polygon stratum: the prime-to-p Hecke orbit is small, but the
Hecke orbit including p-power quasi-isogenies is large. Lemma 1.14 will be used in
3.22.

A conjecture by Grothendieck.

Definition 1.15. p-divisible groups. Let h ∈ Z>0 be a positive integer, and let
S be a base scheme. A p-divisible group of height h over S is an inductive system of
finite, locally free commutative group scheme Gi over S indexed by i ∈ N, satisfying
the following conditions.

(1) The group scheme Gi → S is of rank pih for every i ≥ 0. In particular G0

is the constant trivial group scheme over S.
(2) The subgroup scheme Gi+1[p

i] of pi-torsion points in Gi+1 is equal to Gi
for every i ≥ 0.

(3) For each i ≥ 0, the endomorphism [p]Gi+1 : Gi+1 → Gi+1 of Gi+1 factors
as ιi+1,i ◦ ψi+1,i, where ψi+1,i : Gi+1 → Gi is a faithfully flat homomor-
phism, and ιi+1,i : Gi →֒ Gi+1 is the inclusion.

Homomorphisms between p-divisible groups are defined by

Hom({Gi}, {Hj}) = lim←−
i

lim−→
j

Hom(Gi, Hj).

A p-divisible group is also called a Barsotti-Tate group. It is clear that one can
generalize the definition of p-divisible groups so that the height is a locally constant
function h : S → Z on the base scheme S. For more information see [38], Section
1. Also see 10.6, and see Section 10 for further information.

In order to being able to handle the isogeny class of A[p∞] we need the notion
of Newton polygons.

1.16. Newton polygons. Suppose we are given integers h, d ∈ Z≥0; here h
= “height”, d = “dimension”. In the case of abelian varieties we will choose h = 2g,
and d = g. A Newton polygon γ (related to h and d) is a polygon γ ⊂ R×R, such
that:

• γ starts at (0, 0) and ends at (h, d);
• γ is lower convex;
• every slope β of γ has the property that 0 ≤ β ≤ 1;
• the breakpoints of γ are in Z× Z; hence β ∈ Q.
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In the above, γ being lower convex means that the region in R2 above γ is a convex
subset of R2, or equivalently, γ is the graph of a piecewise linear continuous function
f : [0, h]→ R such that f(tx+ (1 − t)y) ≤ tf(x) + (1− t)f(y) for all x, y ∈ [0, h].

Note that a Newton polygon determines (and is determined by) its slope se-
quence

β1, . . . , βh ∈ Q with 0 ≤ β1 ≤ · · · ≤ βh ≤ 1 ↔ ζ.

Remark. (i) The last condition above implies that the multiplicity of any
slope β in a Newton polygon is a multiple of the denominator of β.

(ii) We imposed the condition that all slopes are between 0 and 1 because we
only consider Newton polygons attached to p-divisible groups or abelian
varieties. This condition should be eliminated when one considers Newton
polygons attached to general (iso)crystals.

Sometimes we will give a Newton polygon by data of the form
∑
i (mi, ni),

where mi, ni ∈ Z≥0, with gcd(mi, ni) = 1, and mi/(mi + ni) ≤ mj/(mj + nj) for
i ≤ j. The Newton polygon attached to

∑
i (mi, ni) can be described as follows.

Its height h is given by the formula h =
∑

i (mi + ni), its dimension d is given by
the formula d =

∑
imi, and the multiplicity of any rational number β as a slope is∑

mi=β(mi+ni)
(mi + ni) . Conversely it is clear that every Newton polygon can be

encoded in a unique way in such a form.

Remark. The Newton polygon of a polynomial. Let g ∈ Qp[T ] be a monic
polynomial of degree h. We are interested in the p-adic values of its zeroes (in
an algebraic closure of Qp). These can be computed by the Newton polygon of
this polynomial. Write g =

∑
j γjT

h−j. Plot the pairs (j, vp(γj)) for 0 ≤ j ≤ h,

where vp is the valuation on Qp with vp(p) = 1. Consider the lower convex hull of
{(j, vp(γj)) | j}. This is a Newton polygon according to the definition above. The
slopes of the sides of this polygon are precisely the p-adic values of the zeroes of g,
ordered in non-decreasing order. (Suggestion: prove this as an exercise.)

Later we will see: a p-divisible group X over a field of characteristic p deter-
mines a Newton polygon. In Section 4 a correct and precise definition will be given.
Isogenous p-divisible groups have the same Newton polygon. Moreover a theorem
by Dieudonné and Manin says that the isogeny class of a p-divisible group over an
algebraically closed field k ⊃ Fp is uniquely determined by its Newton polygon; see
[48], “Classification Theorem” on page 35 and 4.42.

(Incorrect.) Here we indicate what the Newton polygon of a p-divisible group is
(in a slightly incorrect way...). Consider “the Frobenius endomorphism” of X . This
has a “characteristic polynomial”. This polynomial determines a Newton polygon,
which we write as N (X), the Newton polygon of X . For an abelian variety A we
write N (A) instead of N (A[p∞]).
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Well, this “definition” is correct over Fp as ground field. However, over any

other field, F : X → X(p) is not an endomorphism, and the above “construction”
fails. Over a finite field there is a method which repairs this, see 3.8. However we
need the Newton polygon of an abelian variety over an arbitrary field. Please accept
for the time being the “explanation” given above: N (X) is the “Newton polygon
of the Frobenius on X”, which will be made precise later, see Section 4. There is
also a more conceptual way of defining the Newton polygon than the definition in
Section 4: the slopes measures divisibility properties of tensor constructions of the
crystal attached to a p-divisible group; see [40].

Examples. (1) The Newton polygon of Gm[p∞]Fp has one slope (counting
multiplicity), which is equal to 1. In fact, on Gm the Frobenius endomor-
phism is [p].

(2) The Newton polygon of the constant p-divisible group Qp/Zp
Fp

has one

slope (counting multiplicity), which is equal to 0.
(3) The Newton polygon of an ordinary elliptic curve has two slopes, equal

to 0 and to 1, each with multiplicity one.
(4) The Newton polygon of a supersingular elliptic curve has two slopes, both

equal to 1/2.

1.17. Newton polygons go up under specialization. Grothendieck ob-
served in 1970 that “Newton polygons go up” under specialization. See 1.20, 4.47
for more information. In order to study this and related questions we introduce the
notation of a partial ordering between Newton polygons.

We write ζ1 ≻ ζ2 if ζ1 is “below” ζ2, i.e., if no point of ζ1 is strictly above ζ2:

((((((�
�

�

����"
"

"
"

"

ζ2
ζ1

ζ1 ≻ ζ2

Note that we use this notation only if Newton polygons with the same endpoints
are considered. A note on convention: we write ≺ instead of �, so we have ζ ≻ ζ
for any Newton polygon ζ.

This notation may seem unnatural. However if ζ1 is strictly below ζ2 the
stratum defined by ζ1 is larger than the stratum defined by ζ2; this explains the
choice for this notation.

1.18. Later in Section 4 we will show that isogenous p-divisible groups have
the same Newton polygon. We will also see in 4.40 that if N (X) is given by
{βi | 1 ≤ i ≤ h} then N (Xt) is given by {1− βh, . . . , 1− β1}.

A Newton polygon ξ, given by the slopes β1 ≤ · · · ≤ βh is called symmetric if
βi = 1 − βh+1−i for all i. We see that X ∼ Xt implies that N (X) is symmetric;
in particular for an abelian variety A we see that N (A) is symmetric. This was
proved over finite fields by Manin, see [48], page 70; for any base field we can use
the duality theorem over any base, see [61], Th. 19.1, also see 10.11.

1.19. If S is a base scheme over Fp, and X → S is a p-divisible group over S
and ζ is a Newton polygon we write

Wζ(S) := {s ∈ S | N (Xs) ≺ ζ} ⊂ S
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and

W0
ζ (S) := {s ∈ S | N (Xs) = ζ} ⊂ S.

Theorem 1.20. BB (Grothendieck and Katz; see [40], 2.3.2)

Wζ(S) ⊂ S is a closed set.

Working over S = Spec(K), where K is a perfect field, Wζ(S) and W0
ζ (S) will

be given the induced reduced scheme structure.
As the set of Newton polygons of a given height is finite we conclude:

W0
ζ (S) ⊂ S is a locally closed set.

Notation. Let ξ be a symmetric Newton polygon. We write Wξ =Wξ(Ag,1⊗Fp).

1.21. We have seen that “Newton polygons go up under specialization”. Does
a kind of converse hold? In 1970 Grothendieck conjectured the converse. In the
appendix of [34] is a letter of Grothendieck to Barsotti, with the following pas-
sage on page 150: “The wishful conjecture I have in mind now is the following:
the necessary conditions . . . that G′ be a specialization of G are also sufficient. In
other words, starting with a BT group G0 = G′, taking its formal modular deforma-
tion . . . we want to know if every sequence of rational numbers satisfying . . . these
numbers occur as the sequence of slopes of a fiber of G as some point of S.”

Theorem 1.22. Th (The Grothendieck Conjecture, Montreal 1970) Let K be
a field of characteristic p, and let X0 be a p-divisible group over K. We write
N (X0) =: β for its Newton polygon. Given a Newton polygon γ “below” β, i.e.,
β ≺ γ, there exists a deformation Xη of X0 such that N (Xη) = γ.

See §8. This was proved by Frans Oort in 2001. For a proof see [20], [65], [66].
We say “Xη is a deformation of X0” if there exists an integral scheme S over

K, with generic point η ∈ S and 0 ∈ S(K), and a p-divisible group X → S such
that X0 = X0 and Xη = Xη.

A (quasi-) polarized version will be given later.
In this paper we record a proof of this theorem, and we will see that this is an

important tool in understanding Newton polygon strata in Ag in characteristic p.
Why is the proof of this theorem difficult? A direct approach seems obvious:

write down deformations of X0, compute Newton polygons of all fibers, and inspect
whether all relevant Newton polygons appear in this way. However, computing the
Newton polygon of a p-divisible group in general is difficult (but see Section 5 on how
to circumvent this in an important special case). Moreover, abstract deformation
theory is easy, but in general Newton polygon strata are “very singular”; in Section
7 we describe how to “move out” of a singular point to a non-singular point of a
Newton polygon stratum. Then, at non-singular points the deformation theory can
be described more easily, see Section 5. By a combination of these two methods we
achieve a proof of the Grothendieck conjecture. Later we will formulate and prove
the analogous “polarized case” of the Grothendieck conjecture, see Section 8.

We see: a direct approach did not work, but the detour via “deformation to
a ≤ 1” plus the results via Cayley-Hamilton gave the essential ingredients for a
proof. Note the analogy of this method with the approach to liftability of abelian
varieties to characteristic zero, as proposed by Mumford, and carried out in [56].
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2. Serre-Tate theory

In this section we explain the deformation theory of abelian varieties and p-
divisible groups. The content can be divided into several parts:

(1) In 2.1 we give the formal definitions of deformation functors for abelian
varieties and p-divisible groups.

(2) In contrast to the deformation theory for general algebraic varieties, the
deformation theory for abelian varieties and p-divisible groups can be
efficiently dealt with by linear algebra, as follows from the crystalline de-
formation theory of Grothendieck-Messing. It says that, over an extension
by an ideal with a divided power structure, deforming abelian varieties or
p-divisible groups is the same as lifting the Hodge filtration. See The-
orem 2.4 for the precise statement, and Theorem 2.11 for the behavior
of the theory under duality. The smoothness of the moduli space Ag,1,n
follows quickly from this theory.

(3) The Serre-Tate theorem: deforming an abelian variety is the same as
deforming its p-divisible group. See Theorem 2.7 for a precise statement.
A consequence is that the deformation space of a polarized abelian variety
admits an natural action by a large p-adic group, see 2.14. In general this
action is poorly understood.

(4) There is one case when the action on the deformation space mentioned
in (3) above is linearized and well-understood. This is the case when the
abelian variety is ordinary. The theory of Serre-Tate coordinates says
that the deformation space of an ordinary abelian variety has a natural
structure as a formal torus. See Theorem 2.19 for the statement. In
this case the action on the local moduli space mentioned in (3) above
preserves the group structure and gives a linear representation on the
character group of the Serre-Tate formal torus. This phenomenon has
important consequences later. A local rigidity result, Theorem 2.26, is
important for the Hecke orbit problem in that it provides an effective
linearization of the Hecke orbit problem. Also, computing the deformation
using the Serre-Tate coordinates is often easy; the reader is encouraged
to try Exercise 2.25.

Here is a list of recommended references.

p-divisible groups: [49], [38].
Crystalline deformation theory: [49], [5].
Serre-Tate Theorem: [49], [41].
Serre-Tate coordinates: [42].

2.1. Deformations of abelian varieties and of p-divisible groups.

Definition. Let K be a perfect field of characteristic p. Denote by W (K) the ring
of p-adic Witt vectors with coordinates in K.
(i) Denote by ArtW (K) the category of Artinian local algebras over W (K). An
object of ArtW (K) is a pair (R, j), where R is an Artinian local algebra and j :
W (K)→ R is a local homomorphism of local rings. A morphism in ArtW (K) from
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(R1, j1) to (R2, j2) is a homomorphism h : R1 → R2 between Artinian local rings
such that h ◦ j1 = j2.
(ii) Denote by ArtK the category of Artinian local K-algebras. An object in
ArtK is a pair (R, j), where R is an Artinian local algebra and j : K → R
is a ring homomorphism. A morphism in Art/K from (R1, j1) to (R2, j2) is a
homomorphism h : R1 → R2 between Artinian local rings such that h ◦ j1 = j2.
Notice that ArtK is a fully faithful subcategory of ArtW (K) .

Definition. Denote by Sets the category whose objects are sets and whose mor-
phisms are maps between sets.

Definition. Let A0 be an abelian variety over a perfect field K ⊃ Fp. The defor-
mation functor of A0 is a functor

Def(A0/W (K)) : ArtW (K) → Sets

defined as follows. For every object (R, j) of ArtW (K), Def(A0/W (K))(R, j) is the
set of isomorphism classes of pairs (A → Spec(R), ǫ), where A → Spec(R) is an
abelian scheme, and

ǫ : A×Spec(R) Spec(R/mR)
∼−→ A0 ×Spec(K) Spec(R/mR)

is an isomorphism of abelian varieties over R/mR. Denote by Def(A0/K) the
restriction of the deformation functor Def(A0/W (K)) to the faithful subcategory
ArtK of ArtW (K) .

Definition. Let A0 be an abelian variety over a perfect field K ⊃ Fp, and let λ0

be a polarization on A0. The deformation functor of (A0, λ0) is a functor

Def(A0/W (K)) : ArtW (K) → Sets

defined as follows. For every object (R, ǫ) of ArtW (K) , Def(A0/W (K))(R, ǫ) is the
set of isomorphism classes of pairs (A, λ) → Spec(R), ǫ), where (A, λ) → Spec(R)
is a polarized abelian scheme, and

ǫ : (A, λ)×Spec(R) Spec(R/mR)
∼−→ (A0, λ0)×Spec(K) Spec(R/mR)

is an isomorphism of polarized abelian varieties over R/mR. Let Def((A0, λ0)/K)
denote the restriction of Def(A0/W (K)) to the faithful subcategory ArtK of
ArtW (K) .

Exercise. Let X0 be a p-divisible group over a perfect field K ⊃ Fp, and let λ0 :
X0 → Xt

0 be a polarization of X0. Define the deformation functor Def(X0/W (K))
for X0 and the deformation functor Def((X0, λ0)/W (K)) imitating the above def-
initions for abelian varieties.

Definition 2.2. Let R be a commutative ring, and let I ⊂ R be an ideal of I.
A divided power structure (a DP structure for short) on I is a collection of maps
γi : I → R, i ∈ N, such that

• γ0(x) = 1 ∀x ∈ I,
• γ1(x) = x ∀x ∈ I,
• γi(x) ∈ I ∀x ∈ I, ∀i ≥ 1,
• γj(x+ y) =

∑
0≤i≤j γi(x)γj−i(y) ∀x, y ∈ I, ∀j ≥ 0,

• γi(ax) = ai ∀a ∈ R, ∀x ∈ I, ∀i ≥ 1,

• γi(x)γj(y) = (i+j)!
i!j! γi+j(x) ∀i, j ≥ 0, ∀x ∈ I,
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• γi(γj(x)) = (ij)!
i!(j!)i γij(x) ∀i, j ≥ 1, ∀x ∈ I.

A divided power structure (R, I, (γi)i∈N) as above is locally nilpotent if there exist
n0 ∈ N such that γi(x) = 0 for all i ≥ n0 and all x ∈ I. A locally nilpotent DP
extension of a commutative ringR0 is a locally nilpotent DP structure (R, I, (γi)i∈N)

together with an isomorphism R/I
∼−→ R0.

Remark 2.3.

(i) The basic idea for a divided power structure is that γi(x) should “behave
like” xi/i! and make sense even though dividing by i! is illegitimate. The
reader can easily verify that γi(x) = xi/i! is the unique divided power
structure on (R, I) when R ⊇ Q.

(ii) Given a divided power structure on (R, I) as above, one can define an
exponential homomorphism exp : I → 1 + I ⊂ R× by

exp(x) = 1 +
∑

n≥1

γn(x),

and a logarithmic homomorphism log : (1 + I)→ I by

log(1 + x) =
∑

n≥1

(n− 1)! (−1)n−1 γn(x).

These homomorphisms establish an isomorphism (1 + I)
∼−→ I.

(iii) Let R be a commutative ring with 1, and let I be an ideal of R such that
I2 = (0). Define a DP structure on I by requiring that γi(x) = 0 for all
i ≥ 2 and all x ∈ I. This DP structure on a square-zero ideal I will be
called the trivial DP structure on I.

(iv) The notion of a divided power structure was first introduced in the context
of cohomology of Eilenberg-Mac Lane spaces. Grothendieck realized that
one can use the divided power structure to define the crystalline first
Chern class of line bundles, by analogy with the classical definition in
characteristic 0, thanks to the isomorphism (1 + I)

∼−→ I provided by a
divided power structure. This observation motivated the definition of the
crystalline site based on the notion of divided power structure.

(v) Theorem 2.4 below reduces deformation theory for abelian varieties and p-
divisible groups to linear algebra, provided the augmentation ideal I has a
divided power structure. An extension of a ring R0 by a square-zero ideal
I constitutes a standard “input data” in deformation theory; on (R, I)
we have the trivial divided power structure. So we can feed such input
data into the crystalline deformation theory summarized in Theorem 2.4
below to translate the deformation of an abelian scheme A → Spec(R0)
over a square-zero extension R ։ R0 into a question about lifting Hodge
filtrations, which is a question in linear algebra.

The statement of the black-boxed Theorem 2.4 below is a bit long. Roughly it
says that attached to any DP-extension (R, I, (γi) of the base of an abelian scheme
(or a p-divisible group) over R/I, we can attach a (covariant) Dieudonné crystal,
which is canonically isomorphic to the first de Rham homology of any lifting over
R of the abelian scheme, if such a lifting exists. Moreover, lifting the abelian
scheme to R is equivalent to lifting the Hodge filtration to the Dieudonné crystal.
Notice that the first de Rham homology of abelian varieties over base schemes in
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characteristic 0 enjoys similar properties, through the Gauss-Manin connection and
the Kodaira-Spencer map.

Theorem 2.4. BB (Grothendieck-Messing) LetX0 → Spec(R0) be an p-divisible
group over a commutative ring R0.

(i) To every locally nilpotent DP extension (R, I, (γi)i∈N) of R0 there is a
functorially attached locally free R-module D(X0)R = D(X0)(R,I,(γi)) of
rank ht(X0). The functor D(X0) is called the covariant Dieudonné crystal
attached to X0.

(ii) Let (R, I, (γi)i∈N) be a locally nilpotent DP extension of R0. Suppose that
X → Spec(R) is a p-divisible group extending X0 → Spec(R0). Then
there is a functorial short exact sequence

0→ Lie(Xt/R)∨ → D(X0)R → Lie(X/R)→ 0 .

Here Lie(X/R) is the tangent space of the p-divisible group X → Spec(R),
which is a projective R-module of rank dim(X/R), and Lie(Xt/R)∨ is the
R-dual of the tangent space of the Serre dual Xt → Spec(R) of X →
Spec(R).

(iii) Let (R, I, (γi)i∈N) be a locally nilpotent DP extension of R0. Suppose that
A→ Spec(R) is an abelian scheme such that there exists an isomorphism

β : A[p∞]×Spec(R) Spec(R0)
∼−→ X0

of p-divisible groups over R0. Then there exists a natural isomorphism

D(X0)R → HDR
1 (A/R) ,

where HDR
1 (A/R) is the first de Rham homology of A→ Spec(R). More-

over the above isomorphism identifies the short exact sequence

0→ Lie(A[p∞]t/R)∨ → D(X0)R → Lie(A[p∞]/R)→ 0

described in (ii) with the Hodge filtration

0→ Lie(At/R)∨ → HDR
1 (A/R)→ Lie(A/R)→ 0

on HDR
1 (A/R).

(iv) Let (R, I, (γi)i∈N) be a locally nilpotent DP extension of R0. Denote by
E the category whose objects are short exact sequences

0→ F → D(X0)R → Q→ 0

such that F and Q are projective R-modules, plus an isomorphism from
the short exact sequence

(0→ F → D(X0)R → Q→ 0)⊗R R0

of projective R0-modules to the short exact sequence

0→ Lie(Xt
0)

∨ → D(X0)R0 → Lie(X)→ 0

attached to the p-divisible group X0 → Spec(R0) as a special case of (ii)
above. The morphisms in E are maps between diagrams. Then the functor
from the category of p-divisible groups over R lifting X0 to the category
E described in (ii) is an equivalence of categories.

Theorem 2.4 is a summary of the main results in Chapter IV of [49].
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Corollary 2.5. Let X0 be a p-divisible group over a perfect field K ⊃ Fp. Let
d = dim(X0), c = dim(Xt

0). The deformation functor Def(X0/W (K)) of X0 is
representable by a smooth formal scheme over W (K) of dimension cd. In other
words, Def(X0/W (K)) is non-canonically isomorphic to the functor represented by
the formal spectrum Spf (W (K)[[x1, . . . , xcd]]).

Proof. Recall that formal smoothness of Def(X0/W (K)) means that the natural
map

Def(X0/W (K))(R)→ Def(X0/W (K))(R′)

attached to any surjective ring homomorphism R → R′ is surjective, for any Ar-
tinian local rings R,R′ ∈ ArtW (K). To prove this, we may and do assume that

the kernel I of the surjective homomorphism R → R′ satisfies I2 = (0). Apply
Theorem 2.4 to the trivial DP structure on pairs (R, I) with I2 = (0), we see that
Def(X0/W (K)) is formally smooth over W (K). Applying Theorem 2.4 again to
the pair K[t]/(t2), tK[t]/(t2), we see that the dimension of the tangent space of
Def(X0/K) is equal to cd.

2.6. We set up notation for the Serre-Tate Theorem 2.7, which says that de-
forming an abelian variety A0 over a field of characteristic p is the same as deforming
the p-divisible group A0[p

∞] attached to A0. Recall that A0[p
∞] is the inductive

system formed by the pn-torsion subgroup schemes A0[p
n] of A0, where n runs

through positive integers. In view of Theorem 2.4 one can regard the p-divisible
group A0[p

∞] as a refinement of the first homology group of A0.
Let p be a prime number. Let S be a scheme such that p is locally nilpotent in

OS. Let I ⊂ OS be a coherent sheaf of ideals such that I is locally nilpotent. Let
S0 = Spec(OS/I). Denote by AVS the category of abelian schemes over S. Denote
by AVBTS0,S the category whose objects are triples (A0 → S0, X → S, ǫ), where
A0 → S0 is an abelian scheme over S0, X → S is a p-divisible group over S, and
ǫ : X ×S S0 → A0[p

∞] is an isomorphism of p-divisible groups. A morphism from
(A0 → S0, X → S, ǫ) to (A′

0 → S0, X
′ → S, ǫ′) is a pair (h, f), where h0 : A0 → A′

0

is a homomorphism of abelian schemes over S0, and f : X → X ′ is a homomorphism
of p-divisible groups over S, such that h[p∞] ◦ ǫ = ǫ′ ◦ (f ×S S0). Let

GS0,S : AVS → AVBTS0,S

be the functor which sends an abelian scheme A→ S to the triple

((A×S S0, A[p∞], can),

where can is the canonical isomorphism A[p∞]×S S0
∼−→ (A×S S0)[p

∞].

Theorem 2.7. BB (Serre-Tate) Notation and assumptions as in the above para-
graph. The functor GS0,S is an equivalence of categories.

Remark. See [46]. A proof of Theorem 2.7 first appeared in print in [49]. See
also [41].

Corollary 2.8. Let A0 be an abelian variety over a perfect field K. Let

G : Def(A0/W (K))→ Def(A0[p
∞]/W (K))

be the functor which sends any object
(
A→ Spec(R), ǫ : A×Spec(R) Spec(R/mR)

∼−→ A0 ×Spec(k) Spec(R/mR)
)
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in Def(A0/W (K)) to the object

(A[p∞]→ Spec(R), ǫ[p∞])

ǫ[p∞] : A[p∞]×Spec(R) Spec(R/mR)
∼−→ A0[p

∞]×Spec(K) Spec(R/mR)

in Def(A0[p
∞]/W (K)). The functor G is an equivalence of categories.

Remark. In words, Corollary 2.8 says that deforming an abelian variety is the
same as deforming its p-divisible group.

Corollary 2.9. Let A0 be a g-dimensional abelian variety over a perfect field K ⊃
Fp. The deformation functor Def(A0/W (K)) of A0 is representable by a smooth
formal scheme over W (K) of relative dimension g2.

Proof. We have Def(A0/W (K)) ∼= Def(A0[p
∞]/W (K)) by Theorem 2.7. Corol-

lary 2.9 follows from Corollary 2.5.

2.10. LetR0 be a commutative ring. LetA0 → Spec(R0) be an abelian scheme.
Let D(A0) := D(A0[p

∞]) be the covariant Dieudonné crystal attached to A0. Let
D(At0) be the covariant Dieudonné crystal attached to the dual abelian scheme At.
Let D(A0)

∨ be the dual of D(A0), i.e.,

D(A0)
∨
(R,I,(γi))

= HomR(D(A0)R, R)

for any locally nilpotent DP extension (R, I, (γi)i∈N) of R0 = R/I.

Theorem 2.11. BB We have functorial isomorphisms

ϕA0 : D(A0)
∨ ∼−→ D(At0)

for abelian varieties A0 over K with the following properties.

(1) The composition

D(At0)
∨

ϕ∨
A0−−−→
∼

(D(A0)
∨)∨ = D(A0)

jA0−−→
∼

D((At0)
t)

is equal to

−ϕAt
0

: D(At0)
∨ ∼−→ D((At0)

t) ,

where the isomorphism DA0

jA0−−→
∼

D((At0)
t) is induced by the canonical

isomorphism

A0
∼−→ (At0)

t .

(2) For any locally nilpotent DP extension (R, I, (γi)i∈N) of R0 = R/I and
any lifting A→ Spec(R) of A0 → Spec(R0) to R, the following diagram

0 // Lie(A/R)∨

∼=

��

// D(A0)
∨
R

ϕA0

��

// (Lie(At/R)∨)∨

=

��

// 0

0 // Lie((At)t/R)∨ // D(At0)R
// Lie(At/R) // 0

commutes. Here the bottom horizontal exact sequence is as in 2.4, the
top horizontal sequence is the dual of the short exact sequence in 2.4,
and the left vertical isomorphism is induced by the canonical isomorphism
A

∼−→ (At)t.
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Theorem 2.11 is proved in [5], Chapter 5, §1.
Below are three applications of Theorem 2.4, Theorem 2.7 and Theorem 2.11;

their proofs are left as exercises. The first two, Corollary 2.12 and Corollary 2.13,
are basic properties of the moduli space of polarized abelian varieties. The group
action in Corollary 2.14 is called the action of the local stabilizer subgroup. This
“local symmetry” of the local moduli space will play an important role later in the
proof of the density of ordinary Hecke orbits.

Corollary 2.12. Let (A0, λ0) be a g-dimensional principally polarized abelian vari-
ety over a perfect field K ⊃ Fp. The deformation functor Def((A0, λ)/W (K)) of A0

is representable by a smooth formal scheme over W (K) of dimensional g(g + 1)/2.

Remark. Corollary 2.12 can be reformulated as follows. Let η0 be a K-rational
symplectic level-n structure on A0, n ≥ 3, (n, p) = 1, and let x0 = [(A0, λ0, η0)] ∈
Ag,1,n(K). The formal completionA/x0

g,1,n of the moduli spaceA/x0

g,1,n → Spec(W (K))

is non-canonically isomorphic to Spf
(
W (K)[[x1, . . . , xg(g+1)/2]]

)
.

Corollary 2.13. Let (A0, λ0) be a polarized abelian variety over a perfect field
K ⊃ F; let deg(λ0) = d2.

(i) The natural map Def((A0, λ0)/W (K))→ Def(A0/W (K)) is represented
by a closed embedding of formal schemes.

(ii) Let n be a positive integer, n ≥ 3, (n, pd) = 1. Let η0 be a K-rational sym-
plectic level-n structure on (A0, λ0). Let x0 = [(A0, λ0, η0)] ∈ Ag,d,n(K).

The formal completion A/x0

g,d,n of the moduli space Ag,d,n → Spec(W (K))
at the closed point x0 is isomorphic to the local deformation space

Def((A0, λ0)/W (K)).

Corollary 2.14. (i) Let A0 be an variety over a perfect field K ⊃ F. There is
a natural action of the profinite group Aut(A0[p

∞]) on the smooth formal scheme
Def(A0/W (K)).

(ii) Let λ0 be a principal polarization on an abelian variety A0 over a perfect
field K. Denote by Aut((A0, λ0)[p

∞]) the closed subgroup of Aut(A0[p
∞]) con-

sisting of all automorphisms of Aut(A[p∞]) compatible with the quasi-polarization
λ0[p

∞]. The natural action in (i) above induces a natural action on the closed
formal subscheme Def(A0, λ0) of Def(A0).

Remark. In the situation of (ii) above, the group Aut(A0, λ0) of polarization-
preserving automorphisms of A0 is finite, while Aut((A0, λ0)[p

∞]) is a compact
p-adic Lie group of positive dimension of positive dimension if dim(A0) > 0.
The group Aut(A0, λ) (resp. Aut((A0, λ0)[p

∞])) operates on Def(A0, λ0) (resp.
Def((A0, λ0)[p

∞])) by “changing the marking”. By Theorem 2.7, we have a natural

isomorphism Def(A0, λ0)
∼−→ Def((A0, λ0)[p

∞]), which is equivariant for the inclu-
sion homomorphism Aut(A0, λ0) →֒ Aut((A0, λ0)[p

∞]). In other words, the action
of Aut(A0, λ) on Def(A0, λ0) extends to an action by Aut((A0, λ0)[p

∞]).

2.15. Étale and toric p-divisible groups: notation. A p-divisible group
X over a base scheme S is said to be étale (resp. toric) if and only if X [pn] is étale
(resp. of multiplicative type) for every n ≥ 1; see the end of 10.6.
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Remark. Let E → S be an étale p-divisible group, where S is a scheme. The
p-adic Tate module of E, defined by

Tp(E) := lim←−
n

E[pn] ,

is representable by a smooth Zp-sheaf on Sét whose rank is equal to ht(E/S). Here
the rank of E is a locally constant function on the base scheme S. When S is the
spectrum of a field K, Tp(E) “is” a free Zp-module with an action by Gal(Ksep/K);
see 10.5.

Remark. Attached to any toric p-divisible group T → S is its character group

X∗(T ) := Hom(T,Gm[p∞])

and cocharacter group
X∗(T ) := Hom(Gm[p∞], T ) .

The character group of T can be identified with the p-adic Tate module of the
Serre-dual T t of T , and T t is an étale p-divisible group over S. Both X∗(T ) and
X∗(T ) are smooth Zp-sheaves of rank dim(T/S) on Sét, and they are naturally dual
to each other.

