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Abstract

Let ϕ : S → T be a surjective holomorphic map between compact Riemann surfaces.
There is a formula relating the various invariants involved: the genus of S, the
genus of T , the degree of ϕ and the amount of ramification. Riemann used this
formula in case T has genus zero. Contemporaries referred to this general formula
as ”Riemann’s theorem”. Proofs were given by Zeuthen and Hurwitz. We discuss
this formula in its historical context, and in modern generalizations.
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Introduction

In 1851 and in 1857 Riemann discussed (what we now call) Riemann surfaces and
holomorphic maps been them. One of the tools used is a formula which in case

ϕ : S −→ T

is a (possibly ramified) cover that relates the invariants degree(ϕ), genus(S),
genus(T ) and the ramification indices. As far as I can see Riemann used this in
case T has genus zero; see § 7 of [33], Theorie der Abel’schen Functionen; here
Riemann writes w−2n = 2(p−1), where n is the degree of a covering S → P1(C),
and w the number of simple branch points, and p = genus(S); see 1.1 below in
a more general case. I do not know a proof of this theorem by Riemann. That
formula was referred to by his contemporaries as the “Riemann theorem”. Proofs
and generalizations were given by Zeuthen, Hurwitz, Chasles, Cayley, Brill and
others.

We discuss various results in this direction. Where full proofs are easily avail-
able we will refer to the existing literature. Also we discuss the case of a ramified
cover of algebraic curves in positive characteristic, where a theorem inspired by
(RH) was proved by Hasse.

We discuss the Riemann-Hurwitz formula both in the case of Riemann surfaces
and of algebraic curves. Algebraic curves over arbitrary ground fields are discussed.
We indicate differences between the geometric and the arithmetic approaches in
two special cases, see 2.5 end 2.6.

Amongst others we describe a generalization made by Hasse of the Riemann-
Hurwitz formula, see 1.10. Curves in characteristic zero that admit a covering to
P1 ramified in at most three points are discussed in the Belyi theorem, 1.8; we
show that an analogous result does not hold in positive characteristic, see Section
7.

This paper is meant to indicate the enormous influence the “Riemann theorem”
had and still has in mathematics. Basically no new results are contained in this
note. This paper recalls basic facts in algebraic geometry, reflecting the influence
Riemann’s ideas have on our thinking.

Some notation and terminology. The characteristic of the based field is
supposed to be zero, with some exceptions, e.g. as in 1.10 and in Section 6. All
base field are supposed to be algebraically closed, unless otherwise specified. All
Riemann surfaces considered in this note will be compact (non-compact Riemann
surfaces are also very interesting, but that would lead us too far) and connected.
Algebraic curves will be complete, non-singular and (absolutely) irreducible (see
below for more explanation).

We will write k for an algebraically closed field, and K and κ for arbitrary
fields. Note that we use the terminology “cover” or “covering” for a holomorphic
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surjective map between Riemann surfaces, or a (separable, surjective) finite mor-
phism, that can be ramified (whereas in topology a covering usually means that
all fibers have the same cardinality). For a covering ϕ : C → D ramified in P , a
point P ∈ C with eP > 1 is called a ramification point and ϕ(P ) ∈ D is called a
branch point; see 3.2.

A p-group will be a finite group of order a power of a prime number p.

I thank the referee for careful treading and useful suggestions.

1 Results

Riemann surfaces and algebraic curves. We write S and T for Riemann
surfaces (for further conditions see Section 2) of genus g = gS = genus(S), respec-
tively g′ = gT = genus(T ); we write ϕ : S → T for a (possibly ramified) covering
of degree n = deg(ϕ). For ϕ(P ) = Q we write eP for the ramification index under
ϕ; note that eP > 1 happens only for a finite number of points on C; hence the
number δ(ϕ) :=

∑
P (eP − 1) is finite. We use analogous notation for algebraic

curves (for further conditions see Section 2) over a field of characteristic zero of
genus g = gS respectively g′ = gT and n = deg(ϕ : C → D).

Theorem 1.1 (Riemann-Hurwitz formula, characteristic zero, 1857, 1891).

2g − 2 = n·(2g′ − 2) + δ(ϕ); here δ(ϕ) =
∑
P

(ep − 1). (RH)

To be discussed in Section 4. For proofs see 4.1, 4.2, 4.3.

Exercise 1.2. Assume (RH) in the case of coverings of P1, respectively of P1(C),
and derive the general formula.

Correspondences. Let S ← Γ → T be a finite-to-finite correspondence with
n = deg(Γ → S) and n′ = deg(Γ → T ). Write β = δ(Γ→ S) and β′ = δ(Γ→ T ).
Analogously for a correspondence C ← Γ→ D.

Theorem 1.3 (Zeuthen formula, 1871).

β + n·(2g − 2) = β′ + n′·(2g′ − 2). (Z)

Exercise 1.4. Assume (RH) and give a proof for (Z).
Also: Assume (Z) and give a proof for (RH).

Theorem 1.5 (De Franchis, 1913). For a Riemann surface of genus g > 1, and
for an algebraic curve of genus g > 1 over an arbitrary field, the number of auto-
morphisms is finite.
See [7]; see [15], Exercise 5.1 in IV.5.

Theorem 1.6 (The Hurwitz bound, 1893). Let C be an algebraic curve over a
field of characteristic zero of genus g > 1. Then

#(Aut(C)) ≤ 84(g − 1). (HB)

See Exercise 4.6.
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The valence of a correspondence, see Section 5. We study a curve C over C.
Let Λ ⊂ C × C be a correspondence. Assume that no irreducible component of
Λ is contained in any of the vertical or horizontal fibers, and assume that, up to
linear equivalence on the surface C × C, there exists γ ∈ Z, called the valence of
Λ, such that

Λ ∼ a1C1 + b2C2 − γ·Δ,
where C1 is a vertical and C2 is a horizontal fiber; see [12], pp. 282-287; see [11],
16.1.5. This number γ, if it exists, is called the valence of the correspondence Λ.
See Section 5. In this case the degrees n1 and n2 of the two projections of Λ on
the first, respectively second factor of C × C are equal to

n1 = a1 − γ, n2 = a1 − γ.

We say P ∈ C(k) is a united point, or a coincidence, for Λ if (P, P ) ∈ Λ.

Theorem 1.7 (Chasles-Cayley-Brill, or the Cayley-Brill formula, 1864, 1866,
1873, 1874). The number of united points, counted with multiplicities, on an alge-
braic curve of genus g = genus(C) under Λ equals

n1 + n2 + 2γg. (CB)

http://en.wikipedia.org/wiki/Chasles-Cayley-Brill_formula
http://www.encyclopediaofmath.org/index.php
/Chasles-Cayley-Brill_formula

Theorem 1.8 (Belyi’s theorem). Let C be an algebraic curve over a field K of
characteristic zero. There exists a surjective morphism ϕ : C ⊗ k → P1

k branched
in at most three points if and only C can be defined over Q.
See [3], Th. 14 on page 129; see [4], pp. 2188-194; see [12], page 287; see [11],
16.1.5(e). For a proof see [41], pp. 70-73. We use the terminology:
Definition. Supose that C is given over K; we say C “can be defined over κ” if
there exists C′ over κ ⊂ K such that C⊗K k ∼= C′⊗κ k. Here k is an algebraically
closed field containing K.

Note that an analogue of Belyi’s theorem in positive characteristic does not
hold, see Section 7.

1.9. Positive characteristic. We consider curves C and D over an algebraically
closed field field k ⊃ Fp of positive characteristic (see Section 6 for details), and
ϕ : C → D a separable, finite (and hence surjective) morphism. For P ∈ C(k) we
define the ramification index ep and the different δP at P under (this separable,
finite morphism) ϕ : C → D; note that eP = 1 implies δP = 0 (more generally,
if eP is not divisible by p, then δP = eP − 1); note that if eP is divisible by p,
then δP ≥ eP . For a finite separable morphism we have eP = 1 for all but a finite
number of points in C; hence δ(ϕ) :=

∑
P δP < ∞. See Sections 2, 3 and 6 for

more details.
Note that ϕ : C → D is separable if the field inclusion k(C) ⊃ k(D) is separa-

ble, see [15], IV.2; note that a separable morphism can be ramified.
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Theorem 1.10 (Riemann-Hurwitz-Hasse formula, 1935).

2g − 2 = n·(2g′ − 2) + δ(ϕ); δ(ϕ) =
∑
P∈C

δP . (RHH)

See Section 6. For a proof see 4.3.
Remark. This formula also holds in characteristic zero, and in that case it reduces
to (RH), with δP = eP − 1 for every P ∈ C.

2 Riemann surfaces and algebraic curves

2.1. Riemann surfaces. A Riemann surface (in this note) will be a compact,
connected topological space, locally isomorphic with D = {z ∈ C | | z |< 1},
the “unit disk”, and where on overlapping charts the transition functions are
holomorphic. There are many textbooks on this topic, e.g. see [48].

As a topological space a Riemann surface S is a compact orientable real 2-
dimensional manifold S(top). Such topological spaces have been classified: an
orientable, real surface X can be obtained by attaching g “handles” to a sphere,
where g ∈ Z≥0; in this case we write genus(X) = g; any two such surfacesX and Y
with genus(X) = g = genus(Y ) are isomorphic as real manifolds; see [10], Chapter
17. This classification defines the number g, the genus of a Riemann surface:

genus(S) = genus(S(top)).

See 2.4. Warning, and Riemann was very well aware of this: for Riemann surfaces S
and T an isomorphism S(top) ∼= T (top) of real manifolds, equivalently genus(S) =
genus(T ), does not imply that S and T are isomorphic as complex manifolds.
Riemann studied this phenomenon, and he introduced the word “moduli” in 1857
for the number of essential parameters on which Riemann surfaces of the same
genus depend, see [33], page 120. It took us more than a century and many
publications before we could precisely pin down this idea in full generality, in the
terminology of moduli spaces for algebraic curves. In this note we will not discuss
the theory of moduli of algebraic curves.

For P ∈ S we write HS,P for the ring of germs of meromorphic functions on S
holomorphic at P . This is a local ring, and its maximal ideal mS,P is generated
by one element, say z = zP ∈ mS,P ; this element is unique up to multiplication by
a unit in HS,P ; such an element is called a uniformizer on S at P . After choosing
z we have an isomorphism between HS,P and the subring of all elements of C[[z]]
that are germs of convergent holomorphic functions in a neighborhood of P on S.

Let ϕ : S → T be a surjective, holomorphic map of Riemann surfaces, with
ϕ(P ) = Q. Let t = zQ be a uniformizer on T at Q and s = zP a uniformizer on S
at P . In this case the pull back of the function t to S satisfies

ϕ∗(t) = u·se,
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where eP = e ∈ Z>0 and u ∈ H∗
S,P is a unit. This was studied intensely by

Riemann and his contemporaries. It amounts to the fact that locally at P the
map ϕ can given by x → xe. This number e is called the ramification index of ϕ
at p. If ep > 1 we say the map ϕ is ramified at P ∈ S or we say that the map
ϕ is branched at Q ∈ T . The main topic of this note is a formula describing a
connection between the integers genus(S), and genus(T ) and

∑
P∈S(eP − 1).

At the end of the 19th century the word “monodromy” had two different meanings.
On page 90 of [33] we find one meaning: if no ramification appears a function
can be extended in a unique way, the function is “einänderig oder monodrom”.
In that time the “monodromy theorem” meant that prolongation of an analytic
function on a simply connected area the function is single-valued. The terminology
“monodromy group” or “monodromy substitution” was also used in Riemann’s
time, see [20], § 3. At present time the the term “monodromy theorem” is used in
two ways. One is the 19-th century notion. The other is the fact that eigenvalues
of a monodromy substitution are roots of unity; also or more general results in the
Grothendieck theory, are referred to by the term “monodromy theorem”.

2.2. Algebraic curves. Choose an arbitrary base field κ. An algebraic curve C
is an algebraic variety of dimension one defined over κ; we refer to [15], especially
Chapters I and IV for the theory. For theory over an algebraically closed field see
[38]. In this note we assume C to be absolutely irreducible, i.e. C⊗κ is irreducible,
non-singular and complete. Let us explain this last condition.

Complete algebraic varieties. For any algebraic variety we have the notion of
being complete, as e.g. introduced by Chevalley, [2], Chapter IV. For an algebraic
variety (defined over an arbitrary field) we consider the Zariski topology, see [15],
I.1; for an algebraic curve C an open set is either the empty set, or C with a finite
number of points removed. The notion of a complete variety V is explained in [15],
II.4; essentially it means that a morphism T ⊃ T \{x} → V can be extended to the
whole of T , where V is a complete variety, and T is an affine curve, non-singular
at x ∈ T . Here are some facts:

• Any closed subvariety of a complete variety is complete.

• Projective space Pn
κ for any n ∈ Z≥0 is an example of a complete variety.

• In particular any projective variety is complete.

• There exist non-singular, complete varieties that cannot be embedded into
a projective space, see [15], Appendix B, 3.4.1.

• However, any complete algebraic curve can be embedded into a projective
space. In fact any non-singular curve can be embedded into P3

κ and there
exist (many) algebraic curves (irreducible, nonsingular and complete) that
cannot be embedded into P2

κ.

• In particular, for algebraic curves the concepts “complete” and “projective”
are equivalent.
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Suppose V is an algebraic variety over C. The set of complex points on V , written
as V (C), is naturally endowed with the “complex topology”, much finer than the
Zariski topology if dim(V ) > 0. See [15] I.1 and Appendix B; see [43], Chapters
VII. VIII and IX; see [12]. We write V (an) for the complex variety V (C) with the
“classical” topology. It can be proved that:

V is complete as an algebraic variety if and only if
V (an) is compact as a complex variety;

see [43], VII.2, Exercise 2.

2.3. Equivalences of categories. Over an arbitrary algebraically closed field k
consider the following categories:

(ac) The category of (complete, non-singular, irreducible) algebraic curves over
k; as morphisms consider finite (hence surjective) morphisms.

(ff) The category of function fields in one variable over k; as morphisms consider
homomorphisms K → L, inducing the identity on k.

These two categories are (anti-)equivalent. This (anti-)equivalence is induced by
associating to C its function field k(C). A surjective morphism C → D induces a
k-homomorphism k(C)← k(D). Conversely for a function field the set of discrete
valuation, trivial on k can be given the structure of an algebraic curve. It is
essential to consider complete, non-singular, irreducible curves.

Over k = C as base field consider the following categories:

(RS) The category of (compact, connected) Riemann surfaces; as morphisms con-
sider finite (hence surjective) holomorphic maps.