Definition 2.16. Let S be either a scheme such that p is locally nilpotent in OS ,
or an adic formal scheme such that p is locally topologically nilpotent in OS . A
p-divisible groupX → S is ordinary if X sits in the middle of a short exact sequence

0→ T → X → E → 0

where T (resp. E) is a multiplicative (resp. étale) p-divisible group. Such an exact
sequence is unique up to unique isomorphism.

Remark. Suppose that X is an ordinary p-divisible group over S = Spec(K),
where K is a perfect field K ⊃ Fp. Then there exists a unique splitting of the short
exact sequence 0→ T → X → E → 0 over K.

Proposition 2.17. BB Suppose that S is a scheme over W (K) and p is locally
nilpotent in OS. Let S0 = Spec(OS/pOS), the closed subscheme of S defined by
the ideal pOS of the structure sheaf OS. If X → S is a p-divisible group such that
X ×S S0 is ordinary, then X → S is ordinary.

Proposition 2.17 is a consequence of the rigidity of finite étale group schemes
and commutative finite group schemes of multiplicative type. See SGA3, Exposé
X.

2.18. We set up notation for Theorem 2.19 on the theory of Serre-Tate local
coordinates. Let K ⊃ Fp be a perfect field and let X0 be an ordinary p-divisible
group over K. This means that there is a natural split short exact sequence

0→ T0 → X0 → E0 → 0

where T0 (resp. E0) is a multiplicative (resp. étale) p-divisible group over K. Let

Ti → Spec(W (K)/piW (K)) (resp. Ei → Spec(W (K)/piW (K)) )

be the multiplicative (resp. étale) p-divisible group over Spec(W (K)/piW (K))
which lifts T0 (resp. E0) for each i ≥ 1. Both Ti and Ei are unique up to unique
isomorphism. Taking the limit of Ti[p

n] (resp. Ei[p
i]) as i → ∞, we get a multi-

plicative (resp. étale) BTn-group T∼ → Spec(W (K)) (resp. E∼ → Spec(W (K)))
over W (K).
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Denote by T∧ the formal torus over W (K) attached to T0. More explicitly, it
is the scheme theoretic inductive limit of Ti[p

n] as i and n both go to ∞; see also
10.9 (4) and 10.21. Another equivalent description is that T∧ = X∗(T0) ⊗Zp G∧

m,
where G∧

m is the formal completion of Gm → Spec(W (K)) along its unit section, and
X∗(T0) is the étale smooth free Zp-sheaf of rank dim(T0) on the étale site Spec(K)ét,
which is isomorphic to the étale sites

(
Spec(W (K)/piW (K))

)
et

and (SpecW (K))ét
for all i because the étale topology is insensitive to nilpotent extensions.

Theorem 2.19 below says that the deformation space of an ordinary p-divisible
group X0 as above has a natural structure as a formal torus over W (K), whose
dimension is equal to the product of the heights of the étale part E0 and the
multiplicative part T0.

Theorem 2.19. Notation and assumption as above.

(i) Every deformation X → Spec(R) of X0 over an Artinian local W (K)-
algebra R is an ordinary p-divisible group over R. Therefore X sits in the
middle of a short exact sequence

0→ T∼ ×Spec(W (K)) Spec(R)→ X → E∼ ×Spec(W (K)) Spec(R)→ 0 .

(ii) The deformation functor Def(X0/W (K) has a natural structure, via the
Baer sum construction, as a functor from ArtW (K) to the category AbG
of abelian groups. In particular the unit element in Def(X0/W (K)(R)
corresponds to the p-divisible group

(
T∼ ×Spec(W (K)) E

∼
)
×Spec(W (K)) Spec(R)

over R.
(iii) There is a natural isomorphism of functors

Def(X0/W (K))
∼←− HomZp

(Tp(E0), T
∧) = Tp(E0)

∨ ⊗Zp X∗(T0)⊗Zp G∧
m

= HomZp

(
Tp(E0)⊗Zp X

∗(T0),G∧
m

)
.

In other words, the deformation space Def(X0/W (K)) of X0 has a nat-
ural structure as a formal torus over W (K) whose cocharacter group is
isomorphic to the Gal(Kalg/K)-module Tp(E)∨ ⊗Zp X∗(T0).

Proof. The statement (i) is follows from Proposition 2.17, so is (ii). It remains
to prove (iii).

By étale descent, we may and do assume that K is algebraically closed. By (i),
over any Artinian local W (K)-algebra R, we see that Def(X0/W (K))(R) is the set
of isomorphism classes of extensions of E∼ ×W (K) Spec(R) by T∼×W (K) Spec(R).
Write T0 (resp. E0) as a product of a finite number of copies of Gm[p∞] (resp.
Qp/Zp), we only need to verify the statement (iii) in the case when T0 = Gm[p∞]
and E0 = Qp/Zp.

Let R be an Artinian local W (K)-algebra. We have seen that

Def(Qp/Zp,Gm[p∞])(R)

is naturally isomorphic to the inverse limit lim←−n Ext1Spec(R),Z/pnZ(p−nZ/Z, µpn),

where the Ext group is computed in the category of sheaves of (Z/pnZ)-modules
for the flat topology on Spec(R). By Kummer theory, we have

Ext1Spec(R),Z/pnZ(p−nZ/Z, µpn) = R×/(R×)p
n

= (1 + mR)/(1 + mR)p
n

;
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the second equality follows from the hypothesis that K is perfect. One checks that
the map

Ext1Spec(R),Z/pn+1Z(p−n−1Z/Z, µpn+1)→ Ext1Spec(R),Z/pnZ(p−nZ/Z, µpn)

obtained by “restriction to the subgroup of [pn]-torsions” corresponds to the natural
surjection

(1 + mR)/(1 + mR)p
n+1

։ (1 + mR)/(1 + mR)p
n

.

We know that p ∈ mR and mR is nilpotent. Hence there exists an n0 such that
(1 + mR)p

n

= 1 for all n ≥ n0. Taking the inverse limit as n→∞, we see that the
natural map

1 + mR → lim←−
n

Ext1Spec(R),Z/pnZ(p−nZ/Z, µpn)

is an isomorphism.

Corollary 2.20. Let K ⊃ Fp be a perfect field, and let A0 be an ordinary abelian
variety. Let Tp(A0) := Tp(A0[p

∞]ét), Tp(A
t
0) := Tp(A

t
0[p

∞]ét). Then

Def(A0/W (K)) ∼= HomZp
(Tp(A0)⊗Zp Tp(A

t
0),G

∧
m) .

Exercise 2.21. Let R be a commutative ring with 1. Compute

Ext1Spec(R),(Z/nZ)(n
−1Z/Z, µn),

the group of isomorphism classes of extensions of the constant group scheme n−1Z/Z
by µn over Spec(R) in the category of finite flat group schemes over Spec(R) which
are killed by n.

Notation. Let R be an Artinian local W (k)-algebra, where k ⊃ Fp is an alge-
braically closed field. Let X → Spec(R) be an ordinary p-divisible group such that
the closed fiber X0 := X ×Spec(R) Spec(k) is an ordinary p-divisible group over k.
Denote by q(X/R; ·, ·) the Zp-bilinear map

q(X/R; ·, ·) : Tp(X0,ét)× Tp(X
t
0,ét)→ 1 + mR

correspond to the deformationX → Spec(R) of the p-divisible groupX0 as in Corol-
lary 2.20. Here we have used the natural isomorphism X∗(X0,mult) ∼= Tp(X

t
0,ét),

so that the Serre-Tate coordinates for the p-divisible group X → Spec(R) is a Zp-
bilinear map q(X/R; ·, ·) on Tp(X0,ét)×Tp(X

t
0,ét). The abelian group 1+mR ⊂ R×

is regarded as a Zp-module, so “Zp-bilinear” makes sense. Let can : X0
∼−→ (Xt

0)
t

be the canonical isomorphism from X0 to its double Serre dual, and let can∗ :
Tp(X0,ét)

∼−→ Tp((X
t
0)
t
ét) be the isomorphism induced by can.

The relation between the Serre-Tate coordinate q(X/R; ·, ·) of a deformation of
X0 and the Serre-Tate coordinates q(Xt/R; ·, ·) of the Serre dual Xt of X is given
by 2.22. The proof is left as an exercise.

Lemma 2.22. Let X → Spec(R) be an ordinary p-divisible group over an Artinian
local W (k)-algebra R. Then we have

q(X ;u, vt) = q(Xt; vt, can∗(u)) ∀u ∈ Tp(X0,ét), ∀v ∈ Tp(X
t
0,ét) .

The same statement holds when the ordinary p-divisible group X → Spec(R) is
replaced by an ordinary abelian scheme A→ Spec(R).

From the functoriality of the construction in 2.19, it is not difficult to verify
the following.
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Proposition 2.23. Let X0, Y0 be ordinary p-divisible groups over a perfect field
K ⊃ F. Let R be an Artinian local ring over W (K). Let X → Spec(R), Y →
Spec(R) be abelian schemes whose closed fibers are X0 and Y0 respectively. Let
q(X/R; ·, ·), q(Y/R; ·, ·) be the Serre-Tate coordinates for X and Y respectively. Let
β : X0 → Y0 be a homomorphism of abelian varieties over k. Then β extends to a
homomorphism from X to Y over Spec(R) if and only if

q(X/R;u, βt(vt)) = q(Y/R;β(u), vt) ∀u ∈ Tp(X0), ∀vt ∈ Tp(Y
t
0 ) .

Corollary 2.24. Let A0 be an ordinary abelian variety over a perfect field K ⊃ Fp.
Let λ0 : A0 → At0 be a polarization on A0. Then

Def((A0, λ0)/W (K)) ∼= HomZp
(S,Gm

∧) ,

where S is defined as

Tp(A0[p
∞]ét)⊗Zp Tp(A

t
0[p

∞]ét)
/(

u⊗ Tp(λ0)(v)− v ⊗ Tp(λ0)(u)
)
u,v∈Tp(A[p∞]ét)

.

Exercise 2.25. Notation as in 2.24. Let pe1 , . . . , peg be the elementary divi-
sors of the Zp-linear map Tp(λ0) : Tp(A0[p

∞]ét) → Tp(A
t
0[p

∞]ét), g = dim(A0),
e1 ≤ e2 ≤ · · · ≤ eg. The torsion submodule Storsion of S is isomorphic to⊕

1≤i<j≤g (Zp/peiZp) .

Theorem 2.26. BB (local rigidity) Let k ⊃ Fp be an algebraically closed field.
Let

T ∼= ((G∧
m)n = Spf k[[u1, . . . , un]]

be a formal torus, with group law given by

ui 7→ ui ⊗ 1 + 1⊗ ui + ui ⊗ ui i = 1, . . . n .

Let X = Homk(G∧
m, T ) ∼= Znp be the cocharacter group of T ; notice that GL(X)

operates naturally on T . Let G ⊂ GL(X ⊗Zp Qp) ∼= GLn be a reductive linear
algebraic subgroup over Qp. Let Z be an irreducible closed formal subscheme of T
which is stable under the action of an open subgroup U of G(Qp) ∩ GL(X). Then
Z is a formal subtorus of T .

See Theorem 6.6 of [7] for a proof of 2.26; see also [12].

Corollary 2.27. Let x0 = [(A0, λ0, η0)] ∈ Ag,1,n(F) be an F-point of Ag,1,n, where
F is the algebraic closure of Fp. Assume that the abelian variety A0 is ordinary. Let

Z(x0) be the Zariski closure of the prime-to-p Hecke orbit H(p)
Sp2g

(x0) on Ag,1,n. The

formal completion Z(x0)
/x0 of Z(x0) at x0 is a formal subtorus of the Serre-Tate

formal torus A/x0

g,1,n.

Proof. This is immediate from 2.26 and the local stabilizer principle; see 9.5 for
the statement of the local stabilizer principle.

Remark. Corollary 2.27 puts a serious restriction on the Zariski closure Z(x0) of
the Hecke orbit of an ordinary point x0 in Ag,1,n(F). In fact the argument shows
that the formal completion of Z(x0) at any closed point y0 of the smooth ordinary
locus of Zx0 is a formal subtorus of the Serre-Tate torus at y0. This constitutes the
linearization step toward proving that Z(x0) = Ag,1,n. See Proposition 6.14 and
Step 4 of the proof of Theorem 9.2, where Theorem 2.26 plays a crucial role.
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3. The Tate-conjecture: ℓ-adic and p-adic

Most results of this section will not be used directly in our proofs. However,
this is such a beautiful part of mathematics that we wish to tell more than we really
need.
Basic references: [79] and [37]; [78], [19], [62].

3.1. Let A be an abelian variety over a field K of arbitrary characteristic. The
ring End(A) is an algebra over Z, which has no torsion, and which is free of finite

rank as Z-module. We write End0(A) = End(A) ⊗Z Q. Let µ : A → At be a
polarization. An endomorphism x : A → A defines xt : At → At. We define an
anti-involution

† : End0(A)→ End0(A), by xt·µ = µ·x†,
called the Rosati involution; see 10.13. In case µ is a principal polarization the
Rosati involution maps End(A) into itself.

The Rosati involution is positive definite on D := End0(A), meaning that

x 7→ Tr(x·x†) is a positive definite quadratic form on End0(A); for references see
Proposition II in 3.10. Such algebras have been classified by Albert, see 10.14.

Definition 3.2. A field L is said to be a CM-field if L is a finite extension of
Q (hence L is a number field), and there is a subfield L0 ⊂ L such that L0/Q is
totally real (i.e., every ψ0 : L0 → C gives ψ0(L0) ⊂ R) and L/L0 is quadratic totally
imaginary (i.e., [L : L0] = 2 and for every ψ : L→ C we have ψ(L) 6⊂ R.

Equivalently, L is a CM-field if there exists an element of order 2 in the center
of the Galois group Gal(M/Q) of the Galois closure M of L over Q, which is equal
to the complex conjugation for every archimedean place of M .

Remark. The quadratic extension L/L0 gives an involution ι ∈ Aut(L/L0). For
every embedding ψ : L → C this involution corresponds with the restriction of
complex conjugation on C to ψ(L).

Even more is known about the endomorphism algebra of an abelian variety
over a finite field. Tate showed that

Theorem 3.3. (Tate) An abelian variety over a finite field admits sufficiently
many Complex Multiplications.

This is equivalent with: Let A be a simple abelian variety over a finite field.
Then there is a CM-field of degree 2·dim(A) contained in End0(A).

A proof can be found in [78], [79]; also see 10.17 for a stronger statement.
See 10.15 for the definition of “abelian varieties with sufficiently many Complex
Multiplications”. A consequence of this theorem is the following.

Let A be an abelian variety over F = Fp. Suppose that A is simple, and hence

that End0(A) is a division algebra; this algebra has finite rank over Q; the possible
structures of endomorphism algebras of an abelian variety have been classified by
Albert, see 10.14. In this case

• either A is a supersingular elliptic curve, and D := End0(A) = Qp,∞,
which is the (unique) quaternion algebra central over Q, which is unram-
ified for every finite prime ℓ 6= p, i.e., D ⊗ Qℓ is the 2× 2 matrix algebra
over Qℓ, and D/Q is ramified at p and at ∞; here D is of Albert Type
III(1);
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• or A is not a supersingular elliptic curve; in this case D is of Albert Type
IV(e0, d) with e0·d = g := dim(A).

In particular (to be used later).

Corollary 3.4. Let A be an abelian variety over F := Fp. There exists E =
F1× · · · ×Fr, a product of totally real fields, and an injective homomorphism E →֒
End0(A) such that dimQ(E) = dim(A).

Examples. (1) E is a supersingular elliptic curve over K = Fq. Then either

D := End0(E) is isomorphic with Qp,∞, or D is an imaginary quadratic
field over Q in which p is not split.

(2) E is a non-supersingular elliptic curve over K = Fq. Then D := End0(E)
is an imaginary quadratic field over Q in which p is split.

(3) If A is simple over K = Fq such that D := End0(A) is commutative, then

D = L = End0(A) is a CM-field of degree 2·dim(A) over Q.
(4) In characteristic zero the endomorphism algebra of a simple abelian variety

which admits smCM is commutative. However in positive characteristic
an Albert Type IV(e0, d) with e0 > 1 can appear. For example, see [79],
page 67: for any prime number p > 0, and for any g > 2 there exists a
simple abelian variety over F such that D = End0(A) is a division algebra
of rank g2 over its center L, which is a quadratic imaginary field over Q.

3.5. Weil numbers and CM-fields.

Definition. Let p be a prime number, n ∈ Z>0; write q = pn. A Weil q-number
is an algebraic integer π such that for every embedding ψ : Q(π)→ C we have

|ψ(π) | =
√
q.

We say that π and π′ are conjugated if there exists an isomorphism Q(π) ∼= Q(π′)
mapping π to π′.
Notation: π ∼ π′. We write W (q) for the set of Weil q-numbers and W (q)/ ∼ for
the set of conjugacy classes of Weil q-numbers.

Proposition 3.6. Let π be a Weil q-number. Then
(I) either for at least one ψ : Q(π)→ C we have ±√q = ψ(π) ∈ R; in this case we
have:
(Ie) n is even,

√
q ∈ Q, and π = +pn/2, or π = −pn/2; or

(Io) n is odd,
√
q ∈ Q(

√
p), and ψ(π) = ±pn/2.

In particular in case (I) we have ψ(π) ∈ R for every ψ.
(II) Or for every ψ : Q(π)→ C we have ψ(π) 6∈ R (equivalently: for at least one ψ
we have ψ(π) 6∈ R). In case (II) the field Q(π) is a CM-field.

Proof. Exercise.

Remark 3.7. We see a characterization of Weil q-numbers. In case (I) we have
π = ±√q. If π 6∈ R:

β := π +
q

π
is totally real,

and π is a zero of

T 2 − β·T + q, with β < 2
√
q.

In this way it is easy to construct Weil q-numbers.
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3.8. Let A be an abelian variety over a finite field K = Fq with q = pn. Let

F : A → A(p) be the relative Frobenius morphism for A. Iterating this Frobenius
map n times, observing there is a canonical identification A(pn) = A, we obtain
(π : A → A) ∈ End(A). If A is simple, the subring Q(π) ⊂ End0(A) is a subfield,
and we can view π as an algebraic integer.

Theorem 3.9. Extra (Weil) Let K = Fq be a finite field, let A be a simple
abelian variety over K. Then π is a Weil q-number.

This is the famous “Weil conjecture” for an abelian variety over a finite field.
See [86], page 70; [87], page 138; [54], Theorem 4 on page 206.

Exercise 3.10. Use Propositions I and II below to prove the following statements,
thereby proving Theorem 3.9.

(i) Suppose that A is a simple abelian variety over a field K, and let L =

Centre(End0(A)). A Rosati involution on D := End0(A) induces the
complex conjugation on L (for every embedding L →֒ C).

(ii) If moreover K is a finite field, π = πA is a Weil q-number.

Proposition. I. For a simple abelian variety A over K = Fq we have

πA·(πA)† = q.

Here † : D → D := End0(A) is the Rosati involution attached to a polarization
of A.

One proof can be found in [54], formula (i) on page 206; also see [16], Corollary
19.2 on page 144.

Another proof of (I) can be given by duality. We have

(
FA/S : A→ A(p)

)t
= VAt/S : (A(p))t → At ,

where VAt/S is the Verschiebung of the abelian scheme At/S dual to A/S; see 10.24.
From this formula we see that

πAt · (πA)t = (FAt)n · (VAt)n = pn = q,

where we use the shorthand notation Fn for the n times iterated relative Frobenius
morphism, and the same for V n. See [GM], 5.21, 7.34 and Section 15.

Proposition. II. For any polarized abelian variety A over a field the Rosati in-
volution † : D → D := End0(A) is a positive definite bilinear form on D, i.e., for
any non-zero x ∈ D we have Tr(x·x†) > 0.

See [54], Theorem 1 on page 192, see [16], Theorem 17.3 on page 138.

Remark 3.11. Given π = πA of a simple abelian variety over Fq one can determine

the structure of the division algebra End0(A), see [79], Theorem 1. See 10.17.

Theorem 3.12. Extra (Honda and Tate) By A 7→ πA we obtain a bijective map

{abelian varieties simple over Fq}/∼Fq

∼−→ W (q)/ ∼
between the set of Fq-isogeny classes of abelian varieties simple over Fq and the set
of conjugacy classes of Weil q-numbers.

See [79], Theorem 1 on page 96.
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3.13. Let π be a Weil q-number. Let Q ⊂ L ⊂ D be the central algebra
determined by π. It is known that

[L : Q] =: e, [D : L] =: d2, 2g := e·d. See 10.12.

As we have seen in Proposition 3.6 there are three possibilities:

(Re) Either π =
√
q ∈ Q, and q = pn with n an even positive integer.

Type III(1), g = 1

In this case π = +pn/2, or π = −pn/2. Hence L = L0 = Q. We see that D/Q
has rank 4, with ramification exactly at ∞ and at p. We obtain g = 1, we have
that A = E is a supersingular elliptic curve, End0(A) is of Type III(1), a definite
quaternion algebra over Q. This algebra was denoted by Deuring as Qp,∞. Note
that “all endomorphisms of E are defined over K”, i.e., for any

∀ K ⊂ K ′ we have End(A) = End(A⊗K ′).

(Ro) Or q = pn with n an odd positive integer, π =
√
q ∈ R /∈ Q.

Type III(2), g = 2

In this case L0 = L = Q(
√
p), a real quadratic field. We see that D ramifies exactly

at the two infinite places with invariants equal to (n/2)·2/(2n) = 1/2. Hence D/L0

is a definite quaternion algebra over L0; it is of Type III(2). We conclude g = 2. If
K ⊂ K ′ is an extension of odd degree we have End(A) = End(A⊗K ′). If K ⊂ K ′

is an extension of even degree, A⊗K ′ is non-simple, it is K ′-isogenous to a product
of two supersingular elliptic curves, and End0(A ⊗ K ′) is a 2 × 2 matrix algebra
over Qp,∞, and

∀K ′ with 2 | [K ′ : K] we have End(A) 6= End(A⊗K ′).

(C) For at least one embedding ψ : Q(π)→ C we have ψ(π) 6∈ R.

Type IV(e0, d), g := e0·d
In this case all conjugates of ψ(π) are non-real. We can determine [D : L] knowing
all v(π) by 10.17 (3); here d is the greatest common divisor of all denominators of
[Lv : Qp]·v(π)/v(q), for all v | p. This determines 2g := e·d. The endomorphism
algebra is of Type IV(e0, d). For K = Fq ⊂ K ′ = Fqm we have

End(A) = End(A⊗K ′) ⇐⇒ Q(π) = Q(πm).

Exercise 3.14. Let m,n ∈ Z with m > n > 0; write g = m + n and q = pg.
Consider the polynomial T 2 + pnT + pg, and let π be a zero of this polynomial.

(a) Show that π is a pg-Weil number; compute the p-adic values of all conju-
gates of π.

(b) By the previous theorem we see that π defines the isogeny class of an
abelian variety A over Fq. It can be shown that A has dimension g, and
that N (A) = (m,n) + (n,m), see [79], page 98. This gives a proof of a
conjecture of Manin, see 5.21.
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3.15. ℓ-adic monodromy. (Any characteristic.) Let K be a base field, of
any characteristic. Write GK = Gal(Ksep/K). Let ℓ be a prime number, not equal
to char(K). Note that this implies that Tℓ(A) = lim←−j A[ℓj ](Ksep) can be considered

as a group isomorphic with (Zℓ)2g with a continuous GK-action. See 10.5, 10.8.

Theorem 3.16. Extra (Tate, Faltings, and many others) Suppose K is of finite
type over its prime field. (Any characteristic.) The canonical map

End(A)⊗Z Zℓ
∼−→ End(Tℓ(A)) ∼= EndGK ((Zℓ)2g)

is an isomorphism.

This was conjectured by Tate. In 1966 Tate proved this in case K is a finite
field, see [78]. The case of function fields in characteristic p was proved by Zarhin
and by Mori, see [90], [91], [52]; also see [51], pp. 9/10 and VI.5 (pp. 154-161).

The case K is a number field was open for a long time; it was finally proved
by Faltings in 1983, see [26]. For the case of a function field in characteristic zero,
see [29], Theorem 1 on page 204.

Remark 3.17. Extra The previous result holds over a number field, but the
Tate map need not be an isomorphism for an abelian variety over a local field.

Example. Lubin and Tate, see [47], 3.5; see [63], 14.9. There exists a finite
extension L ⊃ Qp and an abelian variety over L such that

End(A)⊗Z Zℓ $ End(Tℓ(A)).

We give details of a proof of this fact (slightly more general than in the paper by
Lubin and Tate). Choose a prime number p, and choose a supersingular elliptic
curve E0 over K = Fq such that the endomorphism ring R := End(E0) has rank
4 over Z. In that case R is a maximal order in the endomorphism algebra D :=
End0(E0), which is a quaternion division algebra central over Q. Let I be the index
set of all subfields Li of D, and let

Λ :=
⋃

i∈I

(Li ⊗ Qp) ⊂ D ⊗Qp.

Claim.

Λ $ Dp := D ⊗Qp.

Indeed, the set I is countable, and [Li : Q] ≤ 2 for every i. Hence Λ is a countable
union of 2-dimensional Qp-vector spaces inside Dp

∼= (Qp)
4. The claim follows.

Hence we can choose ψ0 ∈ Rp := R ⊗ Zp such that ψ0 6∈ Λ: first choose ψ′
0

in Dp outside Λ, then multiply with a power of p in order to make ψ0 = pn·ψ′
0

integral.
Consider X0 := E0[p

∞]. The pair (X0, ψ0) can be lifted to characteristic zero,
see [63], Lemma 14.7, hence to (X,ψ) defined over an order in a finite extension L
of Qp. We see that End0(X) = Qp(ψ), which is a quadratic extension of Qp. By
the theorem of Serre and Tate, see 2.7, we derive an elliptic curve E, which is a
lifting of E0, such that E[p∞] = X . Clearly End(E)⊗ Zp ⊂ End(X).

Claim. End(E) = Z.
In fact, if End(E) were bigger, we would have End(E) ⊗ Zp = End(X). Hence
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ψ ∈ End0(E) ⊂ Λ, which is a contradiction. This finishes the proof of the example:

End(E) = Z and dimQp End0(X) = 2 and End(E)⊗ Zp $ End(X).

However, surprise, in the “anabelian situation” of a hyperbolic curve over a
p-adic field, the analogous situation, gives an isomorphism for fundamental groups,
see [50]. We see: the Tate conjecture as in 3.16 does not hold over p-adic fields
but the Grothendieck “anabelian conjecture” is true for hyperbolic curves over p-
adic fields. Grothendieck took care to formulate his conjecture with a number field
as base field, see [75], page 19; we see that this care is necessary for the original
Tate conjecture for abelian varieties, but for hyperbolic curves this condition can
be relaxed.

3.18. We would like to have a p-adic analogue of 3.16. For this purpose it
is convenient to have p-divisible groups instead of Tate ℓ-groups, and in fact the
following theorem now has been proved to be true.

Theorem 3.19. BB (Tate and De Jong) Let R be an integrally closed, Noe-
therian integral domain with field of fractions K (any characteristic). Let X,Y be
p-divisible groups over Spec(R). Let βK : XK → YK be a homomorphism. There
exists (a unique) β : X → Y over Spec(R) extending βK .

This was proved by Tate, under the extra assumption that the characteristic
of K is zero. For the case char(K) = p, see [19], 1.2 and [18], Theorem 2 on page
261.

Theorem 3.20. BB (Tate and De Jong) Let K be a field finitely generated
over Fp. Let A and B be abelian varieties over K. The natural map

Hom(A,B) ⊗ Zp
∼−→ Hom(A[p∞], B[p∞])

is an isomorphism.

This was proved by Tate in case K is a finite field; a proof was written up in
[85]. The case of a function field over Fp was proved by Johan de Jong, see [19],
Theorem 2.6. This case follows from the result by Tate and from the proceeding
result 3.19 on extending homomorphisms.

3.21. Ekedahl-Oort strata. BB In [67] a new technique is developed,
which will be used below. We sketch some of the details of that method. We
will only indicate details relevant for the polarized case (and we leave aside the
much easier unpolarized case).

A finite group schemeN (say over a perfect field) for whichN [V ] = Im(FN ) and
N [F ] = Im(VN ) is called a BT1 group scheme (a p-divisible group scheme truncated
at level 1). By a theorem of Kraft, independently observed by Oort, for a given
rank over an algebraically closed field k the number of isomorphism classes of BT1

group schemes is finite, see [43]. For any abelian variety A, the group scheme A[p]
is a BT1 group scheme. A principal polarization λ on A induces a form on A[p],
and the pair (A, λ)[p] is a polarized BT1 group scheme, see [67], Section 9 (there
are subtleties in case p = 2: the form has to be taken, over a perfect field, on the
Dieudonné module of A[p]).



466 CHING-LI CHAI AND FRANS OORT

3.21.1. The number of isomorphism classes of polarized BT1 group schemes
(N, 〈, 〉) over k of a given rank is finite; see the classification in [67], 9.4.

Let ϕ be the isomorphism type of a polarized BT1 group scheme. Consider
Sϕ ⊂ Ag,1, the set of all [(A, λ)] such that (A, λ)[p] geometrically belongs to the
isomorphism class ϕ.

3.21.2. It can be shown that Sϕ is a locally closed set; it is called an EO-
stratum. We obtain Ag,1 =

⊔
ϕ Sϕ, a disjoint union of locally closed sets. This

is a stratification, in the sense that the boundary of a stratum is a union of lower
dimensional strata.

One of the main theorems of this theory is that
3.21.3. The set Sϕ is quasi-affine (i.e., open in an affine scheme) for every ϕ,

see [67], 1.2.
The finite set Φg of such isomorphism types has two partial orderings, see [67],

14.3. One of these, denoted by ϕ ⊂ ϕ′, is defined by the property that Sϕ is
contained in the Zariski closure of Sϕ′ .

3.22. An application. Let x ∈ Ag,1. Let
(
HSp
ℓ (x)

)Zar

= (Hℓ(x) ∩Ag,1)Zar ⊂ Ag,1
be the Zariski closure of the ℓ-power Hecke orbit of x in Ag,1. This closed set in
Ag,1 contains a supersingular point.

Use 3.21 and the second part of 1.14.

4. Dieudonné modules and Cartier modules

In this section we explain the theory of Cartier modules and Dieudonné mod-
ules. These theories provide equivalence of categories of geometric objects such as
commutative smooth formal groups or p-divisible groups on the one side, and mod-
ules over certain non-commutative rings on the other side. As a result, questions
on commutative smooth formal groups or p-divisible groups, which are apparently
non-linear in nature, are translated into questions in linear algebra over rings. Such
results are essential for any serious computation.

There are many versions and flavors of Dieudonné theory. We explain the
Cartier theory for commutative smooth formal groups over general commutative
rings, and the covariant Dieudonné modules for p-divisible groups over perfect
fields of characteristic p > 0. Since the Cartier theory works over general com-
mutative rings, one can “write down” explicit deformations over complete rings
such as k[[x1, . . . , xn]] or W (k)[[x1, . . . , xn]], something rarely feasible in algebraic
geometry. For our purpose it is those commutative formal groups which are formal
completions of p-divisible groups that are really relevant; see 10.9 for the relation
between such p-divisible formal groups and the connected p-divisible groups.

Remarks on notation:

(i) In the first part of this section, on Cartier theory, R denotes a commutative
ring with 1, or a commutative Z(p)-algebra with 1.

(ii) In this section, we used V and F as elements in the Cartier ring Cartp(R)
or the smaller Dieudonné ring RK ⊂ Cartp(R) for a perfect field K. In
the rest of this article, the notations V and F are used; V corresponds to
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the relative Frobenius morphism and F corresponds to the Verschiebung
morphisms for commutative smooth formal groups or p-divisible groups
over K.

A synopsis of Cartier theory. The main theorem of Cartier theory says that
there is an equivalence between the category of commutative smooth formal groups
over R and the category of left modules over a non-commutative ring Cartp(R)
satisfying certain conditions. See 4.27 for a precise statement.

The Cartier ring Cartp(R) plays a crucial role. This is a topological ring which
contains elements V , F and {〈a〉 | a ∈ R}. These elements form a set of topological
generators, in the sense that every element of Cartp(R) has a unique expression as
a convergent sum in the following form

∑

m,n≥0

V m〈amn〉Fn ,

with amn ∈ R for all m,n ≥ 0; moreover for each m ∈ N, there exists a constant
Cm > 0 such that amn = 0 for all n ≥ Cm. Every convergent sum as above is an el-
ement of Cartp(R). These topological generators satisfy the following commutation
relations:

• F 〈a〉 = 〈ap〉F for all a ∈ R;
• 〈a〉V = V 〈ap〉 for all a ∈ R;
• 〈a〉 〈b〉 = 〈ab〉 for all a, b ∈ R;
• FV = p;

• V m〈a〉Fm V n〈b〉Fn = pr V m+n−r〈apn−r

bp
m−r〉Fm+n−r for all a, b ∈ R

and all m,n ∈ N, where r = min{m,n}.
Moreover, the ring of p-adic Witt vectors Wp(R) is embedded in Cartp(R) by the
formula

Wp(R) ∋ c = (c0, c1, c2, . . .) 7−→
∑

n≥0

V n〈cn〉Fn ∈ Cartp(R) .

The topology of Cartp(R) is given by the decreasing filtration

Filn (Cartp(R)) := V n ·Cartp(R) ,

making Cartp(R) a complete and separated topological ring. Under the equiva-
lence of categories mentioned above, a left Cartp(R) module corresponds to a finite
dimensional smooth commutative formal group G over R if and only if

• V : M →M is injective,
• M ∼−→ lim←−nM/V nM , and

• M/VM is a projective R-module of finite type.

If so, then Lie(G/R) ∼= M/VM , and M is a finitely generated Cartp(R)-module.
See 4.18 for the definition of Cartp(R), 4.19 for the commutation relations in
Cartp(R), and 4.23 for some other properties of R.

References for Cartier theory. We highly recommend [93], where the approach
in §2 of [73] is fully developed. Other references for Cartier theory are [44] and
[36].
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Remarks on Dieudonné theories.
(1) As already mentioned, the effect of a Dieudonné theory for p-divisible groups
(and/or formal groups) is to translate questions for p-divisible groups (and/or for-
mal groups) into questions in linear algebra for modules over suitable rings. A
survey of Dieudonné theories can be found in [6]. The book [24] is a good intro-
duction to the classical contravariant Dieudonné theory over a perfect field K ⊃ Fp.

(2) The covariant Dieudonné theory described in this section is the dual version
of the classical contravariant theory. For a p-divisible group X over a perfect
field K ⊃ Fp, the covariant Dieudonné module D(X) described in Theorem 4.33
is functorially isomorphic to Dclassical(X

t), the classical contravariant Dieudonné
module of the Serre dual Xt of X as defined in [48] and [24].

(3) The Cartier theory is a Dieudonné theory for commutative formal groups. As
explained in 10.9, a p-divisible group X over an Artinian local ring R with residue
characteristic p whose maximal étale quotient is trivial can be recovered from the
formal completion X∧ of X . Such p-divisible groups are called p-divisible formal
groups. Given a p-divisible formal group X over an Artinian local ring R with
residue characteristic p, the formal completion X∧ is a smooth commutative formal
group over R, and the Cartier theory provides us with a module V -flat V -reduced
left Cartp(R)-module Mp(X

∧).

(4) The Cartier module attached to a p-divisible formal group X over a perfect field
K ⊃ Fp is canonically isomorphic to the Dieudonné module D(X); see Theorem 4.33
(2). See also 4.34 for the relation with the Dieudonné crystal attached to X .

(5) Let (R,m) be a complete Noetherian local ring with residue characteristic p.
Suppose that X is a p-divisible group over R such that X ×Spec(R) Spec(R/m) is
a p-divisible formal group. Let X∧ be the formal completion of X , defined as
the scheme-theoretic inductive limit of the finite flat group schemes X [pn]×Spec(R)

Spec(R/mi) over Spec(R/mi) as m and i go to ∞. Then X∧ is a commutative
smooth formal group over R, whose closed fiber is a p-divisible formal group. Con-
versely, suppose that X ′ is a commutative smooth formal group over R whose closed
fiber X0 is the formal completion of a p-divisible formal group X0 over the residue
field R/m. Then for each i > 0, the formal group X ′ ×SpecR Spec(R/mi) is the
formal completion of a p-divisible formal group Xi → Spec(R/mi), uniquely de-
termined up to unique isomorphism. The projective limit of the p-divisible groups
Xi → Spec(R/mi) “is” a p-divisible group X over R whose closed fiber is the p-
divisible formal group X0 over R/m; see 10.21 and 10.9. Notice that the fibers of
X → Spec(R/pR)) may not be p-divisible formal groups; the universal p-divisible
group over the equi-characteristic deformation space of a supersingular elliptic curve
provides an example.

The upshot of the previous paragraph is that we can apply the Cartier theory
to construct and study deformation of p-divisible formal groups. Suppose that R is
a complete Noetherian local ring whose residue field R/m has characteristic p. In
order to produce a deformation over R of a p-divisible formal group X0 over R/m,
it suffices to “write down” a V-flat V-reduced left Cartp(R)-module M such that
the tensor product Cartp(R/m) ⊗Cartp(R) M is isomorphic to the Cartier module
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Mp(X0) attached to X0. This way of explicitly constructing deformations over
rings such as K[[x1, . . . , xN ]] and W (K)[[x1, . . . , xN ]] whose analog in deformation
theory for general algebraic varieties is often intractable, becomes manageable. This
method is essential for Sections 5, 7, 8.

We strongly advise readers with no prior experience with Cartier theory to
accept the synopsis above as a “big black box” and use the materials in 4.1–4.27
as a dictionary only when necessary. Instead, we suggest such readers start with
4.28–4.52, get familiar with the ring Cartp(K) in the case when R = K, a perfect
field of characteristic p, play with some examples of finitely generated modules over
Cartp(K) in conjunction with the theory of covariant Dieudonné modules over per-
fect fields in characteristic p and do some of the exercises. See the Lemma/Exercise
after Def. 4.28 for a concrete definition of the Cartier ring Cartp(K) as the V -adic
completion of the Dieudonné ring RK .

Cartier theory

Definition 4.1. Let R be a commutative ring with 1.

(1) Let NilpR be the category of all nilpotent R-algebras, consisting of all
commutative R-algebras N without unit such that Nn = (0) for some
positive integer n.

(2) A commutative smooth formal group over R is a covariant functor G :
NilpR → Ab from NilpR to the category of all abelian groups such that
the following properties are satisfied:
• G commutes with finite inverse limits;
• G is formally smooth, i.e., every surjectionN1 → N2 in NilpR induces

a surjection G(N1)→ G(N2);
• G commutes with arbitrary direct limits.

(3) The Lie algebra of a commutative smooth formal group G is defined to
be G(N0), where N0 is the object in NilpR whose underlying R-module is
R, and N2

0 = (0).

Remark. Let G be a commutative smooth formal group over R, then G extends
uniquely to a functor G∼ on the category ProNilpR of all filtered projective system
of nilpotent R-algebras which commutes with filtered projective limits. This functor
G∼ is often denoted G by abuse of notation.

Example. Let A be a commutative smooth group scheme of finite presentation
over R. For every nilpotent R-algebra N , denote by R ⊕ N the commutative R-
algebra with multiplication given by

(u1, n1) · (u2, n2) = (u1u2, u1n2 + u2n1 + n1n2) ∀u1, u2 ∈ R ∀n1, n2 ∈ N .

The functor which sends an object N in NilpR to the abelian group

Ker (A(R ⊕N)→ A(R))

is a commutative smooth formal group over R, denoted by A∧. Note that the
functor A∧ commutes with arbitrary inductive limits because A does.

Here are two special cases: we have

G∧
a (N) = N and G∧

m(N) = 1 +N ⊂ (R ⊕N)×

for all N ∈ Ob(NilpR).
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Definition 4.2. We define a restricted version of the smooth formal group at-
tached to the universal Witt vector group over R, denoted by ΛR, or Λ when the
base ring R is understood.

ΛR(N) = 1 + t R[t]⊗RN ⊂ ((R ⊕N)[t])× ∀ N ∈ Ob(NilpR) .

In other words, the elements of Λ(N) consists of all polynomials of the form 1 +
u1 t+ u2 t

2 + · · · + ur t
r for some r ≥ 0, where ui ∈ N for i = 1, . . . , r. The group

law of Λ(N) comes from multiplication in the polynomial ring (R ⊕ N)[t] in one
variable t.

Remarks.

(i) The formal group Λ plays the role of a free generator in the category of
(smooth) formal groups; see Theorem 4.4.

(ii) When we want to emphasize that the polynomial 1+
∑
i≥1 ui t

i is regarded

as an element of Λ(N), we denote it by λ(1 +
∑

i≥1 ui t
i).

(iii) Note that the functor N 7→ 1+N tR[[t]] ⊂ (R⊕N)[[t]]× is not a commu-
tative smooth formal group because it does not commute with arbitrary
direct limits.

Exercise 4.3. Let R[[X ]]+ = X R[[X ]] be the set of all formal power series over
R with constant term 0; it is an object in ProNilpR. Show that Λ(R[[X ]]+) equals




∏

m,n≥1

(1− amnXm tn)

∣∣∣∣∣∣
am,n ∈ R, ∀m ∃Cm > 0 s.t. amn = 0 ∀ n ≥ Cm




 .

Theorem 4.4. BB Let H : NilpR → Ab be a commutative smooth formal group
over R. Let Λ = ΛR be the functor defined in 4.2. Then the map

YH : Hom(ΛR, H)→ H(R[[X ]]+)

which sends each homomorphism α : Λ→ H of group-valued functors to the element

α
R[[X]]+

(1−Xt) ∈ H(R[[X ]]+)

is a bijection.

Remark. The formal group Λ is in some sense a free generator of the additive
category of commutative smooth formal groups, a phenomenon reflected in Theo-
rem 4.4.

Definition 4.5. (i) Define Cart(R) to be (End(ΛR))
op

, the opposite ring of the
endomorphism ring of the smooth formal group ΛR. According to Theorem 4.4,
for every commutative smooth formal group H : NilpR → Ab, the abelian group
H(R[[X ]]+) = Hom(ΛR, H) is a left module over Cart(R).
(ii) We define some special elements of the Cartier ring Cart(R), naturally identified

with Λ(R[[X ]]) via the bijection Y = YΛ : End(Λ)
∼−→ Λ(R[[X ]]+) in Theorem 4.4.

• Vn := Y −1(1 −Xn t) , n ≥ 1,
• Fn := Y −1(1 −X tn) , n ≥ 1,
• [c] := Y −1(1− cX t) , c ∈ R.
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Corollary. For every commutative ring with 1 we have

Cart(R) =





∑

m,n≥1

Vm [cmn]Fn

∣∣∣∣ cmn ∈ R, ∀m ∃Cm > 0 s.t. cmn = 0 ∀ n ≥ Cm




 .

Proposition 4.6. BB The following identities hold in Cart(R).

(1) V1 = F1 = 1, Fn Vn = n.
(2) [a] [b] = [ab] for all a, b ∈ R
(3) [c]Vn = Vn [cn], Fn [c] = [cn]Fn for all c ∈ R, all n ≥ 1.
(4) Vm Vn = Vn Vm = Vmn, Fm Fn = Fn Fm = Fmn for all m,n ≥ 1.
(5) Fn Vm = Vm Fn if (m,n) = 1.
(6) (Vn[a]Fn) · (Vm[b]Fm) = r Vmn

r

[
a

m
r b

n
r

]
Fmn

r
, r = (m,n), for all a, b ∈ R,

m,n ≥ 1.

Definition 4.7. The ring Cart(R) has a natural filtration Fil•Cart(R) by right

ideals, where FiljCart(R) is defined by




∑

m≥j

∑

n≥1

Vm[amn]Fn | amn ∈ R, ∀m ≥ j, ∃Cm > 0 s.t. amn = 0 if n ≥ Cm






for every integer j ≥ 1. The Cartier ring Cart(R) is complete with respect to the

topology given by the above filtration. Moreover each right ideal FiljCart(R) is
open and closed in Cart(R).

Remark. The definition of the Cartier ring gives a functor

R 7−→ Cart(R)

from the category of commutative rings with 1 to the category of complete filtered
rings with 1.

Definition 4.8. Let R be a commutative ring with 1.

(1) A V-reduced left Cart(R)-module is a left Cart(R)-module M together
with a separated decreasing filtration of M

M = Fil1M ⊃ Fil2M ⊃ · · · ⊃ FilnM ⊃ Filn+1 ⊃ · · ·
such that each FilnM is an abelian subgroup of M and
(i) (M,Fil•M) is complete with respect to the topology given by the

filtration Fil•M . In other words, the natural map

FilnM → lim←− m≥n (FilnM/FilmM)

is a bijection for all n ≥ 1.
(ii) Vm · FilnM ⊂ FilmnM for all m,n ≥ 1.

(iii) The map Vn induces a bijection Vn : M/Fil2M
∼−→ FilnM/Filn+1M

for every n ≥ 1.
(iv) [c] · FilnM ⊂ FilnM for all c ∈ R and all n ≥ 1.
(v) For every m,n ≥ 1, there exists an r ≥ 1 such that Fm · FilrM ⊂

FilnM .
(2) A V-reduced left Cart(R)-module (M,Fil•M) is V-flat if M/Fil2M is a

flat R-module. The R-module M/Fil2M is called the tangent space of
(M,Fil•M).
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Definition 4.9. Let H : NilpR → Ab be a commutative smooth formal group
over R. The abelian group M(H) := H(R[[X ]]+) has a natural structure as a
left Cart(R)-module according to Theorem 4.4 The Cart(R)-module M(H) has a
natural filtration, with

FilnM(H) := Ker(H(R[[X ]]+)→ H(R[[X ]]+/XnR[[X ]])) .

We call the pair (M(H),Fil•M(H)) the Cartier module attached to H .

Definition 4.10. Let M be a V-reduced left Cart(R)-module and let Q be a right
Cart(R)-module.

(i) For every integer m ≥ 1, let Qm := AnnQ(FilmCart(R)) be the subgroup
of Q consisting of all elements x ∈ Q such that x · FilmCart(R) = (0).
Clearly we have Q1 ⊆ Q2 ⊆ Q3 ⊆ · · ·.

(ii) For each m, r ≥ 1, define Qm ⊙M r to be the image of Qm ⊗ FilrM in
Q⊗Cart(R) M .

Notice that if r ≥ m and s ≥ m, then Qm ⊙M r = Qm ⊙M s. Hence
Qm ⊙Mm ⊆ Qn ⊙Mn if m ≤ n.

(iii) Define the reduced tensor product Q⊗Cart(R)M by

Q⊗Cart(R)M = Q⊗Cart(R) M

/
(⋃

m

(Qm ⊙Mm)
)
.

Remark. The reduced tensor product is used to construct the arrow in the “re-
verse direction” in the equivalence of category in 4.11 below.

Theorem 4.11. BB Let R be a commutative ring with 1. There is a canonical
equivalence of categories between the category of smooth commutative formal groups
over R as defined in 4.1 and the category of V-flat V-reduced left Cart(R)-modules,
defined as follows.

{smooth formal groups over R} ∼ // {V-flat V-reduced left Cart(R)-mod}
G

� // M(G) = Hom(Λ, G)

Λ⊗Cart(R)M M
�oo

Recall that M(G) = Hom(Λ, G) is canonically isomorphic to G(X R[[X ]]), the
group of all formal curves in the smooth formal group G. The reduced tensor
product Λ⊗Cart(R)M is the functor whose value at any nilpotent R-algebra N is
Λ(N)⊗Cart(R)M .

The Cartier ring Cart(R) contains the ring of universal Witt vectors W∼(R)
as a subring which contains the unit element of Cart(R).

Definition 4.12.

(1) The universal Witt vector group W∼ is defined as the functor from the
category of all commutative algebras with 1 to the category of abelian
groups such that

W∼(R) = 1 + T R[[T ]] ⊂ R[[T ]]×

for every commutative ring R with 1.
When we regard a formal power series 1 +

∑
m≥1 um T

m in R[[T ]] as

an element of W∼(R), we use the notation ω(1 +
∑

m≥1 um T
m). It is
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easy to see that every element of W∼(R) has a unique expression as

ω




∏

m≥1

(1− am Tm)



 .

Hence W∼ is isomorphic to Spec Z[x1, x2, x3, . . .] as a scheme; the R-
valued point such that xi 7→ ai is denoted by ω(a), where a is short for
(a1, a2, a3, . . .), and ω(a) = ω(

∏
m≥1 (1− am Tm)).

(2) The group scheme W∼ has a natural structure as a ring scheme, such that
multiplication on W∼ is determined by the formula

ω(1− a Tm) · ω(1− b T n) = ω
((

1− an
r b

m
r T

mn
r

)r)
, where r = gcd(m,n) .

(3) There are two families of endomorphisms of the group scheme W∼: Vn
and Fn, n ∈ N≥1. Also, for each commutative ring R with 1 and each
element c ∈ R we have an endomorphism [c] of W∼×Spec Z SpecR. These
operators make W∼(R) a left Cart(R)-module; they are defined as follows

Vn : ω(f(T )) 7→ ω(f(T n)),

Fn : ω(f(T )) 7→ ∑
ζ∈µn

ω(f(ζ T
1
n )), ( formally )

[c] : ω(f(T )) 7→ ω(f(cT )).

The formula for Fn(ω(f(T ))) means that Fn(ω(f(T ))) is defined as the
unique element such that Vn(Fn(ω(f(T )))) =

∑
ζ∈µn

ω(f(ζ T )).

Exercise 4.13. Show that the Cartier module of G∧
m over R is naturally isomor-

phic to W∼(R) as a module over Cart(R).

Proposition 4.14. BB Let R be a commutative ring with 1.

(i) The subset S of Cart(R) consisting of all elements of the form
∑

n≥1

Vn[an]Fn , an ∈ R ∀n ≥ 1

forms a subring of Cart(R).
(ii) The injective map

W∼(R) →֒ Cart(R), ω(a) 7→
∑

n≥1

Vn [an]Fn

is an injective homomorphism of rings which sends 1 to 1; its image is
the subring S defined in (i).

Definition 4.15. It is a fact that every prime number ℓ 6= p is invertible in
Cart(Z(p)). Define elements ǫp and ǫp,n of the Cartier ring Cart(Z(p)) for n ∈ N,
(n, p) = 1 by

ǫp = ǫp,1 =
∑

(n,p)=1
n≥1

µ(n)

n
VnFn =

∏

ℓ 6=p
ℓ prime

(
1− 1

ℓ
VℓFℓ

)

ǫp,n =
1

n
VnǫpFn

where µ is the Möbius function on N≥1, characterized by the following properties:
µ(mn) = µ(m)µ(n) if (m,n) = 1, and for every prime number ℓ we have µ(ℓ) = −1,
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µ(ℓi) = 0 if i ≥ 2. For every commutative with 1 over Z(p), the image of ǫp in
Cart(R) under the canonical ring homomorphism Cart(Z(p)) → Cart(R) is also
denoted by ǫp.

Exercise 4.16. Let R be a Z(p)-algebra, and let (am)m≥0 be a sequence in R.
Prove the equality

ǫp



ω




∏

m≥1

(1− am Tm)







 = ǫp



ω




∏

n≥0

(1− apn T p
n

)









= ω




∏

n≥0

E(apn T p
n

)



 ,

in W∼(R), where

E(X) =
∏

(n,p)=1

(1−Xn)
µ(n)

n = exp



−
∑

n≥0

Xpn

pn



 ∈ 1 +XZ(p)[[X ]]

is the inverse of the classical Artin-Hasse exponential.

Proposition 4.17. BB Let R be a commutative Z(p)-algebra with 1. The fol-
lowing equalities hold in Cart(R).

(i) ǫp
2 = ǫp.

(ii)
∑

p∤n, n≥1

ǫp,n = 1.

(iii) ǫpVn = 0, Fnǫp = 0 for all n with p ∤ n.
(iv) ǫp,n

2 = ǫp,n for all n ≥ 1 with p ∤ n.
(v) ǫp,n ǫp,m = 0 for all m 6= n with p ∤ mn.
(vi) [c] ǫp = ǫp [c] and [c] ǫp,n = ǫp,n [c] for all c ∈ R and all n with p ∤ n.
(vii) Fpǫp,n = ǫp,nFp, Vpǫp,n = ǫp,nVp for all n with p ∤ n.

Definition 4.18. Let R be a commutative ring with 1 over Z(p).

(i) Denote by Cartp(R) the subring ǫpCart(R)ǫp of Cart(R). Note that ǫp is
the unit element of Cartp(R).

(ii) Define elements F, V ∈ Cartp(R) by

F = ǫpFp = Fpǫp = ǫpFpǫp , V = ǫpVp = Vpǫp = ǫpVpǫp .

(iii) For every element c ∈ R, denote by 〈c〉 the element

ǫp[c]ǫp = ǫp[c] = [c]ǫp ∈ Cartp(R).

Exercise 4.19. Prove the following identities in Cartp(R).

(1) F 〈a〉 = 〈ap〉F for all a ∈ R.
(2) 〈a〉V = V 〈ap〉 for all a ∈ R.
(3) 〈a〉 〈b〉 = 〈ab〉 for all a, b ∈ R.
(4) FV = p.
(5) V F = p if and only if p = 0 in R.
(6) Every prime number ℓ 6= p is invertible in Cartp(R). The prime number

p is invertible in Cartp(R) if and only if p is invertible in R.

(7) V m〈a〉Fm V n〈b〉Fn = pr V m+n−r〈apn−r

bp
m−r〉Fm+n−r for all a, b ∈ R

and all m,n ∈ N, where r = min{m,n}.
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Definition 4.20. Let R be a commutative Z(p)-algebra with 1. Denote by Λp the
image of ǫp in Λ. In other words, Λp is the functor from the category NilpR of
nilpotent commutative R-algebras to the category Ab of abelian groups such that

Λp(N) = Λ(N) · ǫp
for any nilpotent R-algebra N .

Definition 4.21.

(1) Denote by Wp the image of ǫp, i.e., Wp(R) := ǫp(W
∼(R)) for every Z(p)-

algebra R. Equivalently, Wp(R) is the intersection of the kernels Ker(Fℓ)
of the operators Fℓ on W∼(R), where ℓ runs through all prime numbers
different from p.

(2) Denote the element

ω(
∞∏

n=0

E(cn T
pn

)) ∈ Wp(R)

by ωp(c).
(3) The endomorphism Vp, Fp of the group scheme W∼ induces endomor-

phisms of the group scheme Wp, denoted by V and F respectively.

Remark. The functor Wp has a natural structure as a ring-valued functor induced
from that of W∼; it is represented by the scheme Spec Z(p)[y0, y1, y2, . . . , yn, . . .]
such that the element ωp(c) has coordinates c = (c0, c1, c2, . . .).

Exercise 4.22. Let R be a commutative Z(p)-algebra with 1. Let E(T ) ∈ Z(p)[[T ]]
be the inverse of the Artin-Hasse exponential as in Exer. 4.16.

(i) Prove that for any nilpotent R-algebra N , every element of Λp(N) has a
unique expression as a finite product

m∏

i=0

E(ui t
pi

)

for some m ∈ N, and ui ∈ N for i = 0, 1, . . . ,m.
(ii) Prove that Λp is a smooth commutative formal group over R.
(iii) Prove that every element ofWp(R) can be uniquely expressed as an infinite

product

ω(

∞∏

n=0

E(cn T
pn

)) ∈Wp(R) =: ωp(c) .

(iv) Show that the map from Wp(R) to the product ring
∏∞

0 R defined by

ωp(c) 7−→
(
wn(c)

)
n≥0

where wn(c) :=

n∑

i=0

pn−i cp
i

n−i ,

is a ring homomorphism.

Proposition 4.23.

(i) The local Cartier ring Cartp(R) is complete with respect to the decreasing
sequence of right ideals V iCartp(R).
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(ii) Every element of Cartp(R) can be expressed in a unique way as a conver-
gent sum in the form

∑

m,n≥0

V m〈amn〉Fn

with all amn ∈ R, and for each m there exists a constant Cm such that
amn = 0 for all n ≥ Cm.

(iii) The set of all elements of Cartp(R) which can be represented as a conver-
gent sum of the form

∑

m≥0

V m〈am〉Fm , am ∈ R

is a subring of Cartp(R). The map

wp(a) 7→
∑

m≥0

V m〈am〉Fm a = (a0, a1, a2, . . .), ai ∈ R ∀ i ≥ 0

establishes an isomorphism from the ring of p-adic Witt vectors Wp(R) to
the above subring of Cartp(R).

Exercise 4.24. Prove that Cartp(R) is naturally isomorphic to End(Λp)
op, the

opposite ring of the endomorphism ring of End(Λp).

Definition 4.25. Let R be a commutative Z(p)-algebra.

(i) A V-reduced left Cartp(R)-module M is a left Cartp(R)-module such
that the map V : M → M is injective and the canonical map M →
lim←−
n

(M/V nM) is an isomorphism.

(ii) A V-reduced left Cartp(R)-module M is V-flat if M/VM is a flat R-
module.

Theorem 4.26. Let R be a commutative Z(p)-algebra with 1.

(i) There is an equivalence of categories between the category of V-reduced
left Cart(R)-modules and the category of V-reduced left Cartp(R)-modules,
defined as follows.

{ V-reduced left Cart(R)-mod } ∼ // { V-reduced left Cartp(R)-mod }
M

� // ǫpM

Cart(R)ǫp⊗̂Cartp(R)Mp Mp
�oo

(ii) Let M be a V-reduced left Cart(R)-module M , and let Mp be the V-reduced
let Cartp(R)-module Mp attached to M as in (i) above. There is a canon-

ical isomorphism M/Fil2M ∼= Mp/VMp. In particular M is V-flat if and
only if Mp is V-flat. Similarly M is a finitely generated Cart(R)-module
if and only if Mp is a finitely generated Cartp(R)-module.

Theorem 4.27. Let R be a commutative Z(p)-algebra with 1. There is a canonical
equivalence of categories between the category of smooth commutative formal groups
over R as defined in 4.1 and the category of V-flat V-reduced left Cartp(R)-modules,



MODULI OF ABELIAN VARIETIES 477

defined as follows.

{smooth formal groups over R} ∼ // {V-flat V-reduced left Cartp(R)-mod}

G
� // Mp(G) = ǫpHom(Λ, G)

Λp⊗Cartp(R)M M
�oo

Dieudonné modules.

In the rest of this section, K stands for a perfect field of characteristic p > 0. We
have FV = V F = p in Cartp(K). It is well known that the ring of p-adic Witt
vectors W (K) is a complete discrete valuation ring with residue field K, whose
maximal ideal is generated by p. Denote by σ : W (K) → W (K) the Teichmüller
lift of the automorphism x 7→ xp of K. With the Witt coordinates we have
σ : (c0, c1, c2, . . .) 7→ (cp0, c

p
1, c

p
2, . . .). Denote by L = B(K) the field of fractions of

W (K).

Definition 4.28. Denote by RK the (non-commutative) ring generated by W (K),
F and V , subject to the following relations

F · V = V · F = p, F · x = σx · F, x · V = V · σx ∀x ∈W (K) .

Remark. There is a natural embedding RK →֒ Cartp(K); we use it to identify
RK as a dense subring of the Cartier ring Cartp(K). For every continuous left
Cartp(K)-module M , the Cartp(K)-module structure on M is determined by the
induced left RK-module structure on M .

Lemma/Exercise.
(i) The ring RK is naturally identified with the ring

W (K)[V, F ] :=

(
⊕

i<0

p−iV iW (K)

)
⊕




⊕

i≥0

V iW (K)



 ,

i.e., elements of W (K)[V, F ] are sums of the form
∑
i∈Z aiV

i, where ai ∈ L for all
i ∈ Z, ordp(ai) ≥ max(0,−i) ∀i ∈ Z, and ai = 0 for all but finitely many i’s. The
commutation relation between W (K) and V i is

x · V i = V i · σi

x for all x ∈W (K) and all i ∈ Z .

(ii) The ring Cartp(K) is naturally identified with the set W (K)[[V, F 〉〉 , consisting
of all non-commutative formal power series of the form

∑
i∈Z aiV

i such that ai ∈
L ∀i ∈ Z, ordp(ai) ≥ max(0,−i) ∀i ∈ Z, and ordp(ai) + i→∞ as |i| → ∞.
(iii) Check that the ring structure on W (K)[V, F ] extends to W (K)[[V, F 〉〉 by
continuity. In other words, the inclusion W (K)[V, F ] →֒ W (K)[[V, F 〉〉 is a ring
homomorphism, and W (K)[V, F ] is dense in W (K)[[V, F 〉〉 with respect to the V -
adic topology on W (K)[[V, F 〉〉 ∼= Cartp(K) . The latter topology on W (K)[[V, F 〉〉
is equivalent to the topology given by the discrete valuation v on W (K)[[V, F 〉〉
defined by

v

(
∑

i∈Z

aiV
i

)
= Min {ordp(ai) + i | i ∈ Z} .

Definition 4.29.

(1) A Dieudonné module is a left RK -module M such that M is a free W (K)-
module of finite rank.
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(2) Let M be a Dieudonné module over K. Define the α-rank of M to be the
natural number a(M) = dimK(M/(VM + FM).

Compare with a(G) as defined in 5.4.

Definition 4.30.

(i) For any natural number n ≥ 1 and any scheme S, denote by (Z/nZ)
S

the

constant group scheme over S attached to the finite group Z/nZ. The
scheme underlying (Z/nZ)

S
is the disjoint union of n copies of S, indexed

by the finite group Z/nZ, see 10.22.
(ii) For any natural number n ≥ 1 and any scheme S, denote by µn,S the

kernel of [n] : Gm/S → Gm/S . The group scheme µn,S is finite and locally
free over S of rank n; it is the Cartier dual of (Z/nZ)

S
.

(iii) For any field K ⊃ Fp, define a finite group scheme αp over K to be the
kernel of the endomorphism

Frp : Ga/K = Spec(K[X ])→ Ga/K = Spec(K[X ])

of Ga over K defined by the K-homomorphism from the K-algebra K[X ]
to itself which sends X to Xp. We have αp = Spec(K[X ]/(Xp)) as a
scheme. The comultiplication on the coordinate ring of αp is induced by
X 7→ X ⊗X .

Proposition 4.31. BB Let X be a p-divisible group over a perfect field K ⊃ Fp.
Then there exists a canonical splitting

X ∼= Xtor ×Spec(K) Xℓℓ ×Spec(K) Xét

where Xét is the maximal étale quotient of X, Xmult is the maximal toric p-divisible
subgroup of X, and Xℓℓ is a p-divisible group with no non-trivial étale quotient nor
non-trivial multiplicative p-divisible subgroup.

Remark.

(i) The analogous statement for finite group schemes over K can be found in
[48, Chapter 1], from which 4.31 follows. See also [24], [25].

(ii) See 10.9 for a similar statement for p-divisible groups over an Artinian
local ring.

Definition 4.32. Let m,n be non-negative integers such that gcd(m,n) = 1. Let
k ⊃ Fp be an algebraically closed field. Let Gm,n be the p-divisible group whose
Dieudonné module is

D(Gm,n) = RK/RK · (V n − Fm) .

Theorem 4.33. BB

(1) There is an equivalence of categories between the category of p-divisible
groups over K and the category of Dieudonné modules over RK . Denote by
D(X) the covariant Dieudonné module attached to a p-divisible group over
K. This equivalence is compatible with direct product and exactness, i.e.,
short exact sequences correspond under the above equivalence of categories.

(2) Let X be a p-divisible group over K such that X is a p-divisible formal
group in the sense that the maximal étale quotient of X is trivial. Denote
by X∧ the formal group attached to X, i.e., X∧ is the formal completion
of X along the zero section of X. Then there is a canonical isomorphism
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D(X)
∼−→ Mp(X

∧) between the Dieudonné module of X and the Cartier
module of X∧ which is compatible with the actions by F , V and elements
of W (K).

(3) Let X be a p-divisible group over K and D(X) the covariant Dieudonné
module of X. Then ht(X) = rankW (K)(D(X)), and we have a functorial
isomorphism Lie(X) ∼= D(X)/V · D(X).