(ac) The category of (complete, non-singular, irreducible) algebraic curves over
C; as morphisms consider finite (hence surjective) morphisms.

(ff) The category of function field in one variable over C. Morphisms are field
homomorphisms inducing the identity on the subfield C.

These three categories are equivalent. One of the ingredients: for an algebraic
curve C over C the set C(an) := C(C) with the “classical topology” is a Riemann
surface, and an algebraic morphism induces a holomorphic map. Conversely, every
compact Riemann surface S is algebraizable, i.e. there exists an algebraic curve C
with C(an) ∼= S, and this curve is unique up to a canonical isomorphism; moreover
a holomorphic map between compact Riemann surfaces is a morphism on the
algebraizations.

Note that an equivalent statement for non-compact Riemann surfaces is incor-
rect.

These results, and generalizations to higher dimensions (Lefschetz, Chow) is
completely understood, see [39]. For this theory for Riemann surfaces and algebraic
curves, see [10], Chapter 20. See [32], Lecture 1.
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This means that over C as base field many results for Riemann surface can be
phrased in their equivalent form for the related algebraic curves and conversely.

2.4. Definitions of the genus. We give various possible definitions; that these
are equivalent can be proved, but we do not give all relevant references.
(1) Suppose S is a (compact, connected) Riemann surface, or, equivalently, let C
be an algebraic curve over C, with C(C) = S the related Riemann surface. A
topological definition of its genus is given in 2.1.

(2) Suppose S as above. Consider a set of circuits on S, such that this surface cut
open along these is still connected. The maximum number of such cuts is called
the genus. For such considerations see [33], pp. 92-96. It is a nice exercise to show
this definition is equivalent to the one given above.

(3) Suppose S as above. Consider a triangulation, say with t0 vertices, t1 edges
and t2 triangles. Define g by consideration of the Euler characteristic:

2− 2g = t0 − t1 + t2.

On can show the number on the right hand side is independent of the triangulation
chosen.

In all topological considerations above we see that the topological surface S of
genus g > 0 can be constructed by considering a 2g-gon in R2, with sides

a1, b1, a
−1
1 , b−1

1 , · · · , ag, bg, a
−1
g , b−1

g ,

and identifying sides with orientation as indicated; see [10], page 239.

(4) Let S be as above, and consider the first homology group H1(S,Z). One shows
that this is a free Z-module and its rank equals 2g in case genus(S) = g. This can
be used as a definition for genus(S).

(5) Let S and C be as in (1), or let C be a non-singular, complete irreducible
algebraic curve over an algebraically closed field k of arbitrary characteristic. Let
D be a divisor on S or on C, i.e. a finite sum of points with multiplicities. Define
L(D) to be the set of meromorphic (respectively rational) functions such that
(f)−D is an effective divisor; here (f) is the divisor of f , the zeros with positives
multiplicities, and the poles with negative multiplicities.

Remark. On a curve C and the related compact Riemann surface C(C), the
definition of the space L(D) given in two ways amounts to the same.

It is a fact that L(D) is a finite dimensional vector space over k (or, over k =
C). The famous theorem by Riemann (starting an important aspect of algebraic
geometry) states, the Riemann inequality:

dimk(L(D)) ≤ deg(D)− g + 1 and equality holds for deg(D) ≥ 2g − 1.

We note that Riemann’s proof was based on Dirichlet’s principle, unproven at that
moment; therefore the proof was criticized, see [19], page 119 for a discussion. The
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exact meaning of the number dimk(L(D)) − (deg(D) − g + 1) was explained by
Roch in his PhD-thesis (1862) with Riemann as one of his advisors, see [34]. The
smallest integer g satisfying this inequality for every D can be used as definition
for genus(S).

(6) Let C be a non-singular, complete irreducible algebraic curve over an alge-
braically closed field k of arbitrary characteristic. Let ω be a differential on C.
We define the divisor (ω) in the following way. At a point P with local uni-
formizer t = tP we can write, locally, ω = fP ·dtP ; we write vP (ω) := vP (fP ) and
(ω) :=

∑
P vP (ω)·P (and this divisor is called a canonical divisor). With these

notation:
deg((ω)) = 2g − 2.

This can be used as definition of genus(C).

(7) Let C be an algebraic curve over an arbitrary field K (however with C ⊗ k
being non-singular, complete and irreducible). The sheaf of local rings on C is
written as OC . In sheaf cohomology open can study H1(C,OC). This is a finite
dimensional vector space over K, and

dimK

(
H1(C,OC)

)
= g.

This can be used as definition of genus(C).

(8) On a Riemann surface, or on a non-singular curve over a field K we consider
the sheaf Ω = Ω1

C of regular differentials. These played an influential role in the
study of Riemann surfaces from the beginning (e.g. in considerations about Abel
integrals). The space of sections Γ(C,Ω) is finite dimensional and we can define

genus(C) = g := dimK (Γ(C,Ω)) ,

sometimes baptized as the geometric genus. The fact that this definition amounts
to the same as the one given in (7) is part of the theory of Serre duality, see [40],
II.9 and II.10; see [15], III.7 and IV.1.

(9) A non-singular plane curve C ⊂ P2 of degree n has genus(C) = (n−1)(n−2)/2.
An analogous formula holds for singular plane curves, where we can define how
much the singularities contribute to the genus. Hence this method can be used to
define or compute the genus of any curve, as soon as we have a birational plane
model.

For a plane irreducible curve of degree n with d ordinary double points and
no other singularities the genus of the normalization equals genus(C∼) = (n −
1)(n − 2)/2 − d. One can show that any (complete, nonsingular) algebraic curve
over an algebraically closed field can be embedded into P3, and can be birationally
projected onto a plane curve with only ordinary double points as singular points.

All definitions of the genus given above agree. For an algebraic curve C over C

and the related Riemann surface the genus of C and the genus of C(C) are equal
(in any of the definitions above).
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We did not discuss the Euler characteristic of a non-compact Riemann surface,
and we did not discuss the “genus” of a singular curve.

Note that there are many cases of algebraic curves over a field K ⊂ C, not isomor-
phic over K as base field, but isomorphic once considered over C. Moreover for
an algebraic curve C over K, usually an analytic parametrization of C ⊗ C gives
little arithmetic information about C. We have seen in history that

Riemann surfaces in particular, and analytic manifolds in general give a lot of
information about the geometry of the related algebraic varieties.

However

for arithmetic questions and for number theory only the analytic theory is often
not enough;

we give just two (of the many) examples.

2.5. An example: Congruent Numbers. Suppose the base field is Q. For
every N ∈ Z>0 consider the elliptic curve EN defined over Q as the zeros (for
example over some algebraically closed field containing Q) of:

EN := Z(−Y 2 +X(X2 −N2)),

where we consider EN ⊂ P2
Q defined by the homogeneous equation

Y 2Z = X(X2 −N2Z).

The arithmetic of this elliptic curve (for arbitraryN) is hard to understand. These
curves play a crucial role in the theory of “congruent numbers”: an integer N ∈
Z>0 is called a congruent number if there exist

a, b, c ∈ Q>0, a2 + b2 = c2, N = ab/2;

i.e. if N is the area of a Pythagorean triangle with sides of rational length. This
problem, dating from a 10-th century Arabic manuscript (and possibly earlier),
is hard: is it now known whether there exists an effective algorithm that decides
for every N whether it is a congruent number; we can (easily) make a complete
(infinite) list of all congruent numbers, but relatively small integers may show up
“very late”; we have no bound on N telling you how long you have to wait before
you know the decision (if you want an exercise: try to decide whether N = 13
is a congruent number, the same for N = 23, both easy cases, and the same for
N = 157, a more difficult problem to do just by hand).

Take a, b, c,N in the formula above. Then

x :=
c2

4
, y :=

c·(b2 − a2)2

4
gives y2 = x3 −N2x;

we see that the presentation (a, b, c) showing that N is a congruent number de-
termines a rational point x, y on the elliptic curve EN . One can show that the
converse is true for (x, y) ∈ EN (Q) with x > 0 and y �= 0, and that:

#(EN (Q)) =∞ ⇐⇒ N is a congruent number.
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For details, see [27]. As J. Tunnell showed, depending on conjectures and non-
trivial results one can “solve” the congruent number problem, see [27], IV.4. This
methods gives conjecturally a finite procedure depending onN deciding whether N
is a congruent number or not. Using this method one easily shows that N = 157
indeed should be a congruent number. P. Monsky proved in 1990 by abstract
arguments, and D. Zagier proved by a direct verification that N = 157 indeed is
a congruent number, see [27], page 5, Figure I.3. This confirms the conjecture by
Tunell in this special case.

If N and M are square-free and different then EN �∼=Q EM , and the congruent
number problem may have very different answers for N and for M . However

(EN ⊗ C) ∼= (E1 ⊗ C) ∼= (EM ⊗ C) ;

Indeed, the substitution X = N ·ξ and Y =
√
N3·η transforms

(EN ⊗ C) into (E1 ⊗ C) = Z(−η2 + ξ(ξ2 − 1)).

We know every elliptic curve over C can be parametrized by the Weierstrass ℘-
function and its derivative; e.g. see [49], Chapter XX. We see that although this
parametrization is “the same” for all EN ⊗ C, it does not give enough arithmetic
information about the arithmetic of the curves EN over Q.

2.6. An example: FLT. Consider for any n ∈ Z≥2 the algebraic curve

Fn := Z(Xn + Y n − Zn) ⊂ P2
Q.

For n = 2 the curve F2 is a rational curve (a curve of genus zero). In fact, for any
t ∈ Z we obtain

t → [t2 − 1 : 2t : t2 + 1] = (
t2 − 1
t2 + 1

,
2t

t2 + 1
) ∈ Z(X2 + Y 2 − 1)(Q) ⊂ A2(Q);

in this way we see that the set of solutions to the equation X2 + Y 2 = Z2

{(x, y, z) ∈ Z3 | x2 + y2 = z2} is an infinite set.

The geometric fact that genus(F2) = 0 helps us to find a rational parametriza-
tion, and hence to find infinitely many solutions (and in fact all solutions) to this
diophantine equation.

The famous Fermat’s Last Theorem reads: for any n ∈ Z≥3

(x, y, z) ∈ (Z≥0)3, xn + yn = zn =⇒ xyz = 0,

i.e. there exist no non-trivial solutions to the Fermat equation for any n ≥ 3.
Why can’t we find a rational parametrization in this case? The Fermat curve Fn

is a non-singular plane curve of degree n and we therefore know that genus(Fn) =
(n − 1)(n − 2)/2; hence n ∈ Z≥3 implies genus(Fn) > 0 and hence there does
not exist a rational parametrization of Fn. We are tempted to use an analytic
parametrization: since Weierstrass and Poincaré we know this exists for every
Fn(C); however, suppose we a non-constant holomorphic (or meromorphic) map

ψ : C −→ Fn(C)

is given.
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How we can we decide what ψ(C) ∩ {(x, y, z) ∈ Z3 | xn + yn = zn} is?

We have seen in history that determining rational values of transcendental func-
tions is difficult. In the case of FLT no proof has been given along these lines.

In 1983 Faltings proved a conjecture by Mordell, 1922: any curve of genus at
least two defined over a number field has only a finite number of rational points
(geometry does give a partial answer); see [8]. In particular this shows that for

n ∈ Z>3, hence genus(Fn) = (n− 1)(n− 2)/2 ≥ 2,

we have #(Fn(Q)) < ∞. This is a geometric explanation why the case n = 2
and n > 3 are drastically different for FLT. However the geometry does not prove
the full strength of FLT. For example the curves defined by X5 + Y 5 = Z5 and
X5 + Y 5 = 33·Z5 have different sets of non-trivial solutions over Q, though these
two curves are isomorphic over C.

FLT was proved by Andrew Wiles in 1995. G. Frey suggested in 1985 to consider
for any possible non-trivial solution xn + yn = zn in non-zero integers, the elliptic
curve Ex,y,z defined by U2 = V (V − xn)(V + yn); this curve has weird arithmetic
properties (contradicting conjectures and experimental feelings about such curves):
such a curve should not exist for solutions to Fp for p ≥ 5 (and FLT would follow).
In fact a rational parametrization of this curve Ex,y,z by a modular curve (the
Shimura-Taniyama-Weil conjecture, proved by Wiles in this case) leads to a proof
that an elliptic curve with such arithmetic properties does not exist; hence the
hypothetical solution (x, y, z) tot he Fermat problem does not exist. We see, finally,
we did not us any parametrization of Fn, but via Ex,y,z and a parametrization by
a modular curve, a key tot this big secret was found. Along these lines after three
and a half century FLT was proved to be correct. For references, for the history
and for many details see [5].

Conclusion. We have seen that compact Riemann surfaces and complete non-
singular algebraic curves over C “are the same”.

Geometric information about C(C) gives some arithmetic information about a
curve C defined over a field K ⊂ C.

Curves C and D defined over a field K ⊂ C, though isomorphic as curves
considered over C, or giving isomorphic Riemann surfaces C(C) and D(C), may
have very different arithmetic properties as curves over K.

2.7. Resolution of singularities. For a variety V over a field K (say V is
complete, but possibly singular), one tries to find a morphism V ′ → V , that is an
isomorphism on a dense Zariski open sets

V ′ ⊃ U ′ ∼−→ U ⊂ V
and such that V ′ is regular (= non-singuar) and complete. If this is the case we
say resolution of singularities holds for V . Over K = C this was a long time
an outstanding open problem, finally solved by Hironaka [18]; also see [17] for
references and discussions. Over fields of positive characteristic this problem in its
general form is still unsolved.
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One can weaken the problem by requiring U ′ → U to be finite and surjective;
in this case the morphism V ′ → V is called an alteration. A. J. de Jong proved
in [22] that for any (complete) V over any field there exists an alteration V ′ → V
with V ′ complete and nonsingular. This theorem has many applications (in cases
where resolution of singularities is still not known).

We say an algebraic variety is normal if all local rings are integrally closed. There
exist normal surface that are singular. Every normal algebraic curve over a perfect
field is non-singular (more generally: the singular set of a normal variety has
codimension at least two). Hence the problem of resolution of singularities (over
an arbitrary perfect base field) for algebraic curves is solved by the normalization
process.