(4) Let Xt be the Serre-dual of the p-divisible group of X. Then the Dieudonné
module D(Xt) can be described in terms of D(X) as follows. The under-
lying W (K)-module is the linear dual D(X)∨ := HomW (K)(D(X),W (K))
of D(X). The actions of V and F on D(X)∨ are defined as follows:

(V · h)(m) = σ−1

(h(Fm)) , (F · h)(m) = σ(h(V m))

for all h ∈ D(X)∨ = HomW (K)(D(X),W (K)) and all m ∈ D(X).
(5) A p-divisible group X over K is étale if and only if V : D(X) → D(X)

is bijective, or equivalently, F : D(X) → D(X) is divisible by p. A p-
divisible group X over K is multiplicative if and only if V : D(X) →
D(X) is divisible by p, or equivalently, F : D(X) → D(X) is bijective.
A p-divisible group X over K has no non-trivial étale quotient nor non-
trivial multiplicative p-divisible subgroup if and only if both F and V are
topologically nilpotent on D(X).

Remark 4.34.

(1) See [57] for Theorem 4.33.
(2) When p > 2, the Dieudonné module D(X) attached to a p-divisible group

over K can also be defined in terms of the covariant Dieudonné crystal
attached to X described in 2.4. In short, D(X) “is” D(X/W (K))W (K),
the limit of the “values” of the Dieudonné crystal at the divided power
structures

(W (K)/pmW (K), pW (K)/pmW (K), γ)

as m → ∞, where these are the reductions modulo pm of the natural
DP-structure on (W (K), pW (K)). Recall that the natural DP-structure

on (W (K), pW (K)) is given by γi(x) = xi

i! ∀x ∈ pW (K); the condition
that p > 2 implies that the induced DP structure on

(W (K)/pmW (K), pW (K)/pmW (K)

is nilpotent.

Proposition 4.35. BB Let X be a p-divisible group over K. We have a natural
isomorphism

HomK(αp, X [p]) ∼= HomW (K) (D(X)∨/(VD(X)∨ + FD(X)∨), B(K)/W (K)) ,

where B(K) = frac(W (K)) is the fraction field of W (K). In particular we have

dimK(HomK(αp, X [p])) = a(D(X)) .

The natural number a(D(X)) of a p-divisible group X over K is zero if and only if
X is an extension of an étale p-divisible group by a multiplicative p-divisible group.

For the notation a(M) see 4.29, and for a(G) see 5.4.

Exercise 4.36.

(i) Prove that ht(Gm,n) = m+ n.
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(ii) Prove that dim(Gm,n) = m.
(iii) Show that G0,1 is isomorphic to the étale p-divisible group Qp/Zp, and

G1,0 is isomorphic to the multiplicative p-divisible group µ∞ = Gm[p∞].
(iv) Show that End(Gm,n) ⊗Zp Qp is a central division algebra over Qp of

dimension (m + n)2, and compute the Brauer invariant of this central
division algebra.

(iv) Relate Gm,n to Gn,m.
(v) Determine all pairs (m,n) such that End(Gm,n) is the maximal order of

the division algebra End(Gm,n)⊗Zp Qp.

Theorem 4.37. BB Let k ⊃ Fp be an algebraically closed field. Let X be a
simple p-divisible group over k, i.e., X has no non-trivial quotient p-divisible groups.
Then X is isogenous to Gm,n for a uniquely determined pair of natural numbers
m,n with gcd(m,n) = 1, i.e., there exists a surjective homomorphism X → Gm,n
with finite kernel.

Definition 4.38.

(i) The slope of Gm,n is m/(m + n) with multiplicity m + n. The Newton
polygon of Gm,n is the line segment in the plane from (0, 0) to (m+n,m).
The slope sequence of Gm,n is the sequence (m/(m+ n), . . . ,m/(m+ n))
with m+ n entries.

(ii) Let X be a p-divisible group over a field K ⊃ Fp, and let k be an alge-
braically closed field containing K. Suppose that X is isogenous to

Gm1,n1 ×Spec(k) · · · ×Spec(k) Gmr,nr

gcd(mi, ni) = 1 for i = 1, . . . , r, and mi/(mi + ni) ≤ mi+1/(mi+1 + ni+1)
for i = 1, . . . , r − 1. Then the Newton polygon of X is defined by the
data

∑r
i=1(mi, ni). Its slope sequence is the concatenation of the slope

sequence for Gm1,n1 , . . . , Gmr,nr .

Example. A p-divisible group X over K is étale (resp. multiplicative) if and only
if all of its slopes are equal to 0 (resp. 1).

Exercise 4.39. Suppose that X is a p-divisible group over K such that X is
isogenous to G1,n (resp. Gm,1). Show that X is isomorphic to G1,n (resp. Gm,1).

Exercise 4.40. Let β1 ≤ · · · ≤ βh be the slope sequence of a p-divisible group
over K of height h. Prove that the slope sequence of the Serre dual Xt of X is
1− βh, . . . , 1− β1. (Hint: First show that Gtm,n

∼= Gn,m.)

Conclusion 4.41. Let K ⊃ Fp be a field, and let k be an algebraically closed field
containing K.

• Any p-divisible group X over K admits an isogeny X ⊗ k ∼∏i Gmi,ni .
• The Newton polygon N (Gm,n) is isoclinic (all slopes are the same) of

height m+ n and slope m/(m+ n).
• In this way the Newton polygon N (X) is determined. Write h = h(X)

for the height of X and d = dim(X) for the dimension of X . The Newton
polygon N (X) ends at (h(X), dim(X)).
• The isogeny class of a p-divisible group over any algebraically closed field k

uniquely determines (and is uniquely determined by) its Newton polygon:

Theorem 4.42. (Dieudonné and Manin, see [48], “Classification theorem” on
page 35)
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{p-divisible groups X over k}/ ∼k ∼−→ {Newton polygon}
In words, p-divisible groups over an algebraically closed field k ⊃ Fp are classified
up to isogeny by their Newton polygons.

Exercise 4.43. Show that there are infinitely many non-isomorphic p-divisible
groups with slope sequence (1/2, 1/2, 1/2, 1/2) (resp. (1/3, 1/3, 1/3, 2/3, 2/3, 2/3)
over any infinite perfect field K ⊃ Fp.

Exercise 4.44. Determine all Newton polygons attached to a p-divisible group of
height 6, and the symmetric Newton polygons among them.

Exercise 4.45. Recall that the set of all Newton polygons is partially ordered;
ζ1 ≺ ζ2 if and only if ζ1, ζ2 have the same end points, and ζ2 lies below ζ1. Show
that this poset is ranked, i.e., any two maximal chains between two elements of this
poset have the same length.

Exercise 4.46. Prove the equivalence of the statements in 10.10 that characterize
ordinary abelian varieties.

Theorem 4.47. BB Let S be a scheme such that p is locally nilpotent in OS. Let
X → S be a p-divisible group over S. Suppose that a point s is a specialization of
a point s′ ∈ S. Let N (Xs) and N (Xs′) be the Newton polygon of the fibers Xs and
Xs′ of X, respectively. Then N (Xs) ≺ N (Xs′), i.e., the Newton polygon N (Xs) of
the specialization lies above (or is equal to) the Newton polygon N (Xs′ ).

This result first appeared in a letter from Grothendieck to Barsotti dated May
11, 1970; see the Appendix in [34]. See [40], 2.3.2 for the proof of a stronger result,
that the locus in the base scheme S with Newton polygon ≺ ξ is closed for any
Newton polygon ξ; see 1.19, 1.20.

Exercise 4.48.

(i) Construct an example of a specialization of ordinary p-divisible group of
dimension 3 and height 6 to a p-divisible group with slopes 1/3 and 2/3,
using the theory of Cartier modules.

(ii) Construct an example of a non-constant p-divisible group with constant
slope.

4.49. Here is an explicit description of the Newton polygon of an abelian va-
riety A over a finite field Fq ⊃ Fp. We may and do assume that A is simple over
Fq. By Tate’s Theorem 10.17, we know that the abelian variety A is determined by
its q-Frobenius πA up to Fq-rational isogeny. Then the slopes of A are determined
by the p-adic valuations of πA as follows. For every rational number λ ∈ [0, 1], the
multiplicity of the slope λ in the Newton polygon of A is

∑

v∈ϕp,λ

[Q(πA)v : Qp]

where ϕp,λ is the finite set consisting of all places v of Q(πA) above p such that
v(πA) = λ · v(q).
Exercise 4.50. Let E be an ordinary elliptic curve over F. Let L = End(E)0.
Show that L is an imaginary quadratic field which is split at p and End(E)⊗Z Zp ∼=
Zp × Zp.

Exercise 4.51. Let L be an imaginary quadratic field which is split at p. Let
r, s be positive rational numbers such that gcd(r, s) = 1 and 2r < s. Use Tate’s
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Theorem 10.17 to show that there exists a simple s-dimensional abelian variety A
over a finite field Fq ⊃ Fp such that End(A)0 = L and the slopes of the Newton
polygon of A are r

s and s−r
s .

Exercise 4.52. Let m,n be positive integers with gcd(m,n) = 1, and let h =
m + n. Let D be a central division algebra over Qp of dimension h2 with Brauer
invariant n/h. This means that there exists a homomorphism j : frac(W (Fph))→ D

of Qp-algebras and an element u ∈ D× with ord(u)
ord(p) ≡ n

h (mod Z) such that

u · j(x) · u−1 = j(σ(x)) ∀x ∈W (Fph) .

Here ord denotes the normalized valuation on D, and σ is the canonical lifting of
Frobenius on W (Fph). Changing u by a suitable power of p, we may and do assume

that u, pu−1 ∈ OD, where OD is the maximal order of D.
Let M be the left W (Fph)-module underlying OD, where the left W (Fph)-

module structure is given by left multiplication with elements of j(W (Fph)). Let
F : M → M be the operator z 7→ u · z, and let V : M → M be the operator
z 7→ pu−1 · z. This makes M a module over the Dieudonné ring RF

ph
.

(1) Show that right multiplication by elements of OD induces an isomorphism

O
opp
D

∼−→ End0
RF

ph
(M) .

(2) Show that O
opp
D

∼−→ End0
RK

(W (K) ⊗W (F
ph) M) for every perfect field

K ⊃ Fph .
(3) Show that there exists a W (Fph)-basis of M e0, e1, . . . , eh−1 such that if

we extend e0, e1, . . . , eh−1 to a cyclic sequence (ei)∈Z by the condition that
ei+h = p · ei for all i ∈ Z, we have

F ·ei = ei+n, V ·ei = ei+m, p·ei = ei+m+n, Mm,n := ⊕0≤i<m+n W.·ei.
(4) Show that the p-divisible group Hm,n corresponding to the Dieudonné

module M has dimension m and slope m/h.
(5) Suppose that X is a p-divisible group over a perfect field K ⊃ Fp such that

End0(X) is isomorphic to O
opp
D . Show that K ⊃ Fph and X is isomorphic

to Hm,n ×Spec(F
ph) Spec(K).

Proposition 4.53. BB

(i) There is an equivalence of categories between the category of finite group
schemes over the perfect base field K and the category of left RK-modules
which are W (K)-modules of finite length. Denote by D(G) the left RK-
module attached to a finite group scheme G over K.

(ii) Suppose that 0 → G → X
β−→ Y → 0 is a short exact sequence, where G

is a finite group scheme over K, and β : X → Y is an isogeny between
p-divisible groups over K. Then we have a natural isomorphism

D(G)
∼−→ Ker

(
D(X)⊗W (K) B(K)/W (K)

β−→ D(Y )⊗W (K) B(K)/W (K)
)

of left RK-modules.

Remark.

(i) We say that D(G) is the covariant Dieudonné module of G, abusing the
terminology, because D(G) is not a free W (K)-module.
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(ii) Proposition 4.53 is a covariant version of the classical contravariant Dieu-
donné theory in [24] and [48]. See also [60].

4.54. Remarks on the operators F and V . For group schemes in char-
acteristic p we have the Frobenius homomorphism, and for commutative group
schemes the Verschiebung; see 10.23, 10.24. Also for Dieudonné modules such
homomorphisms are studied. However, some care has to be taken. In the co-
variant Dieudonné module theory the Frobenius homomorphism on commutative
group schemes corresponds to the operator V on the related modules, and the Ver-
schiebung homomorphism on commutative flat group schemes gives the operator
F on modules; for details see [67], 15.3. In case confusion is possible we write F
(resp. V) for the Frobenius (resp. Verschiebung) homomorphism on group schemes
and V = D(F ) (resp. F = D(V )) for the corresponding operator on modules,

5. Cayley-Hamilton: a conjecture by Manin and the weak
Grothendieck conjecture

Main reference: [65].

5.1. In this section we develop non-commutative generalizations of the Cayley
Hamilton theorem: a matrix F is a zero of its own characteristic polynomial.

Exercise 5.2. Prove the classical Cayley-Hamilton theorem for a matrix over a
commutative ring R: let X be an n×n matrix with entries in R with characteristic
polynomial g(T ) = Det(X−T ·1n) ∈ R[T ]; then the matrix g(X) is the zero matrix.

Here are some suggestions for a proof:

(a) For any commutative ring R, and an n × n matrix X with entries in R
there exists a ring homomorphism h : Z[t1,1, · · · , ti,j , · · · , tn,n] → R such
that the matrix (t) = (ti,j | 1 ≤ i, j ≤ n) is mapped to X .

(b) Let h∼ : R[T ] → Z[tij ][T ] be the ring homomorphism induced by h. Let
G(T ) = Det((t) − T ·1n) ∈ Z[tij ][T ], so that h∼(G) = g. Conclude that
it suffices to prove the statement for a commutative ring that contains
Z[t1,1, . . . , ti,j , . . . , tn,n].

(c) Construct Z[ti,j | 1 ≤ i, j ≤ n] →֒ C, and apply the classical Cayley-
Hamilton theorem for C (which is a consequence of the theorem of canon-
ical forms). Alternatively, show that the matrix (t) considered over C has
mutually different eigenvalues.

Here are suggestions for a different proof:

(1) Show it suffices to prove this for an algebraically closed field of character-
istic zero.

(2) Show that the classical Cayley-Hamilton theorem holds for a matrix which
is in diagonal form with all diagonal elements mutually different.

(3) Show that the set of all conjugates of matrices as in (2) is Zariski dense
in Mat(n× n). Finish the proof.

5.3. We will develop a useful analog of this Cayley-Hamilton theorem over the
Dieudonné ring. Note that over a non-commutative ring there is no reason that
any straightforward analog of Cayley-Hamilton should be true. However, given
a specific element in a special situation, we construct an operator g(F) which
annihilates that specific element in the Dieudonné module. Warning: In general
g(F) does not annihilate all elements of the Dieudonné module.
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Notation 5.4. Let G be a group scheme over a field K ⊃ Fp. Consider αp =
Ker(F : Ga → Ga). Choose a perfect field L containing K. Note that Hom(αp, GL)
is a right module over End(αp ⊗Fp L) = L. We define

a(G) = dimL (Hom(αp, GL)) .

Remarks. For any field L we write αp instead of αp⊗Fp L if no confusion is likely.

The group scheme αp,K over a field K corresponds under 5.7 (in any case) or
by Dieudonné theory (in case K is perfect) to the module K+ with operators F = 0
and V = 0.

If K is not perfect it might happen that

dimK (Hom(αp, G)) < dimL (Hom(αp, GL)) ;

see the Exercise 5.8 below.
However, if L is perfect and L ⊂ L′ is any field extension then

dimL (Hom(αp, GL)) = dimL′ (Hom(αp, GL′)) .

Hence the definition of a(G) is independent of the chosen perfect extension L.

Exercise 5.5.

(i) Let N be a finite group scheme over a perfect field K. Assume that F and
V on N are nilpotent on N , and suppose that a(N) = 1. Show that the
Dieudonné module D(N) is generated by one element over the Dieudonné
ring.

(ii) Let A be an abelian variety over a perfect field K. Assume that the p-
rank of A is zero, and that a(A) = 1. Show that the Dieudonné module
D(A[p∞]) is generated by one element over the Dieudonné ring.

Remark. We will see that if a(X0) = 1, then the Newton polygon stratum
WN (X0)(Def(X0)) in D(X0) is non-singular. See 1.19 and 5.11. Similarly, let
(A, λ) be a principally polarized abelian variety, ξ = N (A). The Newton polygon
stratum Wξ(Ag,1,n) will be shown to be regular at the point (A, λ) (here we work
with a fine moduli scheme: assume n ≥ 3). In the above Wξ(Ag,1,n) denotes
the locus in Ag,1,n with Newton polygon ≺ ξ (i.e., lying above ξ); similarly for
WN (X0)(D(X0)); see 1.19, 5.11.

We see that we can a priori consider a set of points where the Newton polygon
stratum is guaranteed to be non-singular. That is the main result of this section.
Then, in Section 7 we show that such points are dense in both cases considered,
p-divisible groups and principally polarized abelian varieties.

We give an example, with K non-perfect, where dimK (Hom(αp, G)) < a(G);
we see that the condition “L is perfect” is necessary in 5.4 .

5.6. “Dieudonné modules” over non-perfect fields? This is a difficult
topic. However, in one special case statements and results are easy.

p-Lie algebras. Basic reference [25]. We will need this theory only in the com-
mutative case. For more general statements see [25], II.7.
Let K ⊃ Fp be a field. A commutative finite group scheme of height one over K is

a finite commutative group scheme N over K such that (F : N → N (p)) = 0, the
zero map. Denote the category of such objects by GFK .
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A commutative finite dimensional p-Lie algebra M over K is a pair (M, g),
where M is a finite dimensional vector space over K, and g : M → M is a homo-
morphism of additive groups with the property

g(b·x) = bp·g(x).
Denote the category of such objects by LiepK .

Theorem 5.7. BB There is an equivalence of categories

DK : GFK
∼−→ LiepK .

This equivalence commutes with base change. If K is a perfect field this functor
coincides with the Dieudonné module functor: DK = D, and the operator g on
DK(N) corresponds to the operator F on D(N) for every N ∈ Ob(GF)K .

See [25], II.7.4

Exercise.

(i) Classify all commutative group schemes of rank p over k, an algebraically
closed field of characteristic p.

(ii) Classify all commutative group schemes of rank p over a perfect field
K ⊃ Fp.

Remark/Exercise 5.8.

(1) Let K be a non-perfect field, with b ∈ K and p
√
b 6∈ K. Let (M, g) be the

commutative finite dimensional p-Lie algebra defined by:

M = K·x⊕K·y ⊕K·z, g(x) = bz, g(y) = z, g(z) = 0.

Let N be the finite group scheme of height one defined by this p-Lie
algebra, i.e., such that DK(N) = (M, g), see 5.6. Show:

dimK (Hom(αp, N)) = 1, dimk

(
Hom(αp, N ×Spec(K) Spec(k))

)
= 2,

where k = kalg ⊃ K.
(2) Let N2 = W2[F ] be the kernel of F : W2 → W2 over Fp; here W2 is the

2-dimensional group scheme of Witt vectors of length 2. In fact one can
define N2 by D(N2) = Fp·r⊕Fp·s, V(r) = 0 = V(s) = F(s) and F(r) = s.

Let L = K( p
√
b). Show that

N 6∼=K (αp ⊕W2[F ])⊗K and N ⊗ L ∼=L (αp ⊕W2[F ])⊗ L.
Remark. In [45], I.5 Definition (1.5.1) should be given over a perfect field K. We
thank Chia-Fu Yu for drawing our attention to this flaw.

5.9. We fix integers h ≥ d ≥ 0, and we write c := h− d. We consider Newton
polygons ending at (h, d). For such a Newton polygon β we write

3(β) := {(x, y) ∈ Z× Z | y < d, y < x, (x, y) ≺ β};

here we denote by (x, y) ≺ β the property “(x, y) is on or above β”; we write

dim(ζ) := #(3(ζ)).

Let 3 = {(x, y) ∈ Z× Z | 0 ≤ y < d, y < x ≤ y + d}.
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Example.
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q q q q q

q q q q q

q q q q q qx = y (h, d)

ζ

ζ = 2× (1, 0) + (2, 1) + (1, 5) =

= 6× 1
6 + 3× 2

3 + 2× 1
1 ; h = 11.

Here dim(ζ) = #(3(ζ)) = 22.

Note that for ρ = d·(1, 0) + c·(0, 1) we have dim(ρ) = dc.

Theorem 5.10. (Newton polygon strata for p-divisible groups) Suppose a(X0) ≤
1. Write D = D(X0). (For notation see 10.21.) For every β ≻ γ = N (X0), the
Newton polygon stratum: Wβ(D) is formally smooth and dim(Wβ(D)) = dim(β).
The strata Wβ(D) are nested as given by the partial ordering on Newton polygons,
i.e.,

Wβ(D) ⊂ Wδ(D) ⇐⇒ 3(β) ⊂ 3(δ) ⇐⇒ β ≺ δ.
Generically on Wβ(D) the fibers have Newton polygon equal to β.

For the notion “generic” for a p-divisible group over a formal scheme, see 10.21.

5.11. In fact, this can be visualized and made more precise as follows. Choose
variables Tr,s, with 1 ≤ r ≤ d = dim(X0), 1 ≤ s ≤ h = height(X0) and write these
in a diagram

0 · · · 0 −1
Td,h · · · · T1,h

.
...

...
... .

Td,d+2 · · · Ti,d+2 · · · T2,d+2 T1,d+2

Td,d+1 · · · Ti,d+1 · · · · · · T1,d+1

We show that

D∧ = Def(X0) = Spf(k[[Z(x,y) | (x, y) ∈ 3]]), Tr,s = Z(s−r,s−1−d).

Moreover, for any β ≻ N (G0) we write

Rβ =
k[[Z(x,y) | (x, y) ∈ 3]]

(Z(x,y) ∀(x, y) 6∈ 3(β))
∼= k[[Z(x,y) | (x, y) ∈ 3(β)]].

Claim.

(Spec(Rβ) ⊂ Spec(R)) = (Wβ(D) ⊂ D) .

Clearly this claim proves the theorem. We will give a proof of the claim, and
hence of this theorem by using the theory of displays and the following tools.

Convention. Let d, c be non-negative integers, and let h = c + d. For any
h× h matrix

(a) =

(
A B
C D

)
,

its associated F -matrix is

(F) = (pa) :=

(
A pB
C pD

)
,

where A is a d× d matrix, B is a d× c matrix, C is a c× d matrix and D is a c× c
matrix.
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Definition 5.12. We consider matrices which can appear as F -matrices associated
with a display. Let d, c ∈ Z≥0, and h = d + c. Let W be a ring. We say that a
display matrix (ai,j) of size h× h is in normal form form over W if the F -matrix
is of the following form:





0 0 · · · 0 a1d pa1,d+1 · · · · · · · · · pa1,h

1 0 · · · 0 a2d · · · pai,j · · ·
0 1 · · · 0 a3d 1 ≤ i ≤ d
...

...
. . .

. . .
... d ≤ j ≤ h

0 0 · · · 1 add pad,d+1 · · · · · · · · · pad,h

0 · · · · · · 0 1 0 · · · · · · · · · 0
0 · · · · · · 0 p 0 · · · · · · 0
0 · · · · · · 0 0 p 0 · · · 0

0 · · · · · · 0 0 0
. . . 0 0

0 · · · · · · 0 0 · · · · · · p 0





(F)

with ai,j ∈W, a1,h ∈W ∗; i.e., it consists of blocks of sizes (d or c)×(d or c); in the
left hand upper corner, which is of size d× d, there are entries in the last column,
named ai,d, and the entries immediately below the diagonal are equal to 1; the left
and lower block has only one element not equal to zero, and it is 1; the right hand
upper corner is unspecified and its entries are written pai,j; the right hand lower
corner, which is of size c× c, has only entries immediately below the diagonal, and
they are all equal to p.

Note that if a Dieudonné module M is defined by a matrix in displayed normal
form, then either its p-rank f(M) is maximal, f = d, and this happens if and only
if a1,d is not divisible by p, or f(M) < d, and in that case a(M) = 1. The p-rank
is zero if and only if ai,d ≡ 0 (mod p), ∀1 ≤ i ≤ d.
Lemma 5.13. BB Let M be the Dieudonné module of a p-divisible group G
over k with f(G) = 0. Suppose a(G) = 1. Then there exists a W -basis for M on
which F has a matrix which is in normal form. In this case the entries a1,d, . . . , ad,d
are divisible by p, they can be chosen to be equal to zero.

Lemma 5.14. (of Cayley-Hamilton type) Let L be a field of characteristic p, let
W = W∞(L) be its ring of infinite Witt vectors. Let X be a p-divisible group, with
dim(G) = d, and height(G) = h, with Dieudonné module D(X) = M . Suppose
there is a W -basis of M , such that the display matrix (ai,j) on this base gives an
F-matrix in normal form as in 5.12. We write e = X1 = e1 for the first base
vector. Then for the expression

P :=

d∑

i=1

h∑

j=d

pj−daσ
h−j

i,j Fh+i−j−1

we have

Fh·e = P ·e .

Note that we take powers of F in the σ-linear sense, i.e., if the display matrix is
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(a) =

(
A B
C D

)
whose associated F -matrix is (F) = (pa) =

(
A pB
C pD

)

then Fn is given by the matrix

(Fn) = (pa)·(paσ)· · · · ·(paσn−1

).

The exponent h+ i− j − 1 runs from 0 = h+ 1− h− 1 to h− 1 = h+ d− d− 1.
Note that we do not claim that P and Fh have the same effect on all elements

of M .
Proof. Note that F i−1e1 = ei for i ≤ d.
Claim. For d ≤ s < h we have:

FsX =




d∑

i=1

s∑

j=d

Fs−jpj−dai,jF i−1



X + ps−des+1.

This is correct for s = d. The induction step from s to s+ 1 < h follows from

Fes+1 =

(
d∑

i=1

p ai,s+1F
i−1

)
X + pes+2 .

This proves the claim. Computing F(Fh−1X) gives the desired formula.

Proposition 5.15. Let k be an algebraically closed field of characteristic p, let
W = W∞(K) be its ring of infinite Witt vectors. Suppose G is a p-divisible group
over k such that for its Dieudonné module the map F is given by a matrix in
normal form. Let P be the polynomial given in the previous proposition. The
Newton polygon N (G) of this p-divisible group equals the Newton polygon given by
the polynomial P .

Proof. Consider the W [F ]-submodule M ′ ⊂ M generated by X = e1. Note that
M ′ contains X = e1, e2, . . . , ed. Also, it contains Fed, which equals ed+1 plus a
linear combination of the previous ones; hence ed+1 ∈M ′. In the same way we see:
ped+2 ∈ M ′, and p2ed+3 ∈ M ′ and so on. This shows that M ′ ⊂ M =

⊕
i≤hW ·ei

is of finite index. We see that M ′ = W [F ]/W [F ]·(Fh−P ). From this we see by the
classification of p-divisible groups up to isogeny, that the result follows by [48], II.1;
also see [24], pp. 82-84. By [24], page 82, Lemma 2 we conclude that the Newton
polygon of M ′ in case of the monic polynomial Fh −∑m

0 biFm−i is given by the
lower convex hull of the pairs {(i, v(bi)) | i}. Hence the proposition is proved.

Corollary 5.16. We take the notation as above. Suppose that every element
ai,j , 1 ≤ i ≤ c, c ≤ j ≤ h, is either equal to zero, or is a unit in W (k). Let S
be the set of pairs (i, j) with 0 ≤ i ≤ c and c ≤ j ≤ h for which the corresponding
element is non-zero:

(i, j) ∈ S ⇐⇒ ai,j 6= 0.

Consider the image T under

S → T ⊂ Z× Z given by (i, j) 7→ (j + 1− i, j − c).

Then N (X) is the lower convex hull of the set T ⊂ Z×Z and the point (0, 0); note
that a1,h ∈ W ∗, hence (h, h − c = d) ∈ T . This can be visualized in the following
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diagram (we have pictured the case d ≤ h− d):
ac,h · · · a1,h

. · · · .
ac,2c+2 · · ·

ac,2c+1 . . . a1,2c+1

.
...

...
... .

ac,c+1 · · · ai,c+1 · · · a2,c+1 a1,c+1

ac,c · · · ai,c · · · · · · a1,c

Here the element ac,c is in the plane with coordinates (x = 1, y = 0) and a1,h has
coordinates (x = h, y = h − c = d). One erases the spots where ai,j = 0, and one
leaves the places where ai,j is as unit. The lower convex hull of these points and
(0, 0) (and (h, h− c)) equals N (X).

Theorem 5.10 proves the following statement:

Conjecture. (The weak Grothendieck conjecture) Given Newton polygons β ≺ δ
there exists a family of p-divisible groups over an integral base having δ as Newton
polygon for the generic fiber, and β as Newton polygon for a closed fiber.

However, we will prove a much stronger result later.

5.17. For principally quasi-polarized p-divisible groups and for principally po-
larized abelian varieties we have an analogous method.

5.18. We fix an integer g. For every symmetric Newton polygon ξ of height 2g
we define

△(ξ) = { (x, y) ∈ Z× Z | y < x ≤ g, (x, y) ≺ ξ } ,
and we write

sdim(ξ) := #(△(ξ)).

Define △ by

△ = { (x, y) ∈ Z× Z | 0 ≤ y < x ≤ g } .
Example.
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ξ

dim(Wξ(Ag,1 ⊗ Fp)) = #(△(ξ))

ξ = (5, 1) + (2, 1) + 2·(1, 1) + (1, 2) + (1, 5),

g=11; slopes: {6× 5
6 , 3× 2

3 , 4× 1
2 , 3× 1

3 , 6× 1
6}.

This case: dim(Wξ(Ag,1 ⊗ Fp)) = sdim(ξ) = 48
(see 8.12)

Suppose given a p-divisible group X0 over k of dimension g with a principal
quasi-polarization λ. We write N (X0) = γ; this is a symmetric Newton polygon.
We write D = D(X0, λ) for the universal deformation space; in particular D =
Spec(R), where Def(X0, λ) = Spf(R); see 10.21. For every symmetric Newton
polygon ξ with ξ ≻ γ we define Wξ(D) ⊂ D as the maximal closed, reduced
subscheme of D carrying all fibers with Newton polygon equal to or above ξ; this
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space exists and is closed in D by Grothendieck-Katz, see [40], Theorem 2.3.1 on
page 143. Note that Wρ = D, where ρ = g·((1, 0) + (0, 1)).

Theorem 5.19. (NP-strata for principally quasi-polarized formal groups) Suppose
a(X0) ≤ 1. Write D = D(X0, λ). For every symmetric ξ ≻ γ := N (X0) we
have: Wξ(D) is formally smooth, with dim(Wξ(D)) = sdim(ξ). The strata W ′

ξ :=

Wξ(D) ⊂ D(X0, λ) are nested as given by the partial ordering on symmetric Newton
polygons, i.e.,

W ′
ξ ⊂ W ′

δ ⇐⇒ △(ξ) ⊂ △(δ) ⇐⇒ ξ ≺ δ.

Generically on W ′
ξ the fibers have Newton polygon equal to ξ. We can choose a

coordinate system on D(X0, λ) in which all W ′
ξ are given by linear equations.

Corollary 5.20. Suppose given a principally polarized abelian variety (A0, λ0)
over k with a(A0) ≤ 1. Strata in D(X0, λ0) according to Newton polygons are
exactly as in 5.19. In particular, the fiber above the generic point of W ′

ξ is a

principally polarized abelian scheme over Spec(Bξ) having Newton polygon equal to
ξ.

Proof. (of 5.20, assuming 5.19) We write (A0, λ0)[p
∞] =: (X0, λ0). By Serre-Tate

theory, see [42], Section 1, the formal deformation spaces of (A0, λ0) and of (X0, λ0)
are canonically isomorphic, say (A′, λ) → Spf(R) and (X ′, λ) → Spf(R) and
(A′, λ)[p∞] ∼= (X ′, λ). By Chow-Grothendieck, see [32], III1.5.4 (this is also called
a theorem of “GAGA-type”), the formal polarized abelian scheme is algebraizable,
and we obtain the universal deformation as a polarized abelian scheme (A, λ) →
Spec(R); see 10.21. We consider the generic point of Wξ ⊂ D(X0, λ0) = Spec(R).
The Newton polygon of fibers can be read off from the fibers in (X , λ)→ Spec(R).
This proves that 5.20 follows from 5.19. 2

Proof. (of 5.19) The proof of this theorem is analogous to the proof of 5.10. We
use the diagram

−1
Tg,g · · · T1,g

.
... ·

1 Tg,1 · · · T1,1

Here Ti,j , 1 ≤ i, j ≤ g, is written on the place with coordinates (g − i+ j, j − 1).
We use the ring

B :=
k[[Ti,j; 1 ≤ i, j ≤ g]]

(Tkℓ − Tℓk)
, Ti,j = Z(g−i+j,j−1), (g − i+ j, j − 1) ∈ △.