Extending morphisms. Let V be a normal variety, and let ψ : V · · · → Pn be a
rational map to a projective space. Then there exists a closed set T ⊂ V such that
every irreducible component of T has codimension at least two in V , and there
exists a morphism

ψ′ : V \ T −→ Pn

realizing ψ, see [43], II.3.1, Theorem 3 and II.5.1, Theorem 3. In particular:

for a non-singular algebraic curve V = C any ψ′ : U → Pn

can be extended tot a morphism C → Pn.

See [43], II.3, Corollary 1 of Th. 3; see [15], Proposition I.6.8. We will use this
below by just giving a morphism on a dense open subset of a non-singular curve.
For an algebraic curve the concepts “normal” and “non-singular” are these same.
Hence, in particular, for non-singular algebraic curves C and D over a field K the
following are equivalent:

• The curves C and D are isomorphic.

• There is an isomorphism C ⊃ U ∼−→ U ′ ⊂ D for non-empty open sets U ⊂ C
and U ′ ⊂ D.

• There is a K-isomorphism K(C) ∼=K K(D).

See [15], I.6.12.

In several of the statements above, conditions imposed earlier, are necessary. Sin-
gular curves having isomorphic function fields need not be isomorphic; non-singular
algebraic surfaces having isomorphic function fields need not be isomorphic.

Let C be an algebraic curve over a field κ. Let P ∈ C(κ). Suppose the local ring
OC,P is a normal local ring (i.e. C is non-singular at P ). In this case the maximal
ideal mC,P is generated by one element, i.e. there exists

s = sP ∈ mC,P such that mC,P = OC,P · s,
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just as we saw in the case of Riemann surfaces. Such an element s = sP will be
called a uniformizer on C at P ; compare with 2.1.

In this case we obtain an isomorphism

κ[[s]] ∼−→ (OC,P )/P ;

this last ring is the completion of the local ring OC,P , i.e.

(OC,P )/P = proj.lim.i OC,P /m
i
C,P .

Note the analogy with the theory of Riemann surfaces, where HS,P ⊂ C[[z]] is the
ring of convergent power series.

For a complex analytic analogue for the extension property but now in the case of
mappings of Riemann surfaces, see [10], Proposition 19.9.

2.8. The Lefschetz principle. Note that studying algebraic curves over an al-
gebraically closed field k of characteristic zero “amounts to the same” as studying
algebraic curves over C. More generally, loosely speaking, true (geometric) state-
ments in algebraic geometry over C are also true for algebraic varieties over an
algebraically closed field k ⊃ Q. See [36], see [13], Exp. XII, XIII. The essential
argument is given by the fact that an algebraic variety over k is defined over a field
k′ ⊂ k of finite type over Q. After choosing an embedding k′ ⊂ C we can start
making comparisons. One of the examples: topology computes the (arithmetic)
fundamental group of an algebraic curve over k = k, see [13], Exp. XIII, Cor.
2.12.

3 Ramification

3.1. We consider a surjective holomorphic map ϕ : S → T of Riemann surfaces,
or a surjective morphism ϕ : C → D of algebraic curves over some field k. For
P ∈ S, or for P ∈ C(k) we write ϕ(P ) = Q. We write s = tP for a uniformizer at
P and t = tQ for as uniformizer at Q. There exists e = eP ∈ Z>0 such that

ϕ∗(t) = u·se;

here u is a unit at P , i.e. u ∈ H∗
S,P in the case of Riemann surfaces, respectively

u ∈ O∗
C,P in the case of algebraic curves.

In the case of Riemann surfaces a ramification of index e implies that ϕ locally at
P → Q can be given by se ←� t, a ramified map on a unit circle. In the case of
algebraic curves over κ the homomorphism OC,P ← OD,Q induces κ[[s]] ← κ[[t]],
which can be given by a change of parameters, if necessary, by se ←� t.

3.2. Definition. We say that ϕ is ramified at P if eP > 1; if so, we say that P
is in the ramification locus of ϕ and we say Q is in the branch locus of ϕ.
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4 The Riemann formula, the Hurwitz theorem

In consideration below we use freely the various definitions of the genus (and one
can argue at various places what the definition is, and what the proved results are
for the various concepts introduced).

4.1. A topological proof of (RH). By the equivalence 2.3 we see proving (RH)
for compact Riemann surfaces amounts to the same as proving (RH) for complete,
non-singular irreducible algebraic curves over k = C under the equivalence S =
C(C); here we use that in this case genus(S) = genus(C). Note indeed that the
definition of eP for ϕ(P ) = Q give the same in both cases.

Hurwitz in his paper [20] on page 338 states the result (RH) for a (ramified)
covering F → Φ; on pp. 375/376 of that paper Hurwitz gives a proof by writing
these Riemann surfaces in question as a union of simply connected areas, where
the branch points and the ramification points are on the boundaries, and by explic-
itly connecting the Euler characteristics of F , of Φ and the number W , properly
defined, in our notation W =

∑
P (eP − 1).

Here is the argument. Let ϕ : S → T be a surjective, finite morphism of degree n
of Riemann surfaces. Chose a triangulation of T such that every branch point of
ϕ is a vertex in this triangulation. Write

m0, m1, m2 for the number of vertices, edges, respectively triangles

in this triangulation of T . Pull back by ϕ this triangulation to S, and write
m′

0, m′
1, m′

2 for the number of vertices, edges, respectively triangles on S. We
know:

2− 2gT = m0 −m1 +m2, and 2− 2gS = m′
0 −m′

1 +m′
2.

We note that m′
1 = n·m1 and m′

2 = n·m2. Above a branch point Q the number
of points on S equals

#(ϕ−1(Q)) = n−
∑

ϕ(P )=Q

(eP − 1); hence m′
0 = n·m0 −

∑
P∈S

(eP − 1).

From these equalities (RH) follows.

Remark. In papers by Riemann devoted to this topic we find the formula (RH)
as a tool, but I do not see a proof. Moreover Riemann considers covers of a
rational curve, and I do not know whether Riemann was aware of the formula
(RH) in case of a cover S → T of an arbitrary Riemann surface T . In the paper
[20] we find a proof for (RH) in the general situation of Riemann surfaces. In
a paper by Zeuthen [51] we find (Z), which implies (RH). Hence I think a good
terminology is either “the Riemann-Hurwitz formula”, or “the Riemann formula
and the Hurwitz theorem”, but also the “Riemann-Zeuthen-Hurwitz formula”, or
the “Zeuthen-Hurwitz theorem” can be used.
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Remark. In a footnote on page 150 of [51] the author refers to his paper in the
Comptes Rendus de l’Académie des Sciences, Vol. 52 (1861), page 742. However
on that page in that volume there is no paper by Zeuthen (note that Zeuthen
passed his Masters degree in 1862). Also Zeuthen refers to a proof of “Riemann’s
theorem” by E. Bertini. For a description of Zeuthen’s work on enumerative
geometry, see Kleiman, [24].

4.2. An analytic proof of (RH). In [12], pp. 216-219 we find a proof of (RH) for
Riemann surfaces, using the Gauss-Bonnet formula and topological considerations.
As we indicated in the previous subsection this also proves (RH) for complete, non-
singular irreducible algebraic curves over k = C.

4.3. An algebraic proof of (RH) and of (RHH). We remind the rear that
(RHH) stands for the Riemann-Hurwitz-Hasse formula, v laid for algebraic curves
in arbitrary characteristic. We consider algebraic curves and a separable surjective
morphism ϕ : C → D defined over an algebraically closed field k. Ramification,
the ramification index eP and the different δP at a point P ∈ C(k) are defined
as in Section 3 and in 6.1. Details can be found in [15], IV.2. For a curve X one
defines a canonical divisor KX . In our situation one can prove:

KC ∼ ϕ∗(KD) +R,

where
R =

∑
P∈C(k)

δP ·P,

see [15], Proposition IV.2.3. Also see [16], page 42. Also see [12], page 219 in case
k = C. Note that deg(KX) = 2·genus(X)− 2. From this (RH) and (RHH) follow;
here we use Section 6 in the case of RHH.

Exercise 4.4. Let k be a field of characteristic zero, and let C → P1 = D be
a (possibly ramified) covering defined over k. Then either this covering is an
isomorphism or the number of branch points in D is at least two.

See 7.3 for a counterexample in positive characteristic.

In exercises below the characteristic of the base field is arbitrary, unless otherwise
specified. For some exercises results in Sections 3, 4, 6 might be useful.

Exercise 4.5. Suppose genus(C) < genus(D). Show there does not exist a sur-
jective morphism ϕ : C → D.

Exercise 4.6. Use 1.1 and give a proof of the Hurwitz bound (HB) = 1.6. See
[15], Exercise 2.5 in IV.2.

Exercise 4.7. Show the Hurwitz bound is not sharp for every g (hint: show that
a curve of genus g = 2 does not admit an automorphism of order 7).

Find a curve of genus 7 over C with #(Aut(C)) = 504; see [28].
Show the Hurwitz bound is sharp for infinitely many values of g; see [29].
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4.8. Remark (The Klein quartic). Let K ⊂ C be a field containing Q(ζ4, ζ7);
notation: ζn = e2π

√−1/n ∈ C. Let C ⊂ P2
K be defined as the set of zeros of

X3Y +Y 3Z+Z3X ; this is a curve of genus 3. In this case #(Aut(C)) = 84·2 = 164.
In fact, in this case Aut(C) ∼= PSL(2,F7).

Exercise 4.9. Let p be a prime number and let C be a curve over a field of
characteristic p with 1 < genus(C) = g < p−1. Show that #(Aut(C)) ≤ 84·(g−1).

Exercise 4.10 (Roquette). See [35]. Let p ≥ 5 be a prime number and let C
be given by Y 2 = Xp − X (i.e. C is the complete, non-singular curve given
as the completion of this affine model) over Fp. Compute genus(C). Compute
#(Aut(C)), and note that this curve does not satisfy the Hurwitz bound.

4.11. Remark. For curves in positive characteristic an upper bound of #(Aut(C))
in terms of genus(C) exists, and has been given by B. Singh, 1974 and by H.
Stichtenoth, 1973; see [46], [37]. For examples and theory see [31].

5 The valence of a correspondence

Consider algebraic curves over C.

5.1. The valence γ = γ(Λ) of a correspondence Λ, if it exists, is defined by

Λ ∼ a1C1 + b2C2 − γ·Δ;

see [11], 16.1.5. A correspondence allowing a valence is said to be a non-singular
correspondence, see [45], p. 331 (confusing with the terminology that Λ ⊂ C × C
can be singular or non-singular). It can be proved that for a curve of genus g > 0
every correspondence that has a valence this is unique, e.g. see [12], page 284; see
[3], Th. 10 on page 125. For a generic curve of genus g > 0 every correspondence
does have a valence see [12], page 286.

The notion of a singular correspondence has studied by Abel, Hurwitz and
many others, see [45], pp. 331–348.

For a correspondence Λ ⊂ C ×C the valence is γ if for every P ∈ C the linear
equivalence class T (P ) + γ·P on C is independent of P ∈ C.

It seems Felix Klein was the first to observe that there exist algebraic curves
and a correspondence on C × C that does not possess a valence, see [25], [26],
[1]. For more references about correspondences see V. Snyder – Correpondences
on non-rational curves, Chapter VII in [45], pp. 166–196.

In S. Lefschetz – Singular correspondences between algebraic curves, Chapter
XVI in [45], pp. 331–348 we find another description of singular and non-singular
correspondences. Lefschetz defines a correspondence on C×C to be “singular” if it
poses restrictions on the Riemann Matrices of the curves, i.e. if the correspondence
cannot be extended to all deformations of the curves involved. In [12], Lemma on
page 285 we see that the definition given earlier, and this definition coincide for
C × C.
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The Chasles-Cayley-Brill, or the Cayley-Brill formula was formulated by Chasles
for a rational curve (1864), Cayley considered the formula for curves of arbitrary
genus (1866), and Brill proved this theorem (1873, 1874), see [3], page 129; see
[42], pp. 176, 183/184.

5.2. Exercises. (1) Suppose Λ ⊂ E × E is the graph of an automorphism ϕ of
an elliptic curve E over C such that ϕ �= ±1. Show that the valence of Λ does not
exist; see [12], p. 286.
(2) Suppose g ≥ 1, and let C be given as the complete, nonsingular curve over C

given by Y 2 = X2g+1 − 1. We define ϕ by

ϕ∗(X) = ζ·X, ϕ∗(Y ) = Y, ζ = e2π
√−1/(2g+1).

Show that the graph of ϕ does not admit a valence.

6 Algebraic curves in positive characteristic

6.1. Ramification and the different. We take notation ϕ : C → D and eP for
ϕ(P ) = Q as in Section 3. We write

ϕ∗(t) = u·se = βe·se +
∑
i>e

βi·si, u(P ) = βe; ϕ∗(t) ∈ O/P
C,P
∼= k[[s]];

here u is a unit at P , hence βe �= 0, and the sum is a formal, a priori infinite sum
(convergent in the case of Riemann surfaces).

As we assumed that ϕ is separable, there is at least one index i not a multiple
of p with βi �= 0. We define the different δP of ϕ at P as the value

δP := vP

(
∂

∂s
(ϕ∗(t))

)
.

Clearly δP = i− 1 where i is the smallest index i not divisible by p with βi �= 0.
In case eP is not divisible by p (or in case we are in characteristic zero, or in

case we consider Riemann surfaces) we have δP = eP − 1.
However if char(k) = p > 0 divides eP we have δP > eP − 1; in this case,

p = char(k) divides the ramification index eP , we say the covering is wildly ramified
at P . We will study several examples.

Theorem 6.2 (The Riemann-Hurwitz-Hasse formula, see Theorem 1.10). For
a separable, finite morphism ϕ : C → D of complete, nonsingular, irreducible
algebraic curves we have:

2g − 2 = n·(2g′ − 2) + δ(ϕ); δ(ϕ) =
∑
P∈C

δP (RHH).

See [16], in particular see page 42 for the different in the case of eP = p; for a
proof [15], IV.2.
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6.3. (a) Assume p = 2 and g ∈ Z>0. For g = 1 we define E = C by

E = Z(Y 2Z +X2Y +XZ2) ⊂ P2.

This is a supersingular elliptic curve, actually over an algebraically closed field of
characteristic two the unique one up to isomorphism.

More generally: Assume p > 0 is a prime number and C given by

C = Z(XpY + Y pZ + ZpX)

over a field of characteristic p. This curve is non-singular of genus p(p − 1)/2.
Consider the map [x : y : 1] → x; this is the projection with center [0 : 1 : 0] on
the X-axis. This extends to a morphism ϕ : C → D = P1, a covering of degree p
with

ϕ(P ) = Q = (x = 0 : z = 1), P = [0 : 0 : 1], with eP = p,

and

ϕ(P ′) = Q′ = (x = 1 : z = 0), P ′ = [0 : 1 : 0] with eP ′ = p− 1.