Note that B = k[[Ti,j | 1 ≤ i ≤ j ≤ g]] = k[[Zx,y | (x, y) ∈ △]]. For a symmetric ξ
with ξ ≻ N (X0) we consider

Bξ =
k[[Ti,j ; 1 ≤ i, j ≤ g]]

(Tkℓ − Tℓk, and Z(x,y) ∀(x, y) 6∈ △(ξ))
∼= k[[Z(x,y) | (x, y) ∈ △(ξ)]].

With these notations, applying 5.14 and 5.16 we finish the proof of 5.19 as we did
in the proof of 5.10 above. 2

If the condition a(A0) ≤ 1 in the theorem and corollary above is replaced by
a(A0) = 0 all fibers above this deformation space are ordinary.
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5.21. A conjecture by Manin. Let A be an abelian variety. The Newton
polygon N (A) is symmetric (see 1.18). A conjecture by Manin expects the converse
to hold:

Conjecture. (see [48], page 76, Conjecture 2) For any symmetric Newton polygon
ξ there exists an abelian variety A such that N (A) = ξ.

This was proved in the Honda-Tate theory, see 3.12, 3.14. We sketch a pure
characteristic p proof, see [65], Section 5. It is not difficult to show that there
exists a principally polarized supersingular abelian variety (A0, λ0) with a(A0) =
1, see [65], Section 4; this also follows from [45], 4.9. By 5.19 it follows that
W0
ξ (D(A0, λ0)) is non-empty, which proves the Manin conjecture.

5.22. Let g ∈ Z≥3. There exists an abelian variety in characteristic p which
has p-rank equal to zero, and which is not supersingular. In fact choose ξ =∑

(mi, ni), a symmetric Newton polygon with mi > 0 and ni > 0 for every i and
(mi, ni) 6= (1, 1)) for at least one i. For example ξ = (1, g − 1) + (g − 1, 1) or
ξ = (2, 1) + (g − 3)(1, 1) + (1, 2). By the Manin conjecture there exists an abelian
variety A with N (A) = ξ. We see that A is not supersingular, and that the p-rank
f(A) equals zero.

6. Hilbert modular varieties

We discuss Hilbert modular varieties over F in this section. (Recall that F is
the algebraic closure of Fp.) A Hilbert modular variety attached to a totally real
number field F classifies “abelian varieties with real multiplication by OF ”. An
abelian variety A is said to have “real multiplication by OF ” if dim(A) = [F : Q]
and there is an embedding OF →֒ End(A); the terminology “fake elliptic curve”
was used by some authors. The moduli space of such objects behaves very much
like the modular curve, except that its dimension is equal to [F : Q]. Similar to the
modular curve, a Hilbert modular variety attached to a totally real number field

F has a family of Hecke correspondences coming from the group SL2(F ⊗Q A(p)
f )

or GL2(A
(p)
f ) depending on the definition one uses. Hilbert modular varieties are

closely related to modular forms for GL2 over totally real fields and the arithmetic
of totally real fields.

Besides their intrinsic interest, Hilbert modular varieties play an essential role
in the Hecke orbit problem for Siegel modular varieties. This connection results
from a special property of Ag,1,n which is not shared by all modular varieties of
PEL type: For every F-point x0 of Ag,1,n, there exists a Hilbert modular varietyM
and an isogeny correspondence R on Ag,1,n such that x0 is contained in the image
ofM under the isogeny correspondence R. See 9.10 for a precise formulation, and
also the beginning of §8.

References. [71], [22], [80] Chap X, [23], [31], [88].

Let F1, . . . , Fr be totally real number fields, and let E := F1 × · · · × Fr. Let
OE = OF1×· · ·×OFr be the product of the rings of integers of F1, . . . , Fr. Let Li be
an invertible OFi-module, and let L be the invertible OE-module L = L1×· · ·×Lr.
Definition 6.1. Notation as above. A notion of positivity on an invertible OE-
module L is a union L+ of connected components of L ⊗Q R such that L ⊗Q R is
the disjoint union of L+ and −L+.
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Definition 6.2.

(i) An OE-linear abelian scheme is a pair (A → S, ι), where A → S is an
abelian scheme, and ι : OE → EndS(A) is an injective ring homomorphism
such that ι(1) = IdA. Note that every OE-linear abelian scheme (A→ S, ι)
as above decomposes as a product (A1 → S, ι1) × · · · × (Ar → S, ιr).
Here (Ai, ιi) is an OFi -linear abelian scheme for i = 1, . . . , r, and A =
A1 ×S · · · ×S Ar.

(ii) An OE-linear abelian scheme (A → S, ι) is said to be of HB-type if
dim(A/S) = dimQ(E).

(iii) An OE-linear polarization of an OE-linear abelian scheme is a polarization
λ : A→ At such that λ ◦ ι(u) = ι(u)t ◦ λ for all u ∈ OE .

Exercise 6.3. Suppose that (A→ S, ι) is an OE-linear abelian scheme, and

(A→ S, ι) = (A1 → S, ι1)× · · · × (Ar → S, ιr)

as in (i). Show that (A1 → S, ι1) is an OFi-linear abelian scheme of HB-type for
i = 1, . . . , r.

Exercise 6.4. Show that every OE-linear abelian variety of HB-type over a field
admits an OE-linear polarization.

Definition 6.5. Let Ep =
∏s
j=1 Fvj be a product of finite extension fields Fvj of

Qp. Let OEp =
∏s
j=1 OFvj

be the product of the rings of elements in Fvj which are

integral over Zp.

(i) An OEp-linear p-divisible group is a pair (X → S, ι), where X → S is
a p-divisible group, and ι : OE ⊗Z Zp → EndS(X) is an injective ring
homomorphism such that ι(1) = IdX . Every (OEp)-linear p-divisible
group (X → S, ι) decomposes canonically into a product (X → S, ι) =∏s
j=1 (Xj , ιj), where (Xj , ιj) is an OFvj

-linear p-divisible group, defined

to be the image of the idempotent in OEp corresponding to the factor OFvj

of OEp .
(ii) An OEp-linear p-divisible group (X → S, ι) is said to have rank two if

in the decomposition (X → S, ι) =
∏s
j=1 (Xj , ιj) in (i) above we have

ht(Xj/S) = 2 [Fvj : Qp] for all j = 1, . . . , s.
(iii) An OEp-linear polarization (OE⊗Z Zp)-linear p-divisible group (X → S, ι)

is a symmetric isogeny λ : X → Xt such that λ ◦ ι(u) = ι(u)t ◦ λ for all
u ∈ OEp .

(iv) A rank-two OEp-linear p-divisible group (X → S, ι) is of HB-type if it
admits an OEp-linear polarization.

Exercise 6.6. Show that for every OE-linear abelian scheme of HB-type
(A → S, ι), the associated (OE ⊗Z Zp)-linear p-divisible group (A[p∞], ι[p∞]) is
of HB-type.

Definition 6.7. Let E = F1 × · · · × Fr, where F1, . . . , Fr are totally real number
fields. Let OE = OF1×· · ·×OFr be the product of the ring of integers of F1, . . . , Fr.
Let k ⊃ Fp be an algebraically closed field as before. Let n ≥ 3 be an integer
such that (n, p) = 1. Let (L,L+) be an invertible OE-module with a notion of
positivity. The Hilbert modular varietyME,L,L+,n over k is a smooth scheme over
k of dimension [E : Q] such that for every k-scheme S the set of S-valued points of
ME,L,L+

, n
is the set of isomorphism class of 6-tuples (A→ S, ι,L,L+, λ, η), where
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(i) (A→ S, ι) is an OE-linear abelian scheme of HB-type;
(ii) λ : L → Homsym

OE
(A,At) is an OE-linear homomorphism such that λ(u)

is an OE-linear polarization of A for every u ∈ L ∩ L+, and the homo-
morphism A ⊗OE L

∼−→ At induced by λ is an isomorphism of abelian
schemes.

(iii) η is an OE-linear level-n structure for A → S, i.e., an OE-linear isomor-
phism from the constant group scheme (OE/nOE)2S to A[n].

Remark 6.8. Let (A → S, ι, λ, η) be an OE-linear abelian scheme with polariza-
tion sheaf by (L,L+) and a level-n structure satisfying the condition in (ii) above.
Then the OE-linear polarization λ induces an OE/nOE-linear isomorphism

(OE/nOE) =

2∧
(OE/nOE)2

∼−→ L−1D−1
E ⊗Z µn

over S, where DE denotes the invertible OE-module DF1 × · · · ×DFr . This isomor-
phism is a discrete invariant of the quadruple (A→ S, ι, λ, η). The above invariant
defines a morphism fn from the Hilbert modular variety ME,L,L+,n to the finite
étale scheme ΞE,L,n over k, where the finite étale k-scheme ΞE,L,n is defined by

ΞE,L,n := Isom(OE/nOE,L−1D−1
E ⊗Z µn). Notice that ΞE,L,n is an (OE/nOE)×-

torsor; it is constant over k because k is algebraically closed. The morphism fn is
faithfully flat.

Although we defined the Hilbert modular variety ME,L,L+,n over an alge-
braically closed field k ⊃ Fp, we could have defined it over Fp. Then we should

use the étale (OE/nOE)×-torsor ΞE,L,n := Isom(OE/nOE,L−1D−1
E ⊗Zµn) over Fp,

and we have a faithfully flat morphism fn :ME,L,L+,n → ΞE,L,n over Fp.

Remark 6.9.

(i) We have followed [22] in the definition of Hilbert modular varieties, except
that E is a product of totally real number fields, rather than a totally real
number field as in [22].

(ii) The product decompositions

OE = OF1 × · · · × OFr and (L,L+) = (L1,L+
1 )× · · · × (Lr ,L+

r )

induce a natural isomorphism

ME,L,L+,n
∼−→MF1,L1,L

+
1 ,n
× · · · ×MFr,Lr ,L

+
r n
.

Remark 6.10. The OE-linear homomorphism λ in Def. 6.7 should be thought of
as specifying a family of OE-linear polarizations, instead of only one polarization:
every element u ∈ L ∩ L+ gives a polarization λ(u) on A → S. Notice that
given a point x0 = [(A, ι, λ, η)] in ME,L,L+,n(k), there may not exist an OE-linear
principal polarization on A, because that means that the element of the strict ideal
class group represented by (L,L+) is trivial. However, every point [(A, ι, λ, η)] of
ME,L,L+,n admits an OE-linear polarization of degree prime to p, because there
exists an element u ∈ L+ such that Card(L/OE · u) is not divisible by p. In
[89] and [88] a version of Hilbert modular varieties was defined by specifying a
polarization degree d which is prime to p. The resulting Hilbert modular variety is
not necessarily irreducible over F; rather it is a disjoint union of modular varieties
of the formME,L,L+,n.

Theorem 6.11. BB Notation as above.
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(i) The modular variety ME,L,L+,n over the algebraically closed field k ⊃ Fp
is normal and is a local complete intersection. Its dimension is equal to
dimQ(E).

(ii) Every fiber of fn :ME,L,L+,n → ΞE,L,n is irreducible.
(iii) The morphism fn is smooth outside a closed subscheme of ME,L,L+,n of

codimension at least two.

Remark.

(i) See [22] for a proof of Theorem 6.11 which uses the arithmetic toroidal
compactification constructed in [71].

(ii) The modular variety ME,L,L+,n is not smooth over k if any one of the
totally real fields Fi is ramified above p.

6.12. Hecke orbits on Hilbert modular varieties. Let E, L and L+ be
as before. Denote by ME,L,L+

∼ the projective system
(
ME,L,L+,n

)
n

of Hilbert
modular varieties over F, where n runs through all positive integers such that n ≥ 3
and gcd(n, p) = 1. It is clear that the profinite group SL2(OE ⊗Z Z∧,(p)) operates
on the tower M∼

E,L,L+ , by pre-composing with the OE-linear level structures. Here

Z∧,(p) =
∏
ℓ 6=p Zℓ. The transition maps in the projective system are

πmn,n :ME,L,L+,mn →ME,L,L+,n (mn, p) = 1, n ≥ 3,m ≥ 1 .

The map πmn,n is defined by the following construction. Let

[m] : (OE/nOE)2 → (OE/mnOE)2

be the injection induced by “multiplication by m”. Given a point (A, ι, λ, η) of
ME,L,L+,mn, the composition η ◦ [m] factors through the inclusion im,n : A[m] →֒
A[mn] to give a level-n structure η′ such that η ◦ [m] = im,n ◦ η′.

Let Ξ∼
E be the projective system (ΞE,n)n, where n also runs through all positive

integers such that n ≥ 3 and (n, p) = 1. The transition maps are defined similarly.
The maps fn : ME,L,L+,n → ΞE,n define a map f∼ : M∼

E,L,L+ → Ξ∼
E between

projective systems.
It is clear that the profinite group SL2(OE⊗ZZ∧,(p)) operates on the right of the

tower M∼
E,L,L+ , by pre-composing with the OE-linear level structures. Moreover

this action is compatible with the map f∼ : M∼
E,L,L+ → Ξ∼

E between projective
systems.

The above right action of the compact group SL2(OE⊗ZZ∧,(p)) on the projective

system M∼
E,L,L+ extends to a right action of SL2(E ⊗Q A(p)

f ) on M∼
E,L,L+ . Again

this action is compatible with f∼ :M∼
E,L,L+ → Ξ∼

E . This action can be described

as follows. A geometric point of M∼
E,L,L+ is a quadruple (A, ιA, λA, η

∼
A), where

the infinite prime-to-p level structure

η∼A :
∐

ℓ 6=p

(OE [1/ℓ]/OE)
∼−→
∐

ℓ 6=p

A[ℓ∞]

is induced by a compatible system of level-n structures, n running through integers

such that (n, p) = 1 and n ≥ 3. Suppose that we have a γ ∈ SL2(E ⊗Q A(p)
f ), and

mγ belongs to M2(OE⊗Z Z∧,(p)), where m is a non-zero integer which is prime to p.
Then the image of the point (A, ιA, λA, η

∼
A) under γ is a quadruple (B, ιB, λB , η

∼
B)

such that there exists an OE-linear prime-to-p isogeny mβ : B → A such that the
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diagram

∐
ℓ 6=p(OE [1/ℓ]/OE)2

η∼A //
∐
ℓ 6=pA[ℓ∞]

∐
ℓ 6=p(OE [1/ℓ]/OE)2

η∼B

//

mγ

OO

∐
ℓ 6=pB[ℓ∞]

mβ

OO

commutes. Note that ιB and λB are determined by the requirement that mβ is
an OE-linear isogeny and m−1 ·mβ respects the polarizations λA and λB. In the
above notation, as the point (A, ιA, λA, η

∼
A) varies, we get a prime-to-p quasi-isogeny

β = m−1 · (mβ) attached to γ, between the universal abelian schemes.

On a fixed level ME,L,L+,n, the action of SL2(E ⊗Q A(p)
f ) on the projective

system M∼
E,L,L+ induces a family of finite étale correspondences, which will be

called SL2(E ⊗Q A(p)
f )-Hecke correspondences on ME,L,L+,n, or prime-to-p SL2-

Hecke correspondences for short. Suppose x0 is a geometric point of ME,L,L+,n,
and x∼ is point of M∼

E,L,L+ lifting x0. Then the prime-to-p SL2-Hecke orbit of

x0, denoted H(p)
SL2

(x0), is the image inME,L,L+,n of the orbit SL2(E ⊗Q A(p)
f ) · x∼0 .

The set H(p)
SL2

(x0) is countable.

Theorem 6.13. Let x0 = [(A0, ι0, λ0, η0)] ∈ ME,L,L+,n(k) be a closed point of
ME,L,L+,n such that A0 is an ordinary abelian scheme. Let ΣE,p = {℘1, . . . , ℘s} be
the set of all prime ideals of OE containing p. Then we have a natural isomorphism

M/x0

E,L,L+,n
∼=

s∏

j=1

HomZp

(
Tp(A0[℘

∞
j ]ét)⊗(OE⊗Zp)Tp(A

t
0[℘

∞
j ]ét), G∧

m

)
.

In particular, the formal completion of the Hilbert modular variety ME,L,L+,n at
the ordinary point x0 has a natural structure as a [E : Q]-dimensional (OE ⊗Z Zp)-
linear formal torus, non-canonically isomorphic to (OE ⊗Z Zp)⊗Zp G∧

m.

Proof. By the Serre-Tate theorem, we have

M/x0

E,L,L+,n
∼=

s∏

j=1

Hom
OE⊗Zp

(
Tp(A0[℘

∞
j ]ét), A0[℘

∞
j ]∧mult

)
,

where A0[℘
∞
j ]∧mult is the formal torus attached to A0[℘

∞
j ]mult, or equivalently the

formal completion of A0. The character group of the last formal torus is naturally
isomorphic to the p-adic Tate module Tp(A

t
0[℘

∞
j ]ét) attached to the maximal étale

quotient of At0[℘
∞
j ]ét).

Proposition 6.14. Notation as in 6.13. Assume that k = F, so that

x0 = [(A0, ι0, λ0, η0)] ∈ME,L,L+,n(F)

and A0 is an ordinary OE-linear abelian variety of HB-type over F.

(i) There exist totally imaginary quadratic extensions Ki of Fi, i = 1, . . . , r
such that

End0
OE

(A0) ∼= K1 × · · · ×Kr =: K .
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Moreover, for every prime ideal ℘j of OE containing p, we have

EndOE (A0)⊗OE OE℘j

∼−→ EndOE℘j
(A0[℘

∞
j ]mult)× EndOE℘j

(A0[℘
∞
j ]ét)

∼= OE℘j
× OE℘j

∼←− OK ⊗OE OE℘j
.

In particular, the quadratic extension Ki/Fi is split above every place of
Fi above p, for all i = 1, . . . , r.

(ii) Let Hx0 = {u ∈ (OE ⊗ Zp)× | u · ū = 1} , where u 7→ ū denotes the prod-
uct of the complex conjugations on K1, . . . ,Kr. Then both projections

pr1 : Hx0 →
∏

℘∈ΣE,p

(
EndOE℘

(A0[℘
∞
j ]mult)

)× ∼=
∏

℘∈ΣE,p

O
×
E℘

and

pr2 : Hx0 →
∏

℘∈ΣE,p

(
EndOE℘

(A0[℘
∞]ét)

)× ∼=
∏

℘∈ΣE,p

O
×
E℘

are isomorphisms. Here ΣE,p denotes the set consisting of all prime ideals
of OE which contain p.

(iii) The group Hx0 operates on the (OE⊗Z Zp)-linear formal torusM/x0

E,L,L+,n

through the character

Hx0 ∋ t 7−→ pr1(t)
2 ∈ (OE ⊗Z Zp)× .

(iv) Notation as in (ii) above. Let Z be a reduced, irreducible closed formal

subscheme of the formal schemeM/x0

E,L,L+,n which is stable under the nat-

ural action of an open subgroup Ux0 of Hx0 on M/x0

E,L,L+,n. Then there

exists a subset S ⊂ ΣE,p such that

Z =
∏

℘∈S

HomZp

(
Tp(A0[℘

∞]ét)⊗(OE⊗Zp)Tp(A
t
0[℘

∞]ét), G∧
m

)

Proof. The statement (i) is a consequence of Tate’s theorem on endomorphisms
of abelian varieties over a finite field, see [79]. The statement (ii) follows from
(i). The statement (iii) is immediate from the displayed canonical isomorphism in
Theorem 6.13. It remains to prove (iv).

By Theorem 2.26 and Theorem 6.13, we know that Z is a formal subtorus of
the formal torus

M/x0

E,L,L+,n =
∏

℘∈ΣE,p

HomZp

(
Tp(A0[℘

∞]ét)⊗(OE⊗Zp)Tp(A
t
0[℘

∞]ét), G∧
m

)
.

Let X∗(Z) be the group of formal cocharacters of the formal torus Z. We know
that X∗(Z) is a Zp-submodule of the cocharacter group

∏

℘∈ΣE,p

(Tp(A0[℘
∞]ét))

∨ ⊗(OE⊗Zp)

(
Tp(A

t
0[℘

∞]ét)
)∨

ofM/x0

E,L,L+,n, which is co-torsion free. Moreover X∗(Z) is stable under the action

of Hx0 . Denote by O the closed subring of
∏
℘∈ΣE,p

O℘ generated by the image

of the projection pr1 in (ii). Since the image of Hx0 under the projection pr1 is
an open subgroup of

∏
℘∈ΣE,p

O
×
℘ , the subring O of

∏
℘∈ΣE,p

O℘ is an order of
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∏
℘∈ΣE,p

O℘. So X∗(Z) ⊗ Q is stable under the action of
∏
℘∈ΣE,p

E℘. It follows

that there exists a subset S ⊂ ΣE,p such that X∗(Z)⊗Zp Qp is equal to

∏

℘∈S

(Tp(A0[℘
∞]ét))

∨ ⊗OE⊗Zp

(
Tp(A

t
0[℘

∞]ét)
)∨

.

Since X∗(Z) is a co-torsion free Zp-submodule of
∏

℘∈ΣE,p

(Tp(A0[℘
∞]ét))

∨ ⊗(OE⊗Zp)

(
Tp(A

t
0[℘

∞]ét)
)∨

,

we see that X∗(Z) =
(∏

℘∈S (Tp(A0[℘
∞]ét))

∨ ⊗OE⊗Zp (Tp(A
t
0[℘

∞]ét))
∨
)
.

Corollary 6.15. Let x0 = [(A0, ι0, λ0, η0)] ∈ ME,L,L+,n(F) be an ordinary F-
point of the Hilbert modular variety ME,L,L+,n as in 6.14. Let Z be a reduced
closed subscheme of ME,L,L+,n such that x0 ∈ Z(F). Assume that Z is stable

under all SL2(A
(p)
f )-Hecke correspondences on ME,L,L+,n(F). Then there exists a

subset Sx0 of the set ΣE,p of prime ideals of OE containing p such that

Z/x0 =
∏

℘∈S

HomZp

(
Tp(A0[℘

∞]ét)⊗(OE⊗Zp)Tp(A
t
0[℘

∞]ét), G∧
m

)
.

Here Z/x0 is the formal completion of Z at the closed point x0.

Proof. Notation as in 6.14. Recall that K = End0
OE

(A0). Denote by UK the
unitary group attached to K; UK is a linear algebraic group over Q such that
UK(Q) = {u ∈ K× | u · ū = 1}. By 6.14 (i), UK(Qp) is isomorphic to (E ⊗Qp)

×.
Denote by UK(Zp) the compact open subgroup of UK(Qp) corresponding to the
subgroup (OE ⊗ Zp)× ⊂ (OE ⊗ Qp)

×. This group UK(Zp) is isomorphic to the
group Hx0 in 6.14 (ii), via the projection to the first factor in the displayed formula
in 6.14 (i). We have a natural action of UK(Zp) on

Def((A0, ι0, λ0)[p
∞])/F) ∼=M/x0

E,L,L+,n

by the definition of the deformation functor Def((A0, ι0, λ0)[p
∞]).

Denote by UK(Z(p)) the subgroup UK(Q) ∩UK(Zp) of UK(Q); in other words
UK(Z(p)) consisting of all elements u ∈ UK(Q) such that u induces an automor-

phism of A0[p
∞]. Since Z is stable under all SL2(A

(p)
f )-Hecke correspondences, the

formal completion Z/x0 at x0 of the subvariety Z ⊂ M/x0

E,L,L+,n is stable under

the natural action of the subgroup UK(Z(p)) of UK(Q). By the weak approxima-
tion theorem for linear algebraic groups (see [70], 7.3, Theorem 7.7 on page 415),

UK(Z(p)) is p-adically dense in UK(Zp). So Z/x0 ⊂M/x0

E,L,L+,n is stable under the

action of UK(Zp) by continuity. We conclude the proof by invoking 6.14 (iii) and
(iv).

Exercise 6.16. Let (A, ι) be an OE-linear abelian variety of HB-type over a perfect
field K ⊃ Fp. Show that Mp((A, ι)[p

∞]) is a free (OE ⊗Z Zp)-module of rank two.

Exercise 6.17. Let x = [(A, ι, λ, η)] ∈ ME,L,L+,n(k) be a geometric point of a
Hilbert modular variety ME,L,L+,n, where k ⊃ Fp is an algebraically closed field.
Assume that Lie(A/k) is a free (OE⊗Zk)-module of rank one. Show thatME,L,L+,n

is smooth at x over k.
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Exercise 6.18. Let k ⊃ Fp be an algebraically closed field. Assume that p is
unramified in E, i.e., E ⊗Z Zp is a product of unramified extension of Qp. Show
that Lie(A/k) is a free (OE ⊗Z k)-module of rank one for every geometric point
[(A, ι, λ, η)] ∈ ME,L,L+,n(k).

Exercise 6.19. Give an example of a geometric point

x = [(A, ι, λ, η)] ∈ME,L,L+,n(k)

such that Lie(A/k) is not a free (OE ⊗Z k)-module of rank one.

7. Deformations of p-divisible groups to a ≤ 1

Main references: [20], [66].

In this section we will prove and use the following rather technical result.

Theorem 7.1. Th (Deformation to a ≤ 1) Let X0 be a p-divisible group over
a field K. There exists an integral scheme S, a point 0 ∈ S(K) and a p-divisible
group X → S such that the fiber X0 is isomorphic to X0, and for the generic point
η ∈ S we have

N (X0) = N (Xη) and a(Xη) ≤ 1.

See [20], 5.12 and [66], 2.8.

Note that if X0 is ordinary (i.e., every slope of N (X0) is either 1 or 0), there is
not much to prove: a(X0) = 0 = a(Xη); if however X0 is not ordinary, the theorem
says something non-trivial and in that case we end with a(Xη) = 1.

At the end of this section we discuss the quasi-polarized case.

7.2. In this section we prove Theorem 7.1 in case X0 is simple. Surprisingly,
this is the most difficult step. We will see, in Section 8, that once we have the
theorem in this special case, 7.1 and 7.14 will follow without much trouble.

The proof (and the only one we know) of this special case given here is a
combination of general theory, and a computation. We start with one of the tools.

Theorem 7.3. BB (Purity of the Newton polygon stratification) Let S be an
integral scheme, and let X → S be a p-divisible group. Let γ = N (Xη) be the
Newton polygon of the generic fiber. Let S ⊃ D = S 6=γ := {s | N (As) � γ}
(Note that D is closed in S by Grothendieck-Katz.) Then either D is empty or
codim(D ⊂ S) = 1.

We know two proofs of this theorem, and both proofs are non-trivial. See [20],
Theorem 4.1. Also see [82], th. 6.1; this second proof of purity was analyzed and
re-proved [82], [59], [83], [92].

When this result was first announced, it was met by disbelief. Why? If you
follow the proof by Katz, see [40], 2.3.2, you see that D = S 6=γ ⊂ S is given
by “many” defining equations. From that point of view “codimension one” seems
unlikely. In fact it is not known (to our knowledge) whether there exists a scheme
structure on D = S 6=γ such that (D,OD) ⊂ S is a Cartier divisor (locally principal)
(i.e., locally a complete intersection, or locally a set-theoretic complete intersection).
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7.4. Minimal p-divisible groups. We define the p-divisible group Hm,n as
in [20], 5.3; also see [69]. See also Exercise 4.52 for another description of Hm,n

when K ⊃ Fpm+n . Let K ⊃ Fp be a perfect field. Let M be a free W (K)-module
of rank m + n, with free generators e0, . . . , em+n−1. Extend e0, . . . , em+n−1 to a
family (ei)i∈Z of elements ofM indexed by Z by the requirement that ei+m+n = p·ei
for all i ∈ Z. Define a σ-linear operator F : M → M and a σ−1-linear operator
V : M →M by

F·ei = ei+n , V·ei = ei+m ∀i ∈ Z .
This is a Dieudonné module, and the p-divisible group, whose covariant Dieudonné
module is M , is denoted Hm,n.

Remark. We see that Hm,n is defined over Fp; for any field L we will write Hm,n

instead of Hm,n ⊗ L if no confusion can occur.

Remark. The p-divisible groupHm,n is the “minimal p-divisible group” with New-
ton polygon equal to δ, the isoclinic Newton polygon of height m + n and slope
m/(m+ n). For properties of minimal p-divisible groups see [69]. Such groups are
of importance in understanding various stratifications of Ag.
Remark. Suppose that the perfect field K contains Fph , where h := m+n. Then
the p-divisible group Hm,n defined above coincides with the one defined in Exercise

4.52; this is clear from 4.52 (3). Moreover End0(Hm,n) is an h2-dimensional central
division algebra over Qp with Brauer invariant m/(m+ n), and End(Hm,n) is the

maximal order of End0(Hm,n). See the paragraph after the statement of [20, 5.4],
where the opposite sign convention for Brauer invariants is used.

With the sign convention used both here and also in 4.52, that End0(Hm,n) has
Brauer invariant m/(m + n) means that there exists an injective Qp-linear ring
homomorphism

j : fracW (Fph) −→ End0(Hm,n)

and an element Φ ∈ End0(Hm,n)× such that

Φ · j(x) · Φ−1 = j(σ(x)) ∀x ∈ frac(W (Fph))

and
ord(Φ)

ord(p)
=
m

h
(mod Z) .

Let’s compute the Brauer invariant of End0(Hm,n). Let φ be the W (K)-linear
endomorphism of M such that φ(ei) = ei+m for all i = 0, 1, . . . , h− 1. Choose and
fix an integer c such that c·n ≡ 1 (mod h). For every x ∈ W (Fh), let (x) be the
W (K)-linear endomorphism of M such that

(x) : ei 7→ σci(x) · ei ∀ i = 0, 1, . . . , h− 1 .

It is easy to see that φ (resp. (x)) commutes with F and V , hence defines an
element Φ ∈ End(Hm,n) (resp. j(x) ∈ End(Hm,n)), and the commutation relation

Φ ◦ j(x) = j(σ(x)) ◦ Φ ∀x ∈ W (Fph)

is satisfied. Because φh = pm · IdM , we have h · ord(Φ) = m · ord(p). So the

Brauer invariant of End0(Hm,n) is indeed m/(m+n). See 4.52 (5) for an alternative

proof, where End0(Hm,n) is identified with the opposite algebra Dopp of the central
division algebra D over Qp with Brauer invariant n/(m+ n).
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7.5. The simple case, notation. We follow [20], §5, §6. In order to prove
7.1 in case X0 is simple we fix notations, to be used for the rest of this section. Let
m ≥ n > 0 be relatively prime integers. We will write r = (m − 1)(n − 1)/2. We
write δ for the isoclinic Newton polygon with slope m/(m + n) with multiplicity
m+ n.

We want to understand all p-divisible groups isogenous to H := Hm,n (m and
n will remain fixed).

Lemma 7.6. BB Work over a perfect field K. For every X ∼ H there is an
isogeny ϕ : H → X of degree pr.

A proof of this lemma is not difficult and is left as an Exercise.

7.7. Construction. Consider the functor

S 7→ {(ϕ,X) | ϕ : H × S → X, deg(ϕ) = pr}.
from the category of schemes over Fp to the category of sets. This functor is
representable; denote the representing object by (T = Tm,n, HT → G)→ Spec(Fp).
Note, using the lemma, that for any X ∼ H over a perfect field K there exists a
point x ∈ T (K) such that X ∼= Gx.

Discussion. The scheme T = Tm,n constructed above is closely related to
the Rapoport-Zink spaces M =M(Hm,n) in [72], Theorem 2.16, as follows. The
formal schemeM represents a functor on the category Nilp of all W (Fp)-schemes S
such that p is locally nilpotent on S; the valueM(S) for an object S in Nilp is the
set of isomorphism classes (X → S, ρ : Hm,n×Spec(Fp) S → X ×S S), where X → S

is a p-divisible group, S = S ×Spec(W (Fp)) Spec(Fp), and ρ is a quasi-isogeny over

S. From the definition of T we get a morphism f : T →Mr×Spec(W (Fp)) Spec(Fp),
where Mr is the open-and-closed formal subscheme whose points (X, ρ) have the

property that the degree of the quasi-isogeny ρ is equal to pr. Let Mred

r be the
scheme with the same topological space asMr whose structure sheaf is the quotient
of OM/(p, I) by the nilpotent radical of OM/(p, I), where I is a sheaf of definition
of the formal schemeM. Let T red be the reduced subscheme underlying T , and let

f red : T red →Mred

r be the morphism induced by f . Then Lemma 7.6 and the fact
that End(H)0 is a division algebra imply that f : T (k)→Mr(k) is a bijection for

any algebraically closed field k ⊃ Fp, so f red : T red →Mred

r is an isomorphism.

Theorem 7.8. Th The scheme T is geometrically irreducible of dimension r
over Fp. The set T (a = 1) ⊂ T is open and dense in T .

See [20], Theorem 5.11. Note that 7.1 follows from this theorem in case X0 ∼
Hm,n. We focus on a proof of 7.8.

Remark. Suppose we have proved the case that X0 ∼ Hm,n. Then by duality we
have Xt

0 ∼ Ht
m,n = Hn,m, and this case follows also. Hence it suffices to consider

only the case m ≥ n > 0.

Notational Remark. In this section we will not consider abelian varieties. The
letters A, B, etc. in this section will not be used for abelian varieties. Semi-modules
will only be considered in this section and in later sections these letters again will
be used for abelian varieties.

Definition 7.9. We say that A ⊂ Z is a semi-module or more precisely, an (m,n)-
semi-module, if
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• A is bounded from below, and if
• for every x ∈ A we have a+m, a+ n ∈ A.

We write A = {a1, a2, . . . } with aj < aj+1 ∀j. We say that semi-modules A,B are
equivalent if there exists t ∈ Z such that B = A+ t := {x+ t | x ∈ A}.

We say that A is normalized if:

(1) A ⊂ Z≥0,
(2) a1 < · · · < ar ≤ 2r,
(3) A = {a1, . . . , ar} ∪ [2r,∞);

notation: [y,∞) := Z≥y.

Write At = Z\(2r − 1− A) = {y ∈ Z | 2r − 1− y 6∈ A}.
Explanation. For a semi-module A the set Z\A of course is a “(−m,−n)-semi-
module”. Hence {y | y 6∈ A} is a semi-module; then normalize.

Example. Write 〈0〉 for the semi-module generated by 0, i.e., consisting of all
integers of the form im+ jn for i, j ≥ 0.

Exercise.

(4) Note that 〈0〉 indeed is normalized. Show that 2r − 1 6∈ 〈0〉.
(5) Show: if A is normalized then At is normalized.
(6) Att = A.
(7) For every B there is a unique normalized A such that A ∼ B.
(8) If A is normalized then: A = 〈0〉 ⇐⇒ 0 ∈ A ⇐⇒ 2r − 1 6∈ A.

7.10. Construction. Work over a perfect field. For every X ∼ Hm,n there
exists a semi-module.

An isogeny X → H gives an inclusion

D(X) →֒ D(H) = M =
⊕

0≤i<m+n

W.·ei.

Write M (i) = πi·M . Define

B := {j | D(X) ∩M (j) 6= D(X) ∩M (j+1)},
i.e., B is the set of values where the filtration induced on D(X) jumps. It is clear
that B is a semi-module. Let A be the unique normalized semi-module equivalent
to B.

Notation. The normalized semi-module constructed in this way will be called the
type of X , denoted by Type(X).

Let A be a normalized semi-module. We denote by UA ⊂ T the set where the
semi-module A is realized:

UA = {t ∈ T | Type(Gt) = A}.
Proposition 7.11.

(1) UA →֒ T is locally closed, T =
⊔
A UA.

(2) A = 〈0〉 ⇐⇒ a(X) = 1.
(3) U〈0〉 is geometrically irreducible and has dimension r.
(4) If A 6= 〈0〉 then every component of UA has dimension strictly less than r.

For a proof see [20], the proof on page 233, and 6.5 and 6.15. The argument is
not very deep but somewhat involved (combinatorics and studying explicit equa-
tions).
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7.12. BB Let Y0 be any p-divisible group over a field K, of dimension d
and let c be the dimension of Y t0 . The universal deformation space is isomorphic to
Spf(K[[t1, · · · , tcd]]) and the generic fiber of that universal deformation is ordinary;
in this case its Newton polygon ρ has c slopes equal to 1 and d slopes equal to 0.
See 2.5. See [38], 4.8, [20], 5.15.

7.13. We prove 7.8, using 7.3 and 7.11. Note that the Zariski closure
(U〈0〉)

Zar ⊂ T is geometrically irreducible, and has dimension r; we want to show

equality (U〈0〉)
Zar = T . Suppose there would be an irreducible component T ′ of

T not contained in (U〈0〉)
Zar. By 7.11 (3) and (4) we see that dim(T ′) < r. Let

y ∈ T ′, with corresponding p-divisible group Y0.
Consider the formal completion T /y of T at y. Write D = Def(Y0) for the

universal deformation space of Y0. The moduli map T /y → D = Def(Y0) is an
immersion, see [20], 5.19. Let T ′′ ⊂ D be the image of (T ′)/y in D; we conclude
that no irreducible component of T ′′ is contained in any irreducible component of
the image of T /y → D in D, i.e., every component of T ′′ is an component ofWδ(D).
Clearly dim(T ′) = dim(T ′′) < r.

Obvious, but crucial observation. Consider the graph of all Newton poly-
gons

ζ with δ ≺ ζ ≺ ρ.
The longest path in this graph has length ≤ mn− r.
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Proof. Consider the Newton polygon ρ, in this case given by n slopes equal to 0
and m slopes equal to 1. Note that gcd(m,n) = 1, hence the Newton polygon δ
does not contain integral points except its beginning and end points. Consider the
interior of the parallelogram given by ρ and by ρ∗, the upper convex polygon given
by: first m slopes equal to 1 and then n slopes equal to 0. The number of interior
points of this parallelogram equals (m− 1)(n − 1). Half of these are above δ, and
half of these are below δ. Write δ � (i, j) for the property “(i, j) is strictly below
δ”, and (i, j) ≺ ρ for “(i, j) is upon or above ρ”. We see:

# ({(i, j) | δ � (i, j) ≺ ρ}) = (m− 1)(n− 1)/2 + (m+ n− 1) = mn− r.
We use the following fact: If ζ1 � ζ2, then there is an integral point on ζ2 strictly
below ζ1. One can even show that all maximal chains of Newton polygons in the
fact above have the same length, and in fact equal to

# ({(i, j) | δ � (i, j) ≺ ρ}) .
This finishes the proof of the claim.

As dim(Def(Y0)) = mn this observation implies by purity, see 7.3, that every
irreducible component of Wδ(D) had dimension at least r. This is a contradiction
to the assumption of the existence of T ′, i.e., dim(T ′) = dim(T ′′) < r. Hence
(U〈0〉)

Zar = T . This proves Theorem 7.8. Hence we have proved Theorem 7.1 in
the case when X0 is isogenous to Hm,n.
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Theorem 7.14. Th (Deformation to a ≤ 1 in the principally quasi-polarized
case) Let X0 be a p-divisible group over a field K with a principal quasi-polarization
λ0 : X0 → Xt

0. There exists an integral scheme S, a point 0 ∈ S(K) and a princi-
pally quasi-polarized p-divisible group (X , λ)→ S such that there is an isomorphism
(X0, λ0) ∼= (X , λ)0, and for the generic point η ∈ S we have:

N (X0) = N (Xη) and a(Xη) ≤ 1.

See [20], 5.12 and [66], 3.10.

Corollary 7.15. Th (Deformation to a ≤ 1 in the case of principally polarized
abelian varieties) Let (A0, λ0) be a principally polarized abelian variety over K.
There exists an integral scheme S, a point 0 ∈ S(K) and a principally polarized
abelian scheme (A, λ) → S such that there is an isomorphism (A0, λ0) ∼= (A, λ)0,
and for the generic point η ∈ S we have

N (A0) = N (Aη) and a(Xη) ≤ 1.

7.16. The non-principally polarized case. Note that the analog of the
theorem and of the corollary is not correct in general in the non-principally polarized
case. Here is an example, see [39], 6.10, and also see [45], 12.4 and 12.5 where more
examples are given. Consider g = 3, let σ be the supersingular Newton polygon; it
can be proved that for any x ∈ Wσ(A3,p) we have a(Ax) ≥ 2.

We will show that for ξ1 ≺ ξ2 we have in the principally polarized case:

W0
ξ1(Ag,1) =: W 0

ξ1 ⊂ (W 0
ξ2)

Zar = Wξ2 :=Wξ2(Ag,1).

In the non-principally polarized case this inclusion and the equality (W 0
ξ2

)Zar = Wξ2

do not hold in general as is demonstrated by the following example. Let g = 3, and
ξ1 = σ the supersingular Newton polygon, and ξ2 = (2, 1) + (1, 2). Clearly ξ1 ≺ ξ2.
By [39], 6.10, there is a component of Wσ(Ag,p2 ) of dimension 3; more generally
see [45], Theorem 10.5 (ii) for the case of Wσ(Ag,p[(g−1)2/2]) and components of

dimension equal to g(g − 1)/2. As the p-rank 0 locus in Ag has pure dimension
equal to g(g + 1)/2 + (f − g) = g(g − 1)/2, see [56], Theorem 4.1, this shows the
existence of a polarized supersingular abelian variety (of dimension 3, respectively
of any dimension at least 3) which cannot be deformed to a non-supersingular
abelian variety with p-rank equal to zero.

Many more examples where (W 0
ξ )Zar 6= Wξ follow from [58], Section 3.

8. Proof of the Grothendieck conjecture

Main reference: [66].

Definition 8.1. Extra Let X be a p-divisible group over a base S. A filtration

0 = X(0) ⊂ X(1) ⊂ · · · ⊂ X(s) = X

of X by p-divisible subgroups Xi → S is the slope filtration of X if there exists
rational numbers τ1, τ2, . . . , τs with 1 ≥ τ1 > τ2 > · · · > τs ≥ 0 such that Yi :=
X(i)/X(i−1) is an isoclinic p-divisible group over S with slope τi for i = 1, . . . , s.

Remark. Clearly, if a slope filtration exists, it is unique.
From the Dieudonné-Manin classification it follows that the slope filtration on

X exists if K is perfect.
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By Grothendieck and Zink we know that for every p-divisible group over any
field K the slope filtration exists; see [94], Corollary 13.

In general for a p-divisible group X → S over a base a slope filtration on X/S
does not exists. Even if the Newton polygon is constant in a family, in general the
slope filtration does not exist.

Definition 8.2. We say that 0 = X(0) ⊂ X(1) ⊂ · · · ⊂ X(s) = X is a maximal
filtration of X → S if every geometric fiber of Y (i) := X(i)/X(i−1) for 1 ≤ i ≤ s is
simple and isoclinic of slope τi with τ1 ≥ τ2 ≥ · · · ≥ τs.
Lemma. BB For every X over k a maximal filtration exists.

See [66], 2.2.

Lemma 8.3. BB Let {X(i)
0 } be a p-divisible group X0 with maximal filtration

over k. There exists an integral scheme S and a p-divisible group X/S with a
maximal filtration {X(i)} → S and a closed point 0 ∈ S(k) such that N (Y (i)) is

constant for 1 ≤ i ≤ s, such that {X(i)}0 = {X(i)
0 } and such that for the generic

point η ∈ S we have a(Xη) ≤ 1.

See [66], Section 2. A proof of this lemma uses Theorem 7.8.
In Section 7 we proved 7.8, and obtained as a corollary 7.1 in the case of a

simple p-divisible group. From the previous lemma we derive a proof for Theorem
7.1.

Definition 8.4. We say that a p-divisible groupX0 over a fieldK is a specialization
of a p-divisible group Xη over a field L if there exists an integral scheme S →
Spec(K), a k-rational point 0 ∈ S(K), and X → S such that X0 = X0, and for the
generic point η ∈ S we have L = K(η) and Xη = Xη.

This can be used for p-divisible groups, for abelian schemes, etc.

Proposition 8.5. Let X0 be a specialization of Xη = Y0, and let Y0 be a special-
ization of Yρ. Then X0 is a specialization of Yρ.

Using Theorem 5.10 and Theorem 7.1 along with the proposition above, we derive
a proof of the Grothendieck Conjecture (Theorem 1.22).

Corollary 8.6. (of Theorem 1.22) Let X0 be a p-divisible group, β = N (X0).
Every component of the locus Wβ(Def(X0)) has dimension 3(β).

Definition 8.7. Let (X,λ) be a principally polarized p-divisible group over S. We
say that a filtration

0 = X(0) ⊂ X(1) ⊂ · · · ⊂ X(s) = X

of X by p-divisible subgroups X(0), . . . , X(s) over S is a maximal symplectic filtra-
tion of (X,λ) if:

• each quotient Y (i) := X(i)/X(i−1) for i = 1, . . . , s is a p-divisible group
over S,
• every geometric fiber of Y (i) for 1 ≤ i ≤ s is simple of slope τi,
• τ1 ≥ τ2 ≥ · · · ≥ τs, and
• λ : X → Xt induces an isomorphism

λi : Y (i) → (Y (s+1−i))t for 0 < i ≤ (s+ 1)/2.

Lemma 8.8. For every principally polarized (X,λ) over k there exists a maximal
symplectic filtration.
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See [66], 3.5.

8.9. Using this definition and this lemma, we show the principally polarized
analog 7.15 of 7.14; see [66], Section 3. Hence Corollary 7.15 follows. Using 7.15
and Theorem 5.19 we derive a proof for:

Theorem 8.10. (An analog of the Grothendieck conjecture) Let K ⊃ Fp. Let
(X0, λ0) be a principally quasi-polarized p-divisible group over K. Write N (X0) = ξ
for its Newton polygon. Given a Newton polygon ζ “below” ξ, i.e., ξ ≺ ζ, there
exists a deformation (Xη, λη) of (X0, λ0) such that N (Xη) = ζ.

Corollary 8.11. Let K ⊃ Fp. Let (A0, λ0) be a principally polarized abelian
variety over K. Write N (A0) = ξ for its Newton polygon. Given a Newton polygon
ζ “below” ξ, i.e., ξ ≺ ζ, there exists a deformation (Aη, λη) of (A0, λ0) such that
N (Xη) = ζ.

Corollary 8.12. Let ξ be a symmetric Newton polygon. Every component of the
stratum Wξ =Wξ(Ag,1) has dimension equal to △(ξ).

9. Proof of the density of ordinary Hecke orbits

In this section we give a proof of Theorem 1.8 on the density of ordinary Hecke
orbits, restated as Theorem 9.1 below. To establish Theorem 1.8, we need the
analogous statement for a Hilbert modular variety; see 9.2 for the precise statement.

Here is a list of tools we will use; many have been explained in previous sections.

(i) Serre-Tate coordinates, see §2.
(ii) Local stabilizer principle, see 9.5 and 9.6.
(iii) Local rigidity for group actions on formal tori, see 2.26.
(iv) Consequence of EO stratification, see 9.7.
(iv) Hilbert trick, see 9.10.

The logical structure of the proof of Theorem 1.8 is as follows. We first prove
the density of ordinary Hecke orbits on Hilbert modular varieties. Then we use
the Hilbert trick to show that the Zariski closure of any prime-to-p Hecke orbit on
Ag,1,n contains a hypersymmetric ordinary point. Finally we use the local stabilizer
principle and the local rigidity to conclude the proof of 1.8. Here by a hypersym-
metric ordinary point we just mean that the underlying abelian variety is isogenous
to E×· · ·×E, where E is an ordinary elliptic curve over F; see [15] for the general
notion of hypersymmetric abelian varieties.

The Hilbert trick is based on the following observation. Given an ordinary
point x = [(Ax, λx, ηx)] ∈ Ag,1,n(F), the prime-to-p Hecke orbit of x contains, up to
a possibly inseparable isogeny correspondence, the (image of) the prime-to-p Hecke
orbit of a point h = [(Ay, ιy , λy, ηy)] of a Hilbert modular varietyME,L,L+,m such

that Ay is isogenous to Ax, because End0(Ax) contains a product E = F1×· · ·×Fr
of totally real fields with [E : Q] = g. So if we can establish the density of the
prime-to-p Hecke orbit of y inME,L,L+,m, then we know that the Zariski closure of
the prime-to-p Hecke orbit of x contains the image of the Hilbert modular variety
ME,L,L+,m in Ag,1,n under a finite isogeny correspondence, i.e., a scheme T over
F and finite F-morphisms g : T → ME,L,L+,m and f : T → Ag,1,n such that
the pullback by g of the universal abelian scheme over ME,L,L+,m is isogenous to
the pullback by f of the universal abelian scheme over Ag,1,n. Since ME,L,L+,m
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contains ordinary hypersymmetric points,
(
H(p)

Sp (x)
)Zar

also contains an ordinary

hypersymmetric point. Then the linearization method afforded by the combination
of the local stabilizer principle and the local rigidity implies that the dimension of(
H(p)

Sp (x)
)Zar

is equal to g(g+ 1)/2, hence
(
H(p)

Sp (x)
)Zar

= Ag,1,n because Ag,1,n is

geometrically irreducible, see 10.26.
To prove the density of ordinary Hecke orbits on a Hilbert modular variety, the

linearization method is again crucial. Since a Hilbert modular variety ME,L,L+,m

is “small”, there are only a finite number of possibilities as to what (the formal
completion of) the Zariski closure of an ordinary Hecke orbit can be; the possibilities
are indexed by the set of all subsets of prime ideals of OE . To pin down the
number of possibilities down to one, one can use either the consequence of EO-
stratification that the Zariski closure of any Hecke-invariant subvariety of a Hilbert
modular variety contains a supersingular point, or de Jong’s theorem on extending
homomorphisms between p-divisible groups. We follow the first approach here; see
9.11 and [7, §8] for the second approach.

Theorem 9.1. Let n ≥ 3 be an integer prime to p. Let x = [(Ax, λx, ηx)] ∈
Ag,1,n(F) such that Ax is ordinary.

(i) The prime-to-p Sp2g(A
(p)
f )-Hecke orbit of x is dense in the moduli space

Ag,1,n over F for any prime number ℓ 6= p, i.e.,

(
H(p)

Sp (x)
)Zar

= Ag,1,n .

(ii) The Sp2g(Qℓ)-Hecke orbit of x dense in the moduli space Ag,1,n over F ,
i.e.,

(
HSp
ℓ (x)

)Zar

= Ag,1,n .
Theorem 9.2. Let n ≥ 3 be an integer prime to p. Let E = F1 × · · · × Fr, where
F1, . . . , Fr are totally real number fields. Let L be an invertible OE-module, and let
L+ be a notion of positivity for L. Let y = [(Ay, ιy, λy , ηy)] ∈ ME,L,L+,n(F) be a
point of the Hilbert modular variety ME,L,L+,n such that Ay is ordinary. Then the

SL2(E⊗Q A(p)
f )-Hecke orbit of y onME,L,L+,n is Zariski dense in ME,L,L+,n over

F.

Proposition 9.3. Let n ≥ 3 be a integer prime to p.

(i) Let x ∈ Ag,1,n(F) be a closed point of Ag,1,n. Let Z(x) be the Zariski

closure of the prime-to-p Hecke orbit H(p)
Sp (x) in Ag,1,n over F. Then

Z(x) is smooth at x over F.
(ii) Let y ∈ ME,L,L+,n(F) be a closed point of a Hilbert modular variety
MF,L,L+,n. Let ZF (y) be the Zariski closure of the prime-to-p Hecke orbit

H(p)
SL2

(y) on MF,L,L+,n over F. Then ZF (y) is smooth at y over F.

Proof. We give the proof of (ii) here. The proof of (i) is similar and left to the
reader.

Because ZF is reduced, there exists a dense open subset U ⊂ ZF which is
smooth over F. This open subset U must contain an element y′ of the dense

subset H(p)
SL2

(y) of ZF , so ZF is smooth over F at y′. Since prime-to-p Hecke
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correspondences are defined by schemes over MF,L,L+,n ×Spec(F)MF,L,L+,n such
that both projections toMF,L,L+,n are étale, ZF is smooth at y as well.

Remark.

(i) Proposition 9.3 is an analog of the following well-known fact. Let X be a
reduced scheme over an algebraically closed field k on which an algebraic
group operates transitively. Then X is smooth over k.

(ii) The proof of Proposition 9.3 also shows that all irreducible components of
Z(x) (resp. ZF (y)) have the same dimension: For any non-empty subset
U1 ⊂ ZF (y) and any open subset W1 ∋ y, there exist a non-empty subset
U2 ⊂ U1, an open subset W2 ∋ y and a non-empty étale correspondence
between U2 and W2.

Theorem 9.4. BB Let Z be a reduced closed subscheme of Ag,1,n over F such
that no maximal point of Z is contained in the supersingular locus of Ag,1,n. If Z is
stable under all Sp2g(Qℓ)-Hecke correspondences on Ag,1,n, then Z is stable under

all Sp2g(A
(p)
f )-Hecke correspondences.

Remark. This is proved in [11, Proposition 4.6].

Local stabilizer principle

Let k ⊃ Fp be an algebraically closed field. Let Z be a reduced closed subscheme
of Ag,1,n over k. Let z = [(Az , λz , ηz)] ∈ Z(k) ⊂ Ag,1,n(k) be a closed point of

Z. Let ∗z be the Rosati involution on End0(Az). Denote by Hz the unitary group

attached to the semisimple algebra with involution (End0(Az), ∗z), defined by

Hz(R) =
{
x ∈ (End0(Az)⊗Q R)× | x · ∗0(x) = ∗0(x) · x = IdAz

}

for any Q-algebra R. Denote by Hz(Zp) the subgroup of Hz(Qp) consisting of all
elements x ∈ Hz(Qp) such that x induces an automorphism of (Az , λz)[p

∞]. De-
note by Hz(Z(p)) the group Hz(Q)∩Hz(Zp), i.e., its elements consist of all elements
x ∈ Hz(Q) such that x induces an automorphism of (Az , λz)[p

∞]. Note that the ac-
tion of Hz(Zp) on Az [p

∞] makes Hz(Zp) a subgroup of Aut((Az , λz)[p
∞]). Denote

by A/zg,1,n (resp. Z/z) the formal completion of Ag,1,n (resp. Z) at z. The com-

pact p-adic group Aut((Az , λz)[p
∞]) operates naturally on the deformation space

Def ((Az , λz)[p
∞]/k). So we have a natural action of Aut((Az , λz)[p

∞]) on the

formal scheme A/zg,1,n via the canonical isomorphism

A/zg,1,n = Def ((Az , λz)/k)
Serre-Tate−−−−−−→

∼
Def ((Az , λz)[p

∞]/k) .

Theorem 9.5. (local stabilizer principle) Notation as above. Suppose that Z is

stable under all Sp2g(A
(p)
f )-Hecke correspondences on Ag,1,n. Then the closed for-

mal subscheme Z/z in A/zg,1,n is stable under the action of the subgroup Hz(Zp) of

Aut((Az , λz)[p
∞]).

Proof. Consider the projective system A∼
g,1 = lim←−mAg,1,m over k, where m runs

through all integers m ≥ 1 which are prime to p. The pro-scheme A∼
g,1 classifies

triples (A→ S, λ, η), where A→ S is an abelian scheme up to prime-to-p isogenies,
λ is a principal polarization of A→ S, and

η : H1(Az ,A
(p)
f )

∼−→ H1(A/S,A
(p)
f )
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is a symplectic prime-to-p level structure. Here we have used the first homology
groups of Az attached to the base point z to produce the standard representation

of the symplectic group Sp2g. Take Sz = A/zg,1,n, let (A/z , λ/z) → A/zg,1,n be the

restriction of the universal principally polarized abelian scheme to A/zg,1,n, and let

η/z be the tautological prime-to-p level structure, we get an Sz-point of the tower
A∼
g,1 that lifts Sz →֒ Ag,1,n.

Let γ be an element of Hz(Z(p)). Let γp (resp. γ(p)) be the image of γ in

the local stabilizer subgroup Hz(Zp) ⊂ Aut((Az , λz)[p
∞]) (resp. in Hz(A

(p)
f ). From

the definition of the action of Aut((Az , λz)[p
∞]) on A/zg,1,n we have a commutative

diagram

(A/z, λ/z)[p∞]
fγ [p∞]//

��

(A/z, λ/z)[p∞]

��

A/zg,1,n
uγ // A/zg,1,n

where uγ is the action of γp on A/zg,1,n and fγ [p
∞] is an isomorphism over uγ whose

fiber over z is equal to γp. Since γp comes from a prime-to-p quasi-isogeny, fγ [p
∞]

extends to a prime-to-p quasi-isogeny fγ over uγ , such that the diagram

A/z
fγ //

��

A/z

��

A/zg,1,n
uγ // A/zg,1,n

commutes and fγ preserves the polarization λ/z . Clearly the fiber of fγ at z is
equal to γ as a prime-to-p isogeny from Az to itself. From the definition of the

action of the symplectic group Sp(H1(Az ,A
(p)
f ), 〈·, ·〉) one sees that uγ coincides

with the action of (γ(p))−1 on A∼
g,1. Since Z is stable under all Sp2g(A

(p)
f )-Hecke

correspondences, we conclude that Z/z is stable under the action of uγ , for every
γ ∈ Hz(Z(p)).

By the weak approximation theorem for linear algebraic groups (see [70], 7.3,
Theorem 7.7 on page 415), Hz(Z(p)) is p-adically dense in Hz(Zp). So Z/z is stable
under the action of Hz(Zp) by the continuity of the action of Aut((Az , λz)[p

∞]).

Remark. The group Hz(Z(p)) can be thought of as the “stabilizer subgroup” at z
inside the family of prime-to-p Hecke correspondences: Every element γ ∈ Hz(Z(p))
gives rise to a prime-to-p Hecke correspondence with z as a fixed point.

We set up notation for the local stabilizer principle for Hilbert modular vari-
eties. Let E = F1× · · ·×Fr, where F1, . . . , Fr are totally real number fields. Let L
be an invertible OE-module, and let L+ be a notion of positivity for L. Let m ≥ 3
be a positive integer which is prime to p. Let Y be a reduced closed subscheme of
ME,L,L+,m over F. Let y = [(Ay , ιy, λy, ηy)] ∈ ME,L,L+,m(F) be a closed point in
Y ⊂ME,L,L+,m. Let ∗y be the Rosati involution attached to λ on the semisimple

algebra End0
OE

(Ay) = EndOE (Ay)⊗OE E. Denote by Hy the unitary group over Q
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attached to (End0
OE

(Ay), ∗y), so

Hy(R) =
{
u ∈

(
End0

OE
(Ay)⊗Q R

)× | u · ∗y(u) = ∗y(u) · u = IdAy

}

for every Q-algebra R. Let Hy(Zp) be the subgroup of Hy(Qp) consisting of all el-
ements of Hy(Qp) which induce an automorphism of (Ay[p

∞], ιy [p
∞], λy[p

∞]). De-
note by Hy(Z(p)) the intersection of Hy(Q) and Hy(Zp) inside Hy(Qp), i.e., it consists
of all elements u ∈ Hy(Q) such that u induces an automorphism of (Ay, ιy , λy)[p

∞].
The compact p-adic group Aut((Ay , ιy, λy)[p

∞]) operates naturally on the local
deformation space Def ((Ay, ιy , λy)[p

∞]/k). So we have a natural action of the

compact p-adic group Aut((Ay , ιy, λy)[p
∞]) on the formal scheme M/y

E,L,L+,m via

the canonical isomorphism

M/y
E,L,L+,m = Def ((Ay, ιy, λy)/k)

Serre-Tate−−−−−−→
∼

Def ((Ay , ιy, λy)[p
∞]/k) .

Theorem 9.6. Notation as above. Assume that the closed subscheme

Y ⊂ME,L,L+,m

over F is stable under all SL2(E ⊗Q A(p)
f )-Hecke correspondences on the Hilbert

modular varietyME,L,L+,m. Then the closed formal subscheme Y /y ofM/y
E,L,L+,m

is stable under the action by elements of the subgroup

Hy(Zp) ⊂ Aut(Ay[p
∞], ιy[p

∞], λy[p
∞]).

Proof. The proof of Theorem 9.6 is similar to that of Theorem 9.5, and is already
contained in the proof of Corollary 6.15.

Theorem 9.7. BB Let n ≥ 3 be an integer relatively prime to p. Let ℓ be a
prime number, ℓ 6= p.

(i) Every closed subset of Ag,n over F which is stable under all Hecke corre-
spondences on Ag,n coming from Sp2g(Qℓ) contains a supersingular point.

(ii) Similarly, every closed subset in a Hilbert modular variety ME,L,L+,n

over F which is stable under all SL2(E ⊗ Qℓ)-Hecke correspondences on
ME,L,L+,n contains a supersingular point.

Remark. Theorem 9.7 follows from the main theorem of [67] and Proposition 9.8
below. See also 3.22.

Proposition 9.8. BB Let k ⊃ Fp be an algebraically closed field. Let ℓ be a
prime number, ℓ 6= p. Let n ≥ 3 be an integer prime to p.

(i) Let x = [(Ax, λx, ηx)] ∈ Ag,1,n(k) be a closed point of Ag,1,n. If Ax is

supersingular, then the prime-to-p Hecke orbit H(p)
Sp2g

(x) is finite. Con-

versely, if Ax is not supersingular, then the ℓ-adic Hecke orbit HSp2g

ℓ (x)
is infinite for every prime number ℓ 6= p.

(ii) Let y = [(Ay, ιy, λy , ηy)] ∈ ME,L,L+,n(k) be a closed point of a Hilbert
modular variety ME,L,L+,n. If Ay is supersingular, then the prime-to-p

Hecke orbit H(p)
SL2,E

(y) is finite. Conversely, if Ay is not supersingular,

then the v-adic Hecke orbit HSL2,E
v (y) is infinite for every prime ideal ℘v

of OE which does not contain p.

Remark.
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(1) The statement (i) is proved in Proposition 1, p. 448 of [9], see 1.14. The
proof of (ii) is similar. The key to the proof of the second part of (i) is a
bijection

HSp2g

ℓ (x)
∼←−



Hx(Q) ∩
∏

ℓ′ 6=ℓ

Kℓ



 \Sp2g(Qℓ)/Kℓ

where ℓ′ runs through all prime numbers not equal to ℓ or p, Hx is the
unitary group attached to (End0(Ax), ∗x) as in Theorem 9.5. The com-
pact groups Kℓ′ and Kℓ are defined as follows: for every prime number
ℓ′ 6= p, Kℓ′ = Sp2g(Zℓ′) if (ℓ′, n) = 1, and Kℓ′ consists of all elements
u ∈ Sp2g(Zℓ′) such that u ≡ 1 (mod n) if ℓ′|n. We have an injec-

tion Hx(A
(p)
f ) → Sp2g(A

(p)
f ) as in Theorem 9.5, so that the intersection

Hx(Q) ∩∏ℓ′ 6=ℓKℓ makes sense. The second part of (i) follows from the
group-theoretic fact that a double coset as above is finite if and only if Hx

is a form of Sp2g.
(2) When the abelian variety Ax in (i) (resp. Ay in (ii)) is ordinary, one

can also use the canonical lifting to W (k) to show that HSp2g

ℓ (x) (resp.

HSL2,E
v (y)) is infinite.

The following irreducibility statement is handy for the proof of Theorem 9.2, be-
cause it shortens the argument and simplifies the logical structure of the proof.

Theorem 9.9. BB Let W be a locally closed subscheme of MF,n over F which

is smooth over F and stable under all SL2(F ⊗ A(p)
f )-Hecke correspondences. As-

sume that the SL2(F ⊗ A(p)
f )-Hecke correspondences operate transitively on the set

Π0(W ) of irreducible components of W , and some (hence all) maximal point of W
corresponds to a non-supersingular abelian variety. Then W is irreducible.

Remark. The argument in [11] works in the situation of 9.9. The following ob-
servations may be helpful.