At P the function y is a local parameter on C and x is a local parameter on P1,
and

x ∼P yp + yp2+1 + h.o.t.; hence δP = p2;

here ∼P stand for: up to unit in P and h.o.t. means “higher order terms”. Clearly
δP ′ = eP ′ − 1 = p− 2. This checks with the Rieman-Hurwitz-Hasse formula:

2gC −2 = p(p−1)−2 = p·(gD−2)+ δ(ϕ) = p·(−2)+ δP + δP ′ = −2p+p2 +p−2.

(b) Hyperelliptic curves in characteristic 2. For g ∈ Z>1 we define C by a
covering by two open sets:

U0 = Z(Y 2 + h0(X)Y + r0(X)) ⊂ A2, U∞ = Z(η2 + h∞(ξ)η + r∞(ξ)) ⊂ A2,

with identification on U0 ∩ U∞, given by x �= 0 and ξ �= 0, by the transformation

Y =
η

ξg+1
, X =

1
ξ
.

The polynomials involved are submitted to:

deg(h0(X)) = g + 1, 0 < deg(r0(X)) ≤ 2g + 2,

and
h∞(ξ) = ξg+1h0(

1
ξ
), r∞(ξ) = ξ2g+2r0(

1
ξ
);

we assume that for every β ∈ k with h0(β) = 0 we have r0(β) = 0 and (X − β)2

does not divide r0(X). Let us write

r0(X) =
∏

(X − βi)di for mutually different βi,
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and Pi = (x = βi, y = 0). We write ϕ : C → P1 for the projection on the X-axis.
We see:

genus(C) = g;
∑

βi = g + 1, δPi = 2βi; indeed 2g − 2 = 2·(−2) +
∑

δPi .

6.4. Remark. Suppose ϕ : C → D and ψ : B → D are given, with degree(ϕ) =
degree(ψ) and where all ramification indices of ϕ are the same as those for ψ.
These data do not imply that C and B have the same genus (if δ(ϕ) �= δ(ψ)).

Here is an easy example. Let C be given as zeros of Y 2 + X2Y + X3 + X (and
then complete and normalize) over a field of characteristic 2. It is clear that C
is an elliptic curve. We define ϕ : (x, y) → x. This is a double cover C → P1,
branching is only at x = 0, with P = (0, 0), and eP = 2 and δP = 4. Indeed
2g − 2 = 2·(−2) + 4 yields g = 1.

Choose any h ∈ Z>1 and defineD by Y 2+Xh+1Y+X2h+1+X , and ψ(x, y) = x.
At the point R = (0, 0) ∈ D we have eP = 2 and δP = 2h+ 2, and genus(D) = h.
In this example many numerical values are the same (excepts the differents), but
genus(C) = 1 < genus(D) = h.

Many more examples can be given, in any positive characteristic.

7 An equivalent of Belyi’s theorem ?

7.1. We have seen that an algebraic curve C given over C that admits a covering
C → P1 branched in at most three points actually can be defined over Q (Belyi’s
theorem), see Theorem 1.8. Can this be generalized to fields of arbitrary charac-
teristic? We see that Belyi knew this was not the case: see [9], footnote (3) on
page 3. In this section an algebraically closed field k of characteristic p > 0 will
be fixed. Note that k need not be an algebraic closure of a finite field.

7.2. Proposition. Every curve C of genus at least one over a field k ⊃ Fp admits
a covering C → P1

k branched in precisely one point in P1
k.

See [23], pp. 91/92 and [50], Corollary 3 on page 715.
For a proof we first explain two examples.

7.3. Example (Artin-Schreier). For every two different points P �= P ′ on P1

there exists a degree p covering

ϕ : P1 → P1, ϕ(P ) = ϕ(P ′)

branched in exactly one point different from ϕ(P ).
After a coordinate change, if necessary, we assume

P = [a : 1], P ′ = [b : 1] ∈ C = P1(k), with a �= b.

Consider

ϕ : C = P1 → P1 = D, ϕ([s : 1]) := [sp − βs : 1], β �= 0.
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This morphism, extended to the whole P1, is unramified for every [s : 1]; further
ϕ(∞) = ∞, where ∞ = [1 : 0] is a ramification point (the unique one) and
ϕ(∞) =∞ is the branch point of ϕ. Moreover if

β =
ap − bp
a− b then ϕ(P ) = ϕ(P ′).

This is the desired example.
We note the ZHH formula is satisfied: in projective coordinates [S : U ] on

C = P1 and [T : Q] on D = P1 the transformation ϕ is given by

Sp

Up
− β SU

p−1

Up
=

T

W
;

substituting S = 1, and T = 1 we obtain the morphism on a chart near ∞:

W =
Up

1− βUp−1
; then W ∼ Up(1 + βUp−1) + · · · = Up + βU2p−1 + · · · .

We see δ(ϕ) = δ∞ = 2p− 2. This fits into ZHH:

−2 = −2·p+ δ(ϕ).

7.4. Example. see [23], pp. 91/92. For P = [0 : 1] ∈ C = P1(k) there exists a
morphism

ϕ : C = P1 → P1 = D, ϕ(P ) =∞ = ϕ(∞),

of degree deg(ϕ) = p+ 1,
non-ramified on P1 − {∞}, in particular eP = 1 and
ramified of degree p at ∞ → ∞.

We give the morphism by

s → sp +
1
s
,

and extend to C = P1 → D. Clearly this map is unramified on P1 − {∞}, and
ϕ(P ) =∞.

Indeed we can compute:

Sp+1

SUp
+
Up+1

SUp
=

T

W
, W ∼ Up − U2p+1, e∞ = p,

which gives δ(ϕ) = δ∞ = 2p+ 1− 1 = 2p. In this case RHH reads:

−2 = −2·(p+ 1) + δ(ϕ).

Using these examples we show that an equivalent of Belyi’s theorem does not hold
in positive characteristic.

7.5. Proof of Proposition (7.2). Suppose C over k given; assume genus(C) > 0.
We choose any separable, finite morphism

ϕ1 : C → D1 = P1;
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let P1, · · · , Pr ∈ D1(k) be the branch points of ϕ1. We perform a linear transfor-
mation, if necessary, to achieve Pr =∞. Using 7.3 inductively we construct

C → D1 → · · · → Dj

such that C → Dj branches at ∞ and at at most 1 ≤ r − j points; after at most
r − 2 steps we arrive at C → D′ = P1 branching at ∞ and possibly at one other
point. We finish by 7.4, constructing

C −→ D′ = P1 −→ D′′ = P1

where C → D′′ is branched only at ∞. This finishes the proof of 7.2.

7.6. In [50] we find Corollary 3 on page 715: For any curve X of genus ≥ 2
over a field k ⊃ Fp there exists a finite set S ⊂ X(k) and a finite etale cover
X \ S → P1

k \ {∞}. This also proves 7.2.

Exercise 7.7. For every k ⊃ Fp and every n ∈ Z≥p there exists a covering C → D
of degree n with at least one point of wild ramification.