(i) The group SL2(F ⊗ A(p)
f ) has no proper subgroup of finite index. This

statement can be verified directly without difficulty. It can also be ex-
plained in a more general context: The linear algebraic group ResF/Q(SL2)
over Q is semisimple, connected and simply connected. Therefore every
subgroup of finite index in SL2(F ⊗Qℓ) is equal to SL2(F ⊗Qℓ), for every
prime number ℓ.

(ii) The only part of the argument in [11] that needs to be supplemented is
the end of (4.1), where the fact that Sp2g is simple over Qℓ is used. Let
Gℓ be the image group of the ℓ-adic monodromy ρZ attached to Z. By
definition, Gℓ is a closed subgroup of SL2(F ⊗Qℓ) =

∏
v|ℓ SL2(Fv), where

v runs through all places of F above ℓ. In the present situation of a Hilbert
modular varietyMF , we need to know the fact that the projection of Gℓ
to the factor SL2(Fv) is non-trivial for every place v of F above ℓ and for
every ℓ 6= p.

Theorem 9.10. (Hilbert trick) Given x0 ∈ Ag,1,n(F), then there exist

(a) totally real number fields F1, . . . , Fr such that
∑r
i=1[Ei : Q] = g,
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(b) an invertible OE-module L with a notion of positivity L+, i.e., L+ is a
union of connected components of L⊗Q R such that L ⊗R is the disjoint
union of L+ with −L+,

(c) a positive integer a and a positive integer m such that (m, p) = 1 and
m ≡ 0 (mod n),

(d) a finite flat morphism g :Mord
E,L,L+,m;a →Mord

E,L,L+,m ,

(e) a finite morphism f :Mord
E,L,L+,m;a → Aord

g,n ,

(f) a point y0 ∈ Mord
E,L,L+,m;a(F)

such that the following properties are satisfied.

(i) There exists a projective system Mord,∼
E,L,L+;a of finite étale coverings of

ME,L,L+,m;a on which the group SL2(E ⊗ A(p)
f ) operates. This action of

SL2(E ⊗ A(p)
f ) induces Hecke correspondences on Mord

E,L,L+,m;a

(ii) The morphism g is equivariant with respect to Hecke correspondences com-

ing from SL2(E ⊗ A(p)
f ). In other words, there is an SL2(E ⊗ A(p)

f )-

equivariant morphism g∼ from the projective system Mord,∼
E,L,L+;a to the

projective system
(
Mord

E,L,L+,md

)

d∈N−pN
which lifts g.

(iii) There exists an injective homomorphism jE : SL2(E⊗QA(p)
f )→ Sp2g(A

(p)
f )

such that the finite morphism f is Hecke equivariant with respect to jE.
(iv) We have f(y0) = x0.
(v) For every geometric point z ∈Mord

E,m;a, the abelian variety underlying the

fiber over g(z) ∈ Mord
E,m of the universal abelian scheme over Mord

E,m is

isogenous to the abelian variety underlying the fiber over f(z) ∈ Aord
g,n(F)

of the universal abelian scheme over Aord
g,n(F).

Remark. The scheme Mord
E,L,L+,m;a is defined in Step 3 of the proof of Theo-

rem 9.10.

Lemma. Let A be an ordinary abelian variety over F which is simple. Then

(i) K := End0(A) is a totally imaginary quadratic extension of a totally real
number field F ;

(ii) [F : Q] = dim(A);
(iii) F is fixed by the Rosati involution attached to any polarization of A;
(iii) Every place ℘ of F above p splits in K.

Proof. The statements (i)–(iv) are immediate consequences of Tate’s theorem for
abelian varieties over finite fields; see [79].

Lemma. Let K be a CM field, let E := Md(K), and let ∗ be a positive involution
on E which induces the complex conjugation on K. Then there exists a CM field
L which contains K and a K-linear ring homomorphism h : L → E such that
[L : K] = d and h(L) is stable under the involution ∗.
Proof. This is an exercise in algebra. A proof using Hilbert irreducibility can be
found on p. 458 of [9].

Proof of Theorem 9.10 (Hilbert trick).
Step 1. Consider the abelian variety A0 attached to the given point

x0 = [(A0, λ0, η0)] ∈ Aord
g,1,n(F).
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By the two lemmas above there exist totally real number fields F1, . . . , Fr and
an embedding ι0 : E := F1 × · · · × Fr →֒ End0(A0) such that E is fixed under
the Rosati involution on End0(A0) attached to the principal polarization λ0, and
[E : Q] = g = dim(A0).

The intersection of E with End(A0) is an order O1 of E, so we can regard A0

as an abelian variety with action by O1. We claim that there exists an OE-linear
abelian variety B and an O1-linear isogeny α : B → A0. This claim follows from
a standard “saturation construction” as follows. Let d be the order of the finite
abelian group OE/O1. Since A0 is ordinary, one sees by Tate’s theorem (the case
when K is a finite field in Theorem 3.16) that (d, p) = 1. For every prime divisor
ℓ 6= p of d, consider the ℓ-adic Tate module Tℓ(A0) as a lattice inside the free rank
two E-module Vℓ(A0). Then the lattice Λℓ generated by OE ·Tℓ(A0) is stable under
the action of OE by construction. The finite set of lattices {Λℓ : ℓ|d} defines an
OE-linear abelian variety B and an O1-linear isogeny β0 : A0 → B which is killed
by a power di of d. Let α : B → A0 be the isogeny such that α ◦ β0 = [di]A0 . The
claim is proved.

Step 2. The construction in Step 1 gives us a triple (B,α, ιx0), where B is an
abelian variety B over F , α : B → Ax is an isogeny over F, and ιB : OE → End(B) is
an injective ring homomorphism such that α−1 ◦ιx(u)◦α = ιB(u) for every u ∈ OE.
Let LB := Homsym

OE
(B,Bt) be set of all OE-linear symmetric homomorphisms from

B to the dual Bt of B. The set LB has a natural structure as an OE-module. By
Tate’s theorem (the case when K is a finite field in Theorem 3.16, see 10.17) one
sees that LB is an invertible OE-module, and the natural map

λB : B ⊗OE LB → Bt

is an OE-linear isomorphism. The subset of elements in L which are polarizations
defines a notion of positivity L+ on L such that LB ∩L+

B is the subset of OE-linear
polarizations on (B, ιB).

Step 3. Recall that the Hilbert modular variety ME,L,L+,n classifies (the iso-
morphism class of) all quadruples (A → S, ιA, λA, ηA), where (A → S, ιA) is an
OE-linear abelian schemes, λA : L → Homsym

OE
(A,At) is an injective OE-linear map

such that the resulting morphism L⊗A ∼−→ At is an isomorphism of abelian schemes
and every element of L ∩ L+ gives rise to an OE-linear polarization, and ηA is an
OE-linear level structure on (A, ιA). In the preceding paragraph, if we choose an
OE-linear level-n structure ηB on (B, ιB), then y1 := [(B, ιB , λB, ηB)] is an F-point
of the Hilbert modular variety ME,LB ,L

+
B ,n

. The element α∗(λ0) is an OE-linear

polarization on B, hence it is equal to λB(µ0) for a unique element µ0 ∈ L ∩ L+.
Choose a positive integer m1 with gcd(m1, p) = 1 and a ∈ N such that Ker(α)

is killed by m1p
a. Let m = m1n. Let (A, ιA, λA, ηA) → Mord

E,L,L+,m be the uni-

versal polarized OE-linear abelian scheme over the ordinary locus Mord
E,L,L+,m of

ME,L,L+,m. Define a schemeMord
E,L,L+,m;a overMord

E,L,L+,m by

IsomOE

Mord
E,L,L+,m

(
(B, ιB , λB)[pa]×Spec(F)Mord

E,L,L+,m, (A, ιA, λA)[pa]
)
.

In other wordsMord
E,L,L+,m;a is the moduli space of OE-linear ordinary abelian va-

rieties with level-mpa structure, where we have used the OE-linear polarized trun-
cated p-divisible group (B, ιB , λB)[pm] as the “model” for thempa-torsion subgroup
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scheme of the universal abelian scheme overMord
E,L,L+,m. Let

g :Mord
E,L,L+,m;a →Mord

E,L,L+,m

be the structural morphism ofMord
E,L,L+,m;a, the source of g being an fppf sheaf of

sets on the target of g. Notice that the structural morphism g : Mord
E,L,L+,m;a →

Mord
E,L,L+,m has a natural structure as a torsor over the constant finite flat group

scheme
Aut ((B, ιB , λB)[pa])×Spec(F)Mord

E,L,L+,m .

We have constructed the finite flat morphism g as promised in Theorem 9.10 (d).
We record some properties of this morphism.

The group Aut (B, ιB, λB)[pa]) sits in the middle of a short exact sequence

0→ Hom
OE

(B[pa]ét, B[pa]mult)→ Aut ((B, ιB , λB)[pa])→ Aut
OE

(B[pa]ét)→ 0 .

The morphism g :Mord
E,L,L+,m;a →Mord

E,L,L+,m factors as

Mord
E,L,L+,m;a

g1−→Mord,ét
E,L,L+,m;a

g2−→Mord
E,L,L+,m ,

where g1 is defined as the push-forward by the surjection

Aut ((B, ιB , λB)[pa]) ։ Aut
OE

(B[pa]ét)

of the Aut ((B, ιB , λB)[pa])-torsorMord
E,L,L+,m;a. Note that the morphism g1 is finite

flat and purely inseparable, and Mord,ét
E,L,L+,m;a is integral. Moreover Mord,ét

E,L,L+,m;a

andMord
E,L,L+,m are irreducible by [74], [23], [71] and [22].

Step 4. Let πn,m : ME,L,L+,m → ME,L,L+,n be the natural projection. Denote
by

A[mpa]→Mord
E,L,L+,m

the kernel of [mpa] on A →Mord
E,L,L+,m, and let g∗A[mpa] →Mord

E,L,L+,m;a be the

pullback of A[mpa] → Mord
E,L,L+,m by g. By construction the OE-linear finite flat

group scheme g∗A[mpa]→Mord
E,L,L+,m;a is constant via a tautological trivialization

ψ : Aut (B, ιB, λB)[pa])×Spec(F)Mord
E,L,L+,m

∼−→Mord
E,L,L+,m;a

Choose a point y0 ∈Mord
E,L,L+,m;a(F) such that (πn,m ◦ g)(y0) = y1. The fiber over

y0 of g∗A[mpa] → Mord
E,L,L+,m;a is naturally identified with B[mpa]. Let K0 :=

Ker(α : B → A0), and let

K := ψ
(
K0 ×Spec(F)Mord

E,L,L+,m;a →Mord
E,L,L+,m;a

)
,

the subgroup scheme of g∗A[mpa] which corresponds to the constant group K0

under the trivialization ψ. The element µ0 ∈ L ∩ L+ defines a polarization on
the abelian scheme g∗A → Mord

E,L,L+,m;a, the pullback by g of the universal po-

larized OE-linear abelian scheme over A → Mord
E,L,L+,m. The group K is a maxi-

mal totally isotropic subgroup scheme of g∗Ker(λA(µ0)) →Mord
E,L,L+,m;a, because

g∗Ker(λA(µ0)) is constant and K0 is a maximal totally isotropic subgroup scheme
of Ker(λB(µ0)).

Consider the quotient abelian scheme

(A′ →Mord
E,L,L+,m;a) := (g∗A→Mord

E,L,L+,m;a)/K.
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Recall that we have defined an element µ0 ∈ L ∩ L+ in Step 3. The polarization
g∗(λA(µ0)) on the abelian scheme g∗A → Mord

E,L,L+,m;a descends to the quotient

abelian scheme A′ → Mord
E,L,L+,m;a, giving it a principal polarization λA′ . More-

over the n-torsion subgroup scheme A′[n] → Mord
E,L,L+,m;a is constant, as can be

checked easily. Choose a level-n structure ηA′ for A′. The triple (A′, λA′ , ηA′) over
Mord

E,L,L+,m;a defines a morphism f :Mord
E,L,L+,m;a → Aord

g,1,n by the modular defini-

tion of Aord
g,1,n, since every fiber of A′ →Mord

E,L,L+,m;a is ordinary by construction.

We have constructed the morphism f as required in 9.10 (e), and also the point y0
as required in 9.10 (f).

Step 5. So far we have constructed the morphisms g and f as required in Theo-
rem 9.10. To construct the homomorphism jE as required in (iii), one uses the first

homology group V := H1(B,A
(p)
f ), and the symplectic pairing 〈·, ·〉 induced by the

polarization α∗(λ0) = λB(µ0) constructed in Step 3. Notice that V has a natural

structure as a free E ⊗Q A(p)
f -module of rank two. Also, V is a free A(p)

f -module

of rank 2g. So we get an embedding jE : SL
E⊗A

(p)
f

(V ) →֒ Sp
A

(p)
f

(V, 〈·, ·〉). We have

finished the construction of jE .

We define Mord,∼
E,L,L+,a to be the projective system lim←−mdME,L,L+,md;a, where

d runs through all positive integers which are prime to p. This finishes the last
construction needed for Theorem 9.10.

By construction we have f(y0) = x0, which is statement (iv). The statement (v)
is clear by construction. The statements (i)–(iii) can be verified without difficulty
from the construction.

Proof of Theorem 9.2. (Density of ordinary Hecke orbits inME,L,L+,n)
Reduction step.

From the product decomposition

ME,L,L+,n =MF1,L1,L
+
1 ,n
×Spec(F) · · · ×Spec(F)MFr ,Lr,L

+
r ,n

of the Hilbert modular variety ME,L,L+,n, we see that it suffices to prove Theo-
rem 9.2 when r = 1, i.e., E = F1 =: F is a totally real number field. Assume this
is the case from now on.

The rest of the proof is divided into four steps.

Step 1. (Serre-Tate coordinates for Hilbert modular varieties)
Claim. The Serre-Tate local coordinates at a closed ordinary point z ∈ Mord

F,L,L+,n

of a Hilbert modular varietyMF,L,L+,n admits a canonical decomposition

M/z
F,L,L+,n

∼=
∏

℘∈ΣF,p

Mz
℘ , Mz

℘ = HomOF,℘

(
Tp(Az [℘

∞]ét), e℘ · A/0z
)
,

where

• the indexing set ΣF,p is the finite set consisting of all prime ideals of OF

above p,

• the (OF ⊗ Zp)-linear formal torus A
/0
z is the formal completion of the

ordinary abelian variety Az,
• e℘ is the irreducible idempotent in OF ⊗Z Zp so that e℘ · (OF ⊗Z Zp) is

equal to the factor OF℘ of OF ⊗Z Zp.
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Notice that e℘A
/0
z is the formal torus attached to the multiplicative p-divisible

group Az [℘
∞]mult over F.

Proof of Claim. The decomposition OF ⊗Z Zp =
∏
℘∈ΣF,p

OF℘ induces a decom-

position of the formal scheme M/z
F,L,L+,n into a product

M/z
F,L,L+,n =

∏

℘∈ΣF,p

Mz
℘

for every closed point z ofMF,L,L+,n: Let (A/R, ι) be an OF -linear abelian scheme
over an Artinian local ring R. Then we have a decomposition

A[p∞] =
∏

℘∈ΣF,p

A[℘∞]

of the p-divisible group attached to A, where each A[℘∞] is a deformation of
A×Spec(R) Spec(R/m) over Spec(R).

If z corresponds to an ordinary abelian variety Az , then Mz
℘ is canonically

isomorphic to the OF,℘-linear formal torus Hom
OF,℘

(Az [℘
∞]ét, e℘ · A/0z ), which is

the factor “cut out” in the (OF ⊗Z Zp)-linear formal torus

M/z
F,L,L+,n = Hom

OF ⊗Zp

(
Tp(Az [p

∞], A/0z

)

by the idempotent e℘ in OF ⊗ Zp. Each factor Mz
℘ in the above decomposition

is a formal torus of dimension [F℘ : Qp], with a natural action by O
×
F,℘; it is non-

canonically isomorphic to the O℘-linear formal torus Az
/0.

Step 2. (Linearization)
Claim. For every closed point z ∈ Zord

F (F) in the ordinary locus of ZF , there exists

a non-empty subset Sz ⊂ ΣF,p such that Z
/z
F =

∏
℘∈Sz

Mz
℘, whereMz

℘ is the factor

of the Serre-Tate formal torusM/z
F,L,L+,n corresponding to ℘.

Proof of Claim. The OF -linear abelian variety Az is an ordinary abelian variety
defined over F. Therefore End0

OF
(Az) is a totally imaginary quadratic extension

field K of F which is split over every prime ideal ℘ of OF above p, by Tate’s theorem
(the case when K is a finite field in Theorem 3.16). By the local stabilizer principle,

Z
/z
F is stable under the norm-one subgroup U of (OK ⊗Z Zp)×. Since every prime

℘ of OF above p splits in OK , U is isomorphic to
∏
℘∈ΣF,p

O
×
F,℘ through its action

on the (OF ⊗ Zp)-linear formal torus A
/0
z . The factor O

×
F,℘ of U operates on the

OF,℘-linear formal torus Mz
℘ through the character t 7→ t2, i.e., a typical element

t ∈ U =
∏
℘∈ΣF,p

O
×
F,℘ operates on the (OF ⊗ Zp)-linear formal torus M/z

F,L,L+,n

through the element t2 ∈ U = (OF ⊗Zp)×. The last assertion can be seen through
the formula

M/z
F,L,L+,n = Hom

OF ⊗Zp

(
Tp(Az [p

∞]ét), A
/0
z

)
,

because any element t of U
∼−→ OF ⊗ZZp operates via t (resp. t−1) on the (OF ⊗Zp)-

linear formal torus e℘A
/0
z (resp. the (OF ⊗ Zp)-linear p-divisible group Az[p

∞]ét).

The local rigidity theorem 2.26 implies that Z
/z
F is a formal subtorus of the

Serre-Tate formal torus M/z
F . For every ℘ ∈ ΣF,p, let X℘,∗ be the cocharacter

group of the OF℘-linear formal torusMz
℘, so that

∏
℘∈ΣF,p

X℘,∗ is the cocharacter

group of the Serre-Tate formal torus M/z
F,L,L+,n. Let Y∗ be the cocharacter group
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of the formal torus Z
/z
F . We know that Y∗ is a co-torsion free Zp-submodule of

the rank-one free
(∏

℘∈ΣF,p
OF,℘

)
-module

∏
℘∈ΣF,p

X℘,∗ , and Y∗ is stable under

multiplication by elements of the subgroup
∏
℘∈ΣF,p

(O×
F,℘)2 of

∏
℘∈ΣF,p

O
×
F,℘. It

is easy to see that the additive subgroup generated by
∏
℘ΣF,p

(O×
F,℘)2 is equal to

∏
℘∈ΣF,p

OF,℘ , i.e., Y∗ is a
(∏

℘∈ΣF,p
OF,℘

)
-submodule of

∏
℘X℘,∗. Hence there

exists a subset Sz ⊆ ΣF,p such that Y∗ =
∏
℘∈Sz

X℘,∗. Since the prime-to-p Hecke

orbit H(p)
SL2,F

(x) is infinite by 9.8, we have 0 < dim(ZF ) =
∑

℘∈Sz
[F℘ : Qp], hence

Sz 6= ∅ for every ordinary point z ∈ ZF (x)(F). We have proved the Claim in Step
2.

Step 3. (Globalization)
Claim. The finite set Sz is independent of the point z, i.e., there exists a subset
S ⊂ ΣF,p such that Sz = ΣF,p for all z ∈ Zord

F (F).
Proof of Claim. Consider the diagonal embedding ∆Z : ZF → ZF ×Spec(F) ZF ,
the diagonal embedding ∆M :MF,n →MF,n ×Spec(F)MF,n, and the map ∆Z,M

from ∆Z to ∆M induced by the inclusion ZF →֒ ∆M. Let PZ be the formal
completion of ZF×Spec(F)ZF along ∆Z(ZF ), and let PM be the formal completion of
MF,n×Spec(F)MF,n along ∆M(MF,n). The map ∆Z,M induces a closed embedding
iZ,M : PZ →֒ PM. We regard PZ (resp. PM) as a formal scheme over ZF (resp.
MF,n) via the first projection.

The decomposition OF ⊗Z Zp =
∏
℘∈ΣF,p

OF,℘ induces a fiber product decom-

position

PM =
∏

℘∈ΣF,p

(P℘ →MF,n)

over the base schemeMF,n, where P℘ →MF,n is a smooth formal scheme of rela-
tive dimension [F℘ : Qp] with a natural section δ℘, for every ℘ ∈ ΣF,p, and the for-
mal completion of the fiber of (M℘, δ℘) over any closed point z of the base scheme
MF,n is canonically isomorphic to the formal torus Mz

℘. In fact one can show
that M℘ →MF,n has a natural structure as a formal torus of relative dimension
[F℘ : Qp], with δ℘ as the zero section; we will not need this fact here. Notice that
PZ → ZF is a closed formal subscheme of PM ×MF,n ZF → ZF . The above con-
sideration globalizes the “pointwise” construction of formal completions at closed
points.

By Proposition 9.9, ZF is irreducible. We conclude from the irreducibility of
ZF that there is a non-empty subset S ⊂ ΣF,p such that the restriction of PZ → ZF
to the ordinary locus Zord

F is equal to the fiber product over Zord
F of formal schemes

P℘ ×MF,n Z
ord
F → Zord

F over Zord
F , where ℘ runs through the subset S ⊆ ΣF,p. We

have proved the Claim in Step 3.

Remark.

(i) Without using Proposition 9.9, the above argument shows that for each
irreducible component Z1 of Zord

F , there exists a subset S ⊂ ΣF,p such
that Sz = S for every closed point z ∈ Z1(F).

(ii) There is an alternative proof of the claim that Sz is independent of z:
By Step 2, Zord

F is smooth over F. Consider the relative cotangent sheaf
Ω1
Zord

F /F
, which is a locally free OZord

F
-module. We recall that Ω1

Mord
F,L,L+,n

/F
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has a natural structure as a OF ⊗Z Fp-module, from the Serre-Tate coor-
dinates explained in Step 1. By Step 2, we have

Ω1
Zord

F /F ⊗OZF ,z O
∧
ZF ,z =

∑

℘∈Sz

e℘ · Ω1
Mord

F,L,L+,n
/F ⊗O

Mord
F,L,L+,n

O
∧
ZF ,z

for every z ∈ Zord
F (F), where O

∧
ZF ,z

is the formal completion of the local

ring of ZF at z. Therefore for each irreducible component Z1 of Zord
F there

exists a subset S ⊂ ΣF,p such that

Ω1
Z1/F =

∑

℘∈S

e℘ ·Ω1
Mord

F,L,L+,n
/F ⊗O

Mord
F,L,L+,n

OZ1/F .

Hence Sz = S for every z ∈ Z1(F). This argument was used in [9]; see
Proposition 5 on p. 473 in loc. cit.

(iii) One advantage of the globalization argument in Step 3 is that it makes
the final Step 4 of the proof of Theorem 9.2 easier, as compared with the
two-page proof of Proposition 7 on p. 474 of [9].

Step 4. We have S = ΣF,p. Therefore ZF =MF,n.
Proof of Step 4.

Notation as in Step 3 above. For every closed point s of ZF , the formal com-

pletion Z
/s
F contains the product

∏
℘∈SMs

℘. By Theorem 9.7, ZF contains a su-

persingular point s0. Consider the formal completion Z∧ := Z
/s0
F , which contains

W∧ :=
∏
℘∈SMs0

℘ , and the generic point ηW∧ of Spec
(
H0(W∧,OW∧)

)
is a maxi-

mal point of Spec
(
H0(Z∧,OZ∧)

)
. The restriction of the universal abelian scheme

to ηW∧ is an ordinary abelian variety. Hence S = ΣF,p, otherwise AηW∧ has slope
1/2 with multiplicity at least 2

∑
℘/∈S [F℘ : Qp]. Theorem 9.2 is proved.

Remark. The proof of Theorem 9.2 can be finished without using Proposition
9.9 as follows. We saw in the Remark after Step 3 that Sz depends only on the
irreducible component of Zord

F which contains z. The argument in Step 4 shows
that at least the subset S ⊂ ΣF,p attached to one irreducible component Z1 of Zord

F

is equal to ΣF,p. So dim(Z1) = dim(MF,L,L+,n) = [F : Q]. Since MF,L,L+,n is
irreducible, we conclude that ZF =MF,L,L+,n.

Proof of Theorem 9.1. (Density of ordinary Hecke orbits in Ag,1,n.)
Reduction step. By Theorem 9.4, the weaker statement 9.1 (i) implies 9.1 (ii).
So it suffices to prove 9.1 (i).

Remark. Our argument can be used to prove (ii) directly without appealing to
Theorem 9.4. But some statements, including the local stabilizer principal for
Hilbert modular varieties, need to be modified.

Step 1. (Hilbert trick)
Given x ∈ Ag,n(F), Apply Theorem 9.10 to produce a finite flat morphism

g :Mord
E,L,L+,m;a →Mord

E,L,L+,m ,

where E is a product of totally real number fields, a finite morphism

f :Mord
E,L,L+,m;a → Ag,n ,

and a point y0 ∈Mord
E,L,L+,m;a(F) such that the following properties are satisfied.
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(i) There exists a projective system Mord,∼
E,L,L+;a of finite étale coverings of

ME,L,L+,m;a on which the group SL2(E ⊗ A(p)
f ) operates. This action of

SL2(E ⊗ A(p)
f ) induces Hecke correspondences on Mord

E,L,L+,m;a

(ii) The morphism g is equivariant with respect to Hecke correspondences

coming from SL2(E ⊗ A(p)
f ). In other words, there is a SL2(E ⊗ A(p)

f )-

equivariant morphism g∼ from the projective system Mord,∼
E,L,L+,a to the

projective system
(
Mord

E,L,L+,mn

)

n∈N−pN
which lifts g.

(iii) The finite morphism f is Hecke equivariant with respect to an injective
homomorphism

jE : SL2(E ⊗Q A(p)
f )→ Sp2g(A

(p)
f ) .

(iv) For every geometric point z ∈Mord
E,L,L+,m;a, the abelian variety underlying

the fiber over g(z) ∈ Mord
E,L,L+,m of the universal abelian scheme over

Mord
E,L,L+,m is isogenous to the abelian variety underlying the fiber over

f(z) ∈ Aord
g,n(F) of the universal abelian scheme over Aord

g,n(F).
(v) We have f(y0) = x0.

Let y := g(y0) ∈Mord
E,L,L+,m.

Step 2. Let Zy0 be the Zariski closure of the SL2(E ⊗A(p)
f )-Hecke orbit of y0 on

Mord
E,L,L+,m;a, and let Zy be the Zariski closure of the SL2(E ⊗ A(p)

f )-Hecke orbit

on ME,L,L+,m. By Theorem 9.2 we know that Zy =ME,L,L+,m. Since g is finite

flat, we conclude that g(Zy0) = Zy ∩ Mord
E,L,L+,m = Mord

E,L,L+,m. We know that

f(Zy0) ⊂ Zx because f is Hecke-equivariant.

Step 3. Let E1 be an ordinary elliptic curve over F. Let y1 be an F-point of
ME,L,L+,m such that Ay1 is isogenous to E1 ⊗Z OE and Ly1 contains an OE-
submodule of finite index in λE1 ⊗ OE, where λE1 denotes the canonical principal
polarization on E1. In the above the tensor product E1 ⊗Z OE is taken in the
category of fppf sheaves over F; the tensor product is represented by an abelian
variety isomorphic to the product of g copies of E1, with an action by OE . It is not
difficult to check that such a point y1 exists.

Let z1 be a point of Zy0 such that g(z1) = y1. Such a point y1 exists because
g(Zy0) = Mord

E,L,L+,m The point x1 = f(z1) is contained in the Zariski closure

Z(x) of the prime-to-p Hecke orbit of x on Ag,n. Moreover Ax1 is isogenous to

the product of g copies of E1 by property (iv) in Step 1. So End0(Ax1)
∼= Mg(K),

where K = End0(E) is an imaginary quadratic extension field of Q which is split
above p. The local stabilizer principle says that Z(x)/x1 is stable under the natural

action of an open subgroup of SU(End0(Ax1), λx1)(Qp) ∼= GLg(Qp).

Step 4. We know that Z(x) is smooth at the ordinary point x over k, so Z(x)/x

is reduced and irreducible. By the local stabilizer principle 9.5, Z(x)/x is stable
under the natural action of the open subgroup Hx of SU(End0(Ax1), ∗x1) consisting

of all elements γ ∈ SU(End0(Ax1), ∗x1)(Qp) such that γ(Ax1 [p
∞]) = Ax1 [p

∞]. By

Theorem 2.26, Z(x)/x1 is a formal subtorus of the formal torus A/x1
g,n , which is stable

under the action of an open subgroup of SU(End0(Ax1 , λx1))(Qp) ∼= GLg(Qp).
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Let X∗ be the cocharacter group of the Serre-Tate formal torus A/x1
g,n , and let

Y∗ be the cocharacter group of the formal subtorus Z(x)/x1 . Both X∗ and X∗/Y∗
are free Zp-modules. It is easy to see that the restriction to SLg(Qp) of the linear

action of SU(End0(Ax1), ∗x1)(Qp) ∼= GLg(Qp) on X∗ ⊗Z Qp is isomorphic to the
second symmetric product of the standard representation of SLg(Qp). It is well-
known that the latter is an absolutely irreducible representation of SLg(Qp). Since
the prime-to-p Hecke orbit of x is infinite, Y∗ 6= (0), hence Y∗ = X∗. In other words

Z(x)/x1 = A/x1
g,n . Hence Z(x) = Ag,n because Ag,n is irreducible.

Remark 9.11. We mentioned at the beginning of this section that there is an
alternative argument for Step 4 of the proof of Theorem 9.2, which uses [19] instead
of Theorem 9.7, and therefore is independent of [67]. We sketch the idea here; see
§8 of [7] for more details.

We keep the notation in Step 3 of the proof of 9.2. Assume that S 6= ΣF,p.
Consider the universal OF -linear abelian scheme (A→ Zord

F , ι) and the (OF ⊗Zp)-
linear p-divisible group (A → Zord

F , ι)[p∞] over the base scheme Zord
F , which is

smooth over F. We have a canonical decomposition of X℘ := A[p∞] → Zord
F as

the fiber product over Zord
F of O℘-linear p-divisible groups A[℘∞]→ Zord

F , where ℘
runs through the finite set ΣF,p of all places of F above p. Let X1 → Zord

F (resp.
X2 → Zord

F ) be the fiber product over Zord
F of those X℘’s with ℘ ∈ S (resp. with

℘ /∈ S), so that we have A[p∞] = X1 ×Zord
F

X2.

We know that for every closed point s of Zord
F , the restriction to the formal

completion Z
/s
F of the

(∏
℘/∈S O℘

)
-linear p-divisible group X2 → Zord

F is constant.

This means that X2 → Zord
F is the twist of a constant

(∏
℘/∈S O℘

)
-linear p-divisible

group by a character

χ : πét
1 (Zord

F )→
∏

℘/∈S

O
×
℘ .

More precisely, one twists the étale part and toric part of the constant p-divisible
group by χ and χ−1 respectively. Consequently EndQ

℘/∈S O℘
(X2) ⊇

∏
℘/∈S(O℘×O℘).

By the main results in [19], we have an isomorphism

EndOF (A/Zord
F )⊗Z Zp

∼−→ EndOF ⊗ZZp(A[p∞]/Zord
F )

||

EndQ

℘∈S O℘
(X1)× EndQ

℘/∈S O℘
(X2) .

Since EndQ

℘/∈S O℘
(X2) ⊇

∏
℘/∈S(O℘ ×O℘), we conclude that EndOF (A/Zord

F )⊗Z Q
is either a totally imaginary quadratic extension field of F or a central quaternion
algebra over F . This implies that the abelian scheme A → Zord

F admits smCM
(see §10.15), therefore it is isotrivial. We have arrived at a contradiction because
dim(Zord

F ) > 0 by 9.8. Therefore S = ΣF,p.

10. Notations and some results used

10.1. Abelian varieties. For the definition of an abelian variety and an
abelian scheme, see [54], II.4, [55], 6.1. The dual of an abelian scheme A → S

will be denoted by At → S. We avoid the notation Â as in [55], 6.8 for the dual
abelian scheme, because of possible confusion with the formal completion (of a ring,
of a scheme at a subscheme).
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An isogeny ϕ : A→ B of abelian schemes is a finite, surjective homomorphism.
It follows that Ker(ϕ) is finite and flat over the base, [55], Lemma 6.12. This
defines a dual isogeny ϕt : Bt → At. And see 10.11.

The dimension of an abelian variety we will usually denote by g. If m ∈ Z>1

and A is an abelian variety we write A[m] for the group scheme of m-torsion points.
Note that ifm ∈ Z>0 is invertible on the base scheme S, then A[m] is a group scheme
finite étale over S; if moreover S = Spec(K), in this case it is uniquely determined
by the Galois module A[m](k). See 10.5 for details. If the characteristic p of the
base field divides m, then A[m] is a group scheme which is not reduced.

A divisor D on an abelian scheme A/S defines a morphism ϕD : A → At,
see [54], theorem on page 125, see [55], 6.2. A polarization on an abelian scheme
µ : A→ At is an isogeny such that for every geometric point s ∈ S(Ω) there exists
an ample divisor D on As such that λs = ϕD, see [54], Application 1 on page 60,
and [55], Definition 6.3. Note that a polarization is symmetric in the sense that

(
λ : A→ At

)
=

(
A

κ−→ Att
λt

−→ At
)
,

where κ : A→ Att is the canonical isomorphism.
Writing ϕ : (B,µ)→ (A, λ) we mean that ϕ : A→ A and ϕ∗(λ) = µ, i.e.,

µ =

(
B

ϕ−→ A
λ−→ At

ϕt

−→ Bt
)
.

10.2. Warning. Most recent papers distinguish between an abelian variety
defined over a field K on the one hand, and A ⊗K K ′ over K ′ % K on the other
hand. The notation End(A) stands for the ring of endomorphisms of A over K.
This is the way Grothendieck taught us to choose our notation.

In pre-Grothendieck literature and in some modern papers there is confusion
between on the one hand A/K and “the same” abelian variety over any extension
field. Often it is not clear what is meant by “a point on A”; the notation EndK(A)
can stand for the “endomorphisms defined over K”, but then sometimes End(A)
can stand for the “endomorphisms defined over K”.

Please adopt the Grothendieck convention that a scheme T → S is what it is,
and any scheme obtained by base extension S′ → S is denoted by T ×S S′ = TS′ ,
etc. For an abelian scheme X → S write End(X) for the endomorphism ring of
X → S (old terminology “endomorphisms defined over S”). Do not write EndT (X)
but End(X ×S T ).

10.3. Moduli spaces. We try to classify isomorphism classes of polarized
abelian varieties (A, µ). This is described by the theory of moduli spaces; see
[55]. In particular see Chapter 5 of this book, where the notions of coarse and fine
moduli scheme are described. We adopt the notation of [55]. By Ag → Spec(Z)
we denote the coarse moduli scheme of polarized abelian varieties of dimension
g. Note that for an algebraically closed field k there is a natural identification of
Ag(k) with the set of isomorphism classes of (A, µ) defined over k, with dim(A) =
g. We write Ag,d for the moduli space of polarized abelian varieties (A, µ) with
deg(µ) = d2. Note that Ag =

⊔
dAg,d. Given positive integers g, d, n, denote by

Ag,d,n → Spec(Z[1/dn]) the moduli space considering polarized abelian varieties
with a symplectic level-n structure; in this case it is assumed that we have chosen
and fixed an isomorphism from the constant group scheme Z/nZ to µn over k, so
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that symplectic level-n structure makes sense. According to these definitions we
have Ag,d,1 = Ag,d ×Spec(Z) Spec(Z[1/d]).

Most of the considerations in this course are over fields of characteristic p.
Working over a field of characteristic p we should write Ag ⊗ Fp for the moduli
space under consideration; however, in case it is clear what the base field K or the
base scheme is, instead we will Ag instead of the notation Ag ⊗ K; we hope this
will not cause confusion.

10.4. The Cartier dual. The group schemes considered will be assumed to
be commutative. If G is a finite abelian group, and S is a scheme, we write GS for
the constant group scheme over S with fiber equal to G.

LetN → S be a finite locally free commutative group scheme. Let Hom(N,Gm)
be the functor on the category of all S-schemes, whose value at any S-scheme T
is HomT (N ×S T,Gm ×Spec(Z) T ). This functor is a sheaf for the fpqc topology,

and is representable by a flat locally free scheme ND over S, see [61], I.2. This
group scheme ND → S is called the Cartier dual of N → S, and it can be described
explicitly as follows. If N = Spec(E)→ S = Spec(R) we write ED := HomR(E,R).
The multiplication map on E gives a comultiplication on ED, and the commutative
comultiplication on E provides ED with the structure of a commutative ring. With
the inverse map they give ED a structure of a commutative and cocommutative
bialgebra over R, and make Spec(ED) into a commutative group scheme. This
commutative group scheme Spec(ED) is naturally isomorphic to the Cartier dual
ND of N . It is a basic fact, easy to prove, that the natural homomorphism N →
(ND)D is an isomorphism for every finite locally free group scheme N → S.

Examples. The constant group schemes Z/nZ and µn := Ker ([n]Gm) are Cartier
dual to each other, over any base scheme. More generally, a finite commutative
group scheme N → S is étale if and only if its Cartier dual ND → S is of multi-
plicative type, i.e., there exists an étale surjective morphism g : T → S, such that
ND×S T is isomorphic to a direct sum of group schemes µni for suitable posi-
tive integers ni. The above morphism g : T → S can be chosen to be finite étale
surjective.

For every field K ⊃ Fp, the group scheme αp is self-dual. Recall that αp is the
kernel of the Frobenius endomorphism Frp on Ga.

10.5. Étale finite group schemes as Galois modules. (Any characteris-
tic.) Let K be a field, and let G = Gal(Ksep/K). The main theorem of Galois
theory says that there is an equivalence between the category of finite étale K-
algebras and the category of finite sets with a continuous G-action. Taking group
objects on both sides we arrive at:

Theorem. There is an equivalence between the category of commutative finite étale
group schemes over K and the category of finite continuous G-modules.

See [84], 6.4. Note that an analogous equivalence holds in the case of not
necessarily commutative group schemes.

This is a special case of the following. Let S be a connected scheme, and let
s ∈ S be a geometric base point; let π = π1(S, s). There is an equivalence between
the category of étale finite schemes over S and the category of finite continuous
π-sets. Here π1(S, s) is the algebraic fundamental group defined by Grothendieck
in SGA 1; see [33].
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Hence the definition of Tℓ(A) for an abelian variety over a field K with ℓ 6=
char(K) can be given as:

Tℓ(A) = lim←−
i

A[ℓi](Ksep),

considered as a continuous Gal(Ksep/K)-module.

Definition 10.6. Let S be a scheme. A p-divisible group over S is an inductive
system X = (Xn, ιn)n∈N>0 of finite locally free commutative group schemes over
S satisfying the following conditions.

(i) Xn is killed by pn for every n ≥ 1.
(ii) Each homomorphism ιn : Xn → Xn+1 is a closed embedding.
(iii) For each n ≥ 1 the homomorphism [p]

Xn+1
: Xn+1 → Xn+1 factors

through ιn : Xn → Xn+1, such that the resulting homomorphismXn+1 →
Xn is faithfully flat. In other words there is a faithfully flat homomorphism
πn : Xn+1 → Xn such that such that ιn ◦πn = [p]

Xn+1
. Here [p]

Xn+1
is the

endomorphism “multiplication by p” on the commutative group scheme
Xn+1.

Sometimes one writes X [pn] for the finite group scheme Xn. Equivalent definitions
can be found in [34, Chapter III] and [49, Chapter I] and [38]; these are basic
references to p-divisible groups.

Some authors use the terminology “Barsotti-Tate group”, a synonym for “p-
divisible group”.

A p-divisible group X = (Xn) over S is said to be étale (resp. toric) if every
Xn is finite étale over S (resp. of multiplicative type over S).

For any p-divisible groupX → S, there is a locally constant function h : S → N,
called the height of X , such that OXn is a locally free OS-algebra of rank ph for
every n ≥ 1.

Example.

(1) Over any base scheme S we have the constant p-divisible group Qp/Zp
of height 1, defined as the inductive limit of the constant groups p−nZ/Z
over S.

(2) Over any base scheme S, the p-divisible group µp∞ = Gm[p∞] is the
inductive system (µpn)n≥1, where µpn := Ker ([pn]Gm).

(3) Let A → S be an abelian scheme. For every i we write Gi = A[pi]. The
inductive system Gi ⊂ Gi+s ⊂ A defines a p-divisible group of height 2g.
We shall denote this by X = A[p∞] (although of course “p∞” strictly
speaking is not defined). A homomorphism A → B of abelian schemes
defines a morphism A[p∞]→ B[p∞] of p-divisible groups.

10.7. The Serre dual of a p-divisible group. Let X = (Xn)n∈Z>0 be a
p-divisible group over a scheme S. The Serre dual of X is the p-divisible group
Xt =

(
XD
n

)
n≥1

over S, where XD
n := HomS(Xn,Gm) is the Cartier dual of Xn, the

embedding XD
n → XD

n+1 is the Cartier dual of the faithfully flat homomorphism

πn : Xn+1 → Xn, and the faithfully flat homomorphism XD
n+1 → XD

n is the Cartier
dual of the embedding ιn : Xn → Xn+1.
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As an example, over any base scheme S the p-divisible group µp∞ is the Serre
dual of the constant p-divisible group Qp/Zp, because µpn is the Cartier dual of

p−nZ/Z. Below are some basic properties of Serre duals.

(1) The height of Xt is equal to the height of X .
(2) The Serre dual of a short exact sequence of p-divisible groups is exact.
(3) The Serre dual of Xt is naturally isomorphic to X .
(4) A p-divisible group X = (Xn) is toric if and only if its Serre dual Xt =

(XD
n ) is étale. If this is the case, then the sheaf Hom(X,µp∞) of characters

of X is the projective limit of the étale sheaves XD
n , where the transition

map XD
n+1 → XD

n is the Cartier dual of the embedding ιn : Xn → Xn+1.
(5) Let A → S be an abelian scheme, and let At → S be the dual abelian

scheme. Then the Serre dual of the p-divisible group A[p∞] attached to
the abelian scheme A→ S is the p-divisible group At[p∞] attached to the
dual abelian scheme At → S; see 10.11.

10.8. Discussion. Over any base scheme S (in any characteristic) for an
abelian scheme A → S and for a prime number ℓ invertible in OS one can de-
fine Tℓ(A/S) as follows. For i ∈ Z>0 one chooses Ni := A[ℓi], regarded as a smooth
étale sheaf of free Z/ℓiZ-modules of rank 2 dim(A), and we have surjective maps
[ℓ] : Ni+1 → Ni induced by multiplication by ℓ. The projective system of the Ni’s
“is” a smooth étale sheaf of Zℓ-modules of rank 2 dim(A), called the ℓ-adic Tate
module of A/S, denoted by Tℓ(A/S). Alternatively, we can consider Tℓ(A/S) as a
projective system

Tℓ(A/S) = lim←−
i∈N

A[ℓi]

of the finite étale group schemes A[ℓi] over S. This projective system we call
the Tate ℓ-group of A/S. Any geometric fiber of Tℓ(A/S)s̄ is constant, hence the
projective limit of Tℓ(A/S)s̄ is isomorphic to (Zℓs)

2g. If S is the spectrum of a field

K, the Tate ℓ-group can be considered as a Gal(Ksep/K)-module on the group Z2g
ℓ ,

see 10.5. One should like to have an analogous concept for this notion in case p is not
invertible on S. This is precisely the role of A[p∞] defined above. Historically a Tate
ℓ-group is defined as a projective system, and the p-divisible group as an inductive
system; it turns out that these are the best ways of handling these concepts (but
the way in which direction to choose the limit is not very important). We see
that the p-divisible group of an abelian variety should be considered as the natural
substitute for the Tate ℓ-group.

In order to carry this analogy further we investigate aspects of Tℓ(A) and
wonder whether these can be carried over to A[p∞] in case of an abelian variety A
in characteristic p. The Tate ℓ-group is a twist of a pro-group scheme defined over
Spec(Z[1/ℓ]). What can be said in analogy about A[p∞] in the case of an abelian
variety A in characteristic p? We will see that up to isogeny A[p∞] is a twist of an
ind-group scheme over Fp; however, “twist” here should be understood not only in
the sense of separable Galois theory, but also using inseparable aspects: the main
idea of Serre-Tate parameters, to be discussed in Section 2.

10.9. Let X be a p-divisible group over an Artinian local ring R whose residue
field is of characteristic p.
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(1) There exists a largest étale quotient p-divisible group Xét of X over R,
such that every homomorphism from X to an étale p-divisible group fac-
tors uniquely through Xét. The kernel of X → Xét is called the neutral
component of X , or the maximal connected p-divisible subgroup of X ,
denoted by Xconn.

(2) The Serre dual of the maximal étale quotient Xt
ét of Xt is called the toric

part of X , denoted Xtor. Alternatively, Xtor[p
n] is the maximal subgroup

scheme in X [pn] of multiplicative type, for each n ≥ 1.
(3) We have two short exact sequences of p-divisible groups

0→ Xtor → Xconn → Xℓℓ → 0

and
0→ Xconn → X → Xét → 0

over R, where Xℓℓ is a p-divisible group over Rdim(A) with trivial étale
quotient and trivial toric part. The closed fiber of the pn-torsion subgroup
Xℓℓ[p

n] of Xℓℓ is unipotent for every n ≥ 1.
(4) The scheme-theoretic inductive limit of Xconn (resp. Xtor) is a finite di-

mensional commutative formal group scheme X∧
conn over R (resp. a fi-

nite dimensional formal torus X∧
tor over R), called the formal completion

of Xconn (resp. Xtor). The endomorphism [pn] on X∧
conn (resp. X∧

tor)
is faithfully flat; its kernel is canonically isomorphic to Xconn[p

n] (resp.
Xtor[p

n]). In particular one can recover the p-divisible groupsXconn (resp.
Xtor) from the smooth formal group X∧

conn (resp. X∧
tor).

(5) If X = A[p∞] is the p-divisible group attached to an abelian scheme A
over R, then X∧

conn is canonically isomorphic to the formal completion of
A along its zero section.

A p-divisible group X over an Artinian local ring R whose maximal étale quotient is
trivial is often said to be connected. Note that X [pn] is connected, or equivalently,
geometrically connected, for every n ≥ 1. The formal completion of a connected p-
divisible group over R is usually called a p-divisible formal group. It is not difficult
to see that a smooth formal group over an Artinian local ring R is a p-divisible
formal group if and only its closed fiber is.

More information about the infinitesimal properties of p-divisible groups can
be found in [49] and [38]. Among other things one can define the Lie algebra of a
p-divisible group X → S when p is locally nilpotent in OS ; it coincides with the Lie
algebra of the formal completion of Xconn when S is the spectrum of an Artinian
local ring.

10.10. The following are equivalent conditions for a g-dimensional abelian va-
riety A over an algebraically closed field k ⊃ Fp; A is said to be ordinary if these
conditions are satisfied.

(1) Card(A[p](k)) = pg, i.e., the p-rank of A is equal to g.
(2) A[pn](k) ∼= Z/pnZ for some positive integer n.
(3) A[pn](k) ∼= Z/pnZ for every positive integer n.
(4) The formal completion A/0 of A along the zero point is a formal torus.
(5) The p-divisible group A[p∞] attached to A is an extension of an étale

p-divisible group of height g by a toric p-divisible group of height g.
(6) The σ-linear endomorphism on H1(A,OA) induced by the absolute Frobe-

nius of A is bijective, where σ is the Frobenius automorphism on k.
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Note that for an ordinary abelian variety A over a field K ⊃ Fp the Galois group
Gal(Ksep/K) acts on A[p]loc and on A[p]ét = A[p]/A[p]loc, and these actions need
not be trivial. Moreover if K is not perfect, the extension

0→ A[p]loc → A[p]→ A[p]ét → 0

need not be split; this is studied extensively in Section 2.
Reminder. It is a general fact that every finite group scheme G over a field K

sits naturally in the middle of a short exact sequence 0→ Gloc → G→ Gét → 0 of
finite group schemes over K, where Gét is étale and Gloc is connected. If the rank
of G is prime to the characteristic of K, then G is étale over K, i.e., Gloc is trivial;
e.g. see [60].

10.11. We recall the statement of a basic duality result for abelian schemes
over an arbitrary base scheme.

Theorem. (Duality theorem for abelian schemes, see [61], Theorem 19.1) Let
ϕ : B → A be an isogeny of abelian schemes. We obtain an exact sequence

0 → Ker(ϕ)D −→ At
ϕt

−→ Bt → 0.

An application. Let A be a g-dimensional abelian variety over a field K ⊃ Fp,
and let At be the dual abelian variety of A. Then A[n] and At[n] are dual to
each other for every non-zero integer n. This natural duality pairing identifies the
maximal étale quotient of A[n] (resp. At[n] with the Cartier dual of the maximal
subgroup of At[n] (resp. A[n] of multiplicative type. This implies that the Serre
dual of the p-divisible group A[p∞] is isomorphic to At[p∞]. Since A and At are
isogenous, we deduce that the maximal étale quotient of the p-divisible group A[p∞]
and the maximal toric p-divisible subgroup of A[p∞] have the same height.

10.12. Endomorphism rings. Let A be an abelian variety over a field K,
or more generally, an abelian scheme over a base scheme S. We write End(A)
for the endomorphism ring of A. For every n ∈ Z>0, multiplication by n on A
is an epimorphic morphism of schemes because it is faithfully flat, hence End(A)
is torsion-free. In the case S is connected, End(A) is a free Z-module of finite
rank. We write End0(A) = End(A) ⊗Z Q for the endomorphism algebra of A.
By Wedderburn’s theorem every central simple algebra is a matrix algebra over a
division algebra. If A is K-simple the algebra End0(A) is a division algebra; in that
case we write:

Q ⊂ L0 ⊂ L := Centre(D) ⊂ D = End0(A);

here L0 is a totally real field, and either L = L0 or [L : L0] = 2 and in that case

L is a CM-field. In case A is simple End0(A) is one of the four types in the Albert
classification (see below). We write:

[L0 : Q] = e0, [L : Q] = e, [D : L] = d2.

10.13. Let (A, µ)→ S be a polarized abelian scheme. As µ is an isogeny, there
exist µ′ and n ∈ Z>0 such that µ′·µ = n; think of µ′/n as the inverse of µ. We
define the Rosati involution ϕ 7→ ϕ† by

ϕ 7→ ϕ† :=
1

n
µ′·ϕt·µ, ϕ ∈ D = End0(A).
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The definition does not depend on the choice of µ′ and n; it can be characterized
by ϕt·µ = µ·ϕ†. This map † : D → D is an anti-involution on D.

The Rosati involution † : D → D is positive definite; for references see Propo-
sition II in 3.10.

Definition. A simple division algebra of finite degree over Q with a positive defi-
nite involution, i.e., an anti-isomorphism of order two which is positive definite, is
called an Albert algebra.

Applications to abelian varieties and the classification have been described by
Albert, [1], [4] [2], [3].

10.14. Albert’s classification. Any Albert algebra belongs to one of the
following types.

Type I(e0) Here L0 = L = D is a totally real field.

Type II(e0) Here d = 2, e = e0, invv(D) = 0 for all infinite v, and D is an
indefinite quaternion algebra over the totally real field L0 = L.

Type III(e0) Here d = 2, e = e0, invv(D) 6= 0 for all infinite v, and D is a definite
quaternion algebra over the totally real field L0 = L.

Type IV(e0, d) Here L is a CM-field, [F : Q] = e = 2e0, and [D : L] = d2.

10.15. smCM. We say that an abelian variety X over a field K admits suf-
ficiently many complex multiplications over K, abbreviated by “smCM over K”, if
End0(X) contains a commutative semi-simple subalgebra of rank 2·dim(X) over Q.
Equivalently: for every simple abelian variety Y over K which admits a non-zero
homomorphism to X the algebra End0(Y ) contains a field of degree 2·dim(Y ) over
Q. For other characterizations see [21], page 63, see [53], page 347.

Note that if a simple abelian variety X of dimension g over a field of character-
istic zero admits smCM then its endomorphism algebra L = End0(X) is a CM-field
of degree 2g over Q. We will use the terminology “CM-type” in the case of an
abelian variety X over C which admits smCM, and where the type is given, i.e.,
the action of the endomorphism algebra on the tangent space TX,0 ∼= Cg is part of
the data.

Note however that there exist (many) abelian varieties A admitting smCM
(defined over a field of positive characteristic), such that End0(A) is not a field.

By Tate we know that an abelian variety over a finite field admits smCM,
see 10.17. By Grothendieck we know that an abelian variety over an algebraically
closed field k ⊃ Fp which admits smCM is isogenous to an abelian variety defined
over a finite field, see 10.19.

Terminology. Let ϕ ∈ End0(A). Then dϕ is a K-linear endomorphism of the
tangent space. If the base field is K = C, this is just multiplication by a complex
matrix x, and every multiplication by a complex matrix x leaving invariant the
lattice Λ, where A(C) ∼= Cg/Λ, gives rise to an endomorphism of A. If g = 1,
i.e., A is an elliptic curve, and ϕ 6∈ Z then x ∈ C and x 6∈ R. Therefore an
endomorphism of an elliptic curve over C which is not in Z is sometimes called
“a complex multiplication”. Later this terminology was extended to all abelian
varieties.
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Warning. Sometimes the terminology “an abelian variety with CM” is used, when
one wants to say “admitting smCM”. An elliptic curve E has End(E) % Z if and
only if it admits smCM. Note that it is easy to give an abelian variety A which
“admits CM”, meaning that End(A) % Z, such that A does not admit smCM.
However we will use the terminology “a CM-abelian variety” for an abelian variety
which admits smCM.

Exercise 10.16. Show there exists an abelian variety A over a field k such that
Z $ End(A) and such that A does not admit smCM.

Theorem 10.17. (Tate) Let A be an abelian variety over a finite field.
(1) The algebra End0(A) is semi-simple. Suppose A is simple; the center of

End0(A) equals L := Q(πA).
(2) Suppose A is simple; then

2g = [L : Q]·
√

[D : L] ,

where g is the dimension of A. Hence: every abelian variety over a finite field
admits smCM. See 10.15. Moreover we have

fA = (IrrπA)
√

[D:L]
.

Here fZ is the characteristic polynomial of the Frobenius morphism FrA,Fq : A →
A, and IrrπA is the irreducible polynomial over Q of the element πA in the finite
extension L/Q.
(3) Suppose A is simple,

Q ⊂ L := Q(πA) ⊂ D = End0(A).

The central simple algebra D/L

• does not split at every real place of L,
• does split at every finite place not above p,
• and for v | p the invariant of D/L is given by

invv(D/L) =
v(πA)

v(q)
·[Lv : Qp] mod Z,

where Lv is the local field obtained from L by completing at v.

See [78], [79].

Remark 10.18. An abelian variety over a field of characteristic zero which admits
smCM is defined over a number field; e.g. see [77], Proposition 26 on page 109.

Remark 10.19. The converse of Tate’s result 10.17 (2) is almost true. We have
the following theorem of Grothendieck: Let A be an abelian variety over a field K
which admits smCM; then Ak is isogenous to an abelian variety defined over a finite
extension of the prime field, where k = K; see [62].

It is easy to give an example of an abelian variety (over a field of characteristic
p), with smCM which is not defined over a finite field.

Exercise 10.20. Give an example of a simple abelian variety A over a field K
such that A⊗K is not simple.
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10.21. Algebraization.

(1) Suppose we are given a formal p-divisible groupX0 over k withN (X0) = γ
ending at (h, c). We write D∧ = Def(X0) for the universal deformation
space in equal characteristic p. By this we mean the following. Formal
deformation theory of X0 is prorepresentable; we obtain a formal scheme
Spf(R) and a prorepresenting family X ′ → Spf(R). However, “a finite
group scheme over a formal scheme actually is already defined over an
actual scheme”. Indeed, by [17], Lemma 2.4.4 on page 23, we know that
there is an equivalence of categories of p-divisible groups over Spf(R),
respectively over Spec(R). We writeD(X0) = Spec(R), and corresponding
to the pro-universal family X ′ → Spf(R) we have a family X → D(X0).
We will say that X → Spec(R) = D(X0) is the universal deformation of
X0 if the corresponding X ′ → Spf(R) = D∧ = Def(X0) prorepresents the
deformation functor.

Note that for a formal p-divisible group X ′ → Spf(R), where R is
moreover an integral domain, it makes sense to consider “the generic fiber”
of X/Spec(R).

(2) Let A0 be an abelian variety. The deformation functor Def(A0) is prorep-
resentable. We obtain the prorepresenting family A → Spf(R), which is
a formal abelian scheme. If dim(A0) > 1 this family is not algebraizable,
i.e., it does not come from an actual scheme over Spec(R).

(3) Let (A0, µ0) be a polarized abelian variety. The deformation functor
Def(A0, µ0) is prorepresentable. We can use the Chow-Grothendieck theo-
rem, see [32], III1.5.4 (this is also called a theorem of “GAGA-type”): the
formal polarized abelian scheme obtained is algebraizable, and we obtain
the universal deformation as a polarized abelian scheme over D(A0, µ0) =
Spec(R).

The notions mentioned in (1), (2) and (3) will be used without further mention,
assuming the reader to be familiar with the subtle differences between D(−) and
Def(−).

10.22. Fix a prime number p. Base schemes and base fields will be of charac-
teristic p, unless otherwise stated. We write k or Ω for an algebraically closed field.
For the rest of this section we are working in characteristic p.

10.23. The Frobenius morphism. For a scheme S over Fp (i.e., p·1 = 0
in all fibers of OS), we define the absolute Frobenius morphism fr : S → S; if
S = Spec(R) this is given by x 7→ xp in R.

For a scheme A → S we define A(p) as the fiber product of A → S
fr←− S.

The morphism fr : A → A factors through A(p). This defines FA : A → A(p), a
morphism over S; this is called the relative Frobenius morphism. If A is a group
scheme over S, the morphism FA : A→ A(p) is a homomorphism of group schemes.
For more details see [35], Exp. VIIA.4. The notation A(p/S) is (maybe) more
correct.

Examples. Suppose A ⊂ AnR is given as the zero set of a polynomial
∑

I aIX
I

(multi-index notation). Then A(p) is the zero set of
∑
I a

p
IX

I , and A → A(p)

is given, on coordinates, by raising these to the power p. Note that if a point
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(x1, · · · , xn) ∈ A then indeed (xp1, . . . , x
p
n) ∈ A(p), and xi 7→ xpi describes FA : A→

A(p) on points.
Let S = Spec(Fp); for any T → S we have a canonical isomorphism T ∼= T (p).

In this case FT = fr : T → T .

10.24. Verschiebung. Let A be a commutative group scheme flat over a char-
acteristic p base scheme. In [35], Exp. VIIA.4 we find the definition of the “relative
Verschiebung”

VA : A(p) → A; we have: FA·VA = [p]A(p) , VA·FA = [p]A.

In case A is an abelian variety we see that FA is a faithfully flat homomorphism,
and Ker(FA) ⊂ A[p]. In this case we do not need the somewhat tricky construction
of [35], Exp. VIIA.4: since the kernel of the isogeny FA : A → A(p) is killed by
p, we can define VA as the isogeny from A(p) to A such that VA·FA = [p]A, and
the equality FA·VA = [p]A(p) follows from FA·VA·FA = [p]A(p) ·FA because FA is
faithfully flat.

Remark 10.25. We use covariant Dieudonné module theory. The Frobenius on a
group scheme G defines the Verschiebung on D(G); this we denote by V , in order
to avoid possible confusion. In the same way as “D(F ) = V” we have “D(V ) = F”.
See [67], 15.3.

Theorem 10.26. BB (Irreducibility of moduli spaces) Let K be a field, and
consider Ag,1,n ⊗K the moduli space of principally polarized abelian varieties over
K-schemes, where n ∈ Z>0 is prime to the characteristic of K. This moduli scheme
is geometrically irreducible.

For fields of characteristic zero this follows by complex uniformization. For
fields of positive characteristic this was proved by Faltings in 1984, see [27], at
the same time for p > 2 by Chai in his Harvard PhD thesis, see [8]; also see [28],
IV.5.10. For a pure characteristic-p-proof see [67], 1.4.

11. A remark and some questions

11.1. In 1.13 we have seen that the closure of the full Hecke orbit equals the
related Newton polygon stratum. That result finds its origin in the construction of
two foliations, as in [68]: Hecke-prime-to-p actions “move” a point in a central leaf,
and Hecke actions only involving compositions of isogenies with kernel isomorphic
to αp “move” a point in an isogeny leaf, called Hα-actions; as an open Newton
polygon stratum, up to a finite map, is equal to the product of a central leaf and
an isogeny leaf, the result 1.13 for an irreducible component of a Newton polygon
stratum follows if we show that Hℓ(x) is dense in the central leaf passing through
x.

In the case of ordinary abelian varieties the central leaf is the whole open
Newton polygon stratum. As the Newton polygon goes up central leaves get smaller.
Finally, for supersingular points a central leaf is finite (see Lemma 1.14) and an
isogeny leaf of a supersingular point is the whole supersingular locus.

In order to finish a proof of 1.13 one shows that Hecke-α actions act transitively
on the set of geometric components of the supersingular locus, and that any Newton
polygon stratum in Ag,1 which is not supersingular is geometrically irreducible, see
[14].
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11.2. Let D be an Albert algebra; i.e., D is a division algebra, it is of finite
rank over Q, and it has a positive definite anti-involution † : D → D. Suppose a
characteristic is given. There exists a field k of that characteristic, and an abelian
variety A over k such that End0(A) ∼= D, and such that † is the Rosati involution
given by a polarization on A. This was proved by Albert, and by Shimura over
C (see [76], Theorem 5). In general this was proved by Gerritzen [30]; for more
references see [64].

One can ask which possibilities we have for dim(A), once D is given. This
question is completely settled in characteristic zero. From properties of D one can
derive some restrictions on dim(A). However the question which dimensions dim(A)
can appear for a given D in positive characteristic is not yet completely settled.

Also, there is not yet a complete criterion for which endomorphism algebras
can appear in positive characteristic.

11.3. In Section 5, in particular see the proofs of 5.10 and 5.16, we have seen a
natural way of introducing coordinates in the formal completion at a point x where
a ≤ 1 on an (open) Newton polygon stratum:

(Wξ(Ag,1,n))
/x

= Spf(Bξ),

see the proof of 5.19. It would be nice to have a better understanding and inter-
pretation of these “coordinates”.

As in [58] we write

△(ξ; ξ∗) := {(x, y) ∈ Z | (x, y) ≺ ξ, (x, y) � ξ∗, x ≤ g}.
We write

B(ξ;ξ∗) = k[[Zx,y | (x, y) ∈ △(ξ; ξ∗)]].

The inclusion △(ξ; ξ∗) ⊂ △(ξ) defines Bξ ։ B(ξ;ξ∗) by equating to zero those
elements Zx,y with (x, y) /∈ ∆(ξ; ξ∗). Hence Spf(B(ξ;ξ∗)) ⊂ Spf(Bξ). We also have
the inclusion C(x) ⊂ Wξ(Ag,1,n).
Question. Does the inclusion △(ξ, ξ∗) ⊂ △(ξ) define the inclusion (C(x))/x ⊂
(Wξ(Ag,1,n))/x?

A positive answer would give more insight in these coordinates, also along a
central leaf, and perhaps a new proof of results in [58].

References

1. A. A. Albert, On the construction of Riemann matrices. I, Ann. of Math. (2) 35 (1934), no. 1,
1–28. MR 1503140

2. , A solution of the principal problem in the theory of Riemann matrices, Ann. of Math.
(2) 35 (1934), no. 3, 500–515. MR 1503176

3. , Involutorial simple algebras and real Riemann matrices, Ann. of Math. (2) 36 (1935),
no. 4, 886–964. MR 1503260

4. , On the construction of Riemann matrices. II, Ann. of Math. (2) 36 (1935), no. 2,
376–394. MR 1503230
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no. 1041 = Publ. Inst. Math. Univ. Strasbourg 7 (1945), Hermann et Cie., Paris, 1948.
MR 0027151 (10,262c)
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