8 Galois covers and wild ramification

8.1. Suppose ϕ : C → D is a (separable) cover of algebraic curves (non-singular,
irreducible and complete) over an algebraically closed field k. We define the Galois
closure B → C → D of this cover. One way is the following; we have a finite
separable extension of fields k(C) ⊃ k(D). Let L ⊃ k(D) be the Galois closure of
k(C)/k(D) in the sense of field theory; we define B → D as the normalization of
D in the field L.

We explain the procedure of constructing the Galois closure of a covering in ge-
ometric terms. Suppose ϕ : X → Y is a cover, with X irreducible. The fiber
product X ×Y X contains the diagonal

Δ = ΔX ⊂ X ×Y X,

and, say the projection on the first factor,

X ×Y X \ΔX =: Z → X

induces a cover of X . This is of degree one less than the degree of X → Y . Note
that Z → X is not branched at P ∈ X if ϕ(P ) ∈ Y is not a branch point of ϕ.
Repeating this process (taking an irreducible component of Z, etc.) we arrive at
a Galois cover. Note that we can determine precisely in every step geometrically
the ramification indices.

For the rest of this section we work over an algebraically closed field k of char-
acteristic p > 0. We have seen that for any curve in characteristic p > 0 there



The Riemann-Hurwitz Formula 589

exists a covering C → P1 branched in at most one point. Hence the Galois closure
B → C → P1 is a separable Galois cover, i.e. Γ ⊂ Aut(B) and

B → B/Γ ∼= P1,

that is branched in at most one point. Hence the previous section implies there are
“many” Galois covers of curves (in positive characteristic) branched in one point.

8.2. For an algebraic curve C we define the p-rank, written as f(C). One way
of doing this is to consider its Jacobian variety J = Jac(C), an abelian variety of
dimension equal to g = genus(C), and f = f(C) = f(Jac(C)) is given by

Ker
(
J

×p−→ J
)

(K) ∼= (Z/p)f .

We know 0 ≤ f ≤ g, and al possibilities show up for an appropriate choice of C.
Another way is using the Hasse-Witt matrix for C; we will not go into details

here.
Suppose ϕ : C → D is a separable finite cover. What is the relation between

f(C) and f(D) ?

Theorem 8.3. Let B → B/Γ = D be a Galois cover of algebraic curves in
characteristic p. Suppose Γ is a p-group (i.e., the order of Γ is a power of p). Then

f(C)− 1 = (#(Γ))(f(D) − 1) +
∑

P∈C(k)

(eP − 1).

Note the curious fact that the RHH formula involves the different at the ram-
ification points, however this formula on the p-ranks only uses the ramification
indices.

8.4. The case of p-covers. The theorem was proved for the case of etale Galois
covers of degree p by Shafarevich, see [44].

See [47], Theorem 4.1 for the case of (possibly ramified) Galois covers of degree
p. Note that in case #(Γ) = p and S is the set of ramification points in C(k) (and
note that ϕ maps the set of ramification points in this case bijectively onto the set
branch points) then

(f(C)− 1 + #(S)) = p· (f(D)− 1 + #(S)) .

Observation. A cyclic p-cover branched in exactly one point satisfies f(C) =
p·f(D).

The general case. For the general case of Galois covers by a p-group see [47],
Theorem 4.2; see [30]; see [6], Corollary 1.8. Also see [14] for the general formalism.

8.5. Observation. If ϕ : D → D/Γ = C is a Galois cover branched in precisely
one point and #(Γ) is a power of p and f(D) = 0 then f(C) = 0: indeed in this
case #(S) = 1, hence

∑
P∈C(k)

(eP − 1) = eP − 1 < #(Γ);
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hence

f(C)− 1 = (#(Γ))(f(D) − 1) +
∑

P∈C(k)

(eP − 1) = −#(Γ) + eP − 1 < 0.

8.6. In particular, let us take the situation of Proposition 7.2 with f(C) > 0, in
particular C → D = P1 having only one branch point. Let B → D be its Galois
closure. Because f(C) > 0 we conclude f(B) > 0, and we see that the Galois
group of B → D is not a p-group in this case.

8.7. Example. Let char(k) = 2, and let C be given as the plane curve

C = Z(Y 4 +X3Y +X2Y 2 +XY 2 +XZ3) ⊂ P2.

This is a non-singular quartic curve, hence genus(C) = 3. We project from the
center [0 : 1 : 0] onto the X-axis; this gives a degree 4 cover ϕ : C → P1 = D.
This morphism is totally ramified at P = [0 : 0 : 1].We see that this is the only
ramification point. Indeed, x ∼P y4 + y13 + h.o.t, and δ(ϕ) = δP = 12. The RHH
formula reads

2g − 2 = 4 = 4P ·(−2) + δ(ϕ) = −8 + 12.

We see that the lines given by Y = X + Z and by X = 0 are bitangents; hence
f(C) > 0. (Alternative argument: compute the Hasse-Witt matrix of C.) If ϕ
would be a Galois cover, we would have

0 < (f(C)− 1 + #(S)) = p· (f(D)− 1 + #(S)) = 0, because #(S) = 1,

a contradiction. We conclude that ϕ is not a Galois cover; the Galois closure
C∼ → P1 of ϕ : C → P1 has a Galois group that is not a p-group, because
f(C∼) > 0.

References

[1] A. Adler – Modular correspondence on X0(11). Proceedings of the Edinburgh
Mathematical Society 35 (1992), 427–435.
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.128.
7216&rep=rep1&type=pdf

[2] C. Chevalley – Fondements de la géométrie algébrique. Notes, Sécr. Math.,
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[26] F. Klein – Über gewisse Theilwerthe der Θ-Function. Math. Ann. 17 (1880),
565–574. http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.
1.128.7216&rep=rep1&type=pdf

[27] N. Koblitz – Introduction to elliptic curves and modular forms. Graduate
Texts in Mathematics 97. Springer-Verlag, New York, 1984.

[28] A. Macbeath – On a curve of genus 7. Proc. London Math. Soc. 15 (1965),
527–542.

[29] A. Macbeath – On a theorem of Hurwitz. Proc. Glasgow Math. Assoc. 5
(1961) 90–96.

[30] M. Madan – On a theorem of M. Deuring and I. R. Safarevic. Manuscriptia
Math. 23 (1977), 91–102.

[31] M. Matignon and M. Rocher – Smooth curves having a large automorphism
p-group in characteristic p > 0. Algebra Number Theory 2 (2008), 887–926.

[32] D. Mumford – Curves and their Jacobians. Univ. Michigan Press, 1976.

[33] B. Riemann, Gesammelte Mathematisch Werke. Dover Publications, 1985;
pp. 3–43: B. Riemann – Grundlagen für eine allgemeine Theorie der Funktio-
nen einer veränderlichen complexen Grösse. Inauguraldissertion, Göttingen
1851; pp. 88–142: B. Riemann – Theorie der Abel’schen Functionen. Journ.
reine angew. Math. (Crelle) 54 (1857), 115–155.
English translation: Bernhard Riemann, Collected Papers. Paperback,
Kendrick Press, 2004.
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[46] H. Stichtenoth – Über die Automorphismengruppe eines algebraischen Funk-
tionenkörpers von Primzahlcharakteristik I, II. Arch. Math. (Basel) 24 (1973),
527–544, 615–631.

[47] D. Subrao – The p-rank of Artin-Schreier curves. Manuscr. Math. 16 (1975),
169–193.

[48] H. Weyl – Die Idee der Riemannschen Fläche. Teubner, 1913.
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