
Abstract

This article presents a generalisation of the two main methods for obtaining class
models of constructive set theory. Heyting models are a generalisation of the Boolean
models for classical set theory which are a kind of forcing, while realizability is a de-
cidedly constructive method that has first been develloped for number theory by
Kleene and was later very fruitfully adapted to constructive set theory. In order to
achieve the generalisation, a new kind of structure (applicative topologies) is intro-
duced, which contains both elements of formal topology and applicative structures.
The generalisation not only deepens the understanding of class models and leads
to more efficiency in proofs about these kind of models, but also makes it possible
to prove new results about the special cases which were not known before and to
construct new models.
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1 Introduction

1.1 Models of Set Theory

Models of set theory have played an extremely important role and shaped this dis-
cipline for a long time. They greatly enhance our understanding of set theoretic
universes and furnish inspiration about many set theoretic principles as well as yield-
ing concrete independance and proof theoretic results.

Models which can be defined as class models within set theory itself proved to be of
particular interest and for classical set theory these are mainly the inner models and
forcing constructions [8] which have turned out not only to obtain the vast number
of noted independance results like the independance of the Continuum Hypothesis
and the Axiom of Choice but also to be very worthwhile subjects of study in their
own right.

It is reasonable to assume that for the same reasons why studying models of
classical set theory remains so fruitful, research about models of constructive set
theory can be of great potential benefit to this discipline.

Probably the most important constructions for class models of constructive set
theory are realizability models and Heyting-algebra valued models (which are similar
to forcing with Boolean Algebras). The previous have been explored by Rathjen
for CZF [10] (and before that by McCarty for IZF [9]) while the latter have been
detailed by Gambino [6]. In both cases, special attention needed to be payed due to
the predicativity of the background theory.

Aczel [4] noticed how realizability models and Heyting models for higher order
logic have a common generalisation in an impredicative context and suggested that
this might also work for set theories and also in a predicative context (i.e. CZF rather
than IZF).

This suggestion lead to the herein presented work and although the presented
solution may at first blush look quite different from Aczel’s generalisation for higher
order logic (for example, we use a new structure called applicative topology instead
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of Heyting algebras augmented by an application operation), many important ingre-
diences are actually the same.

This publication mainly draws from by Diploma thesis [13], supervised by Wilfried
Buchholz.

1.2 CZF

The constructive set theory this article is concerned about (although its results ex-
tend to various others) is CZF [5, 3], which has acquired a very prominent role among
constructive set theories. It uses intuitionistic logic with predicatively and construc-
tively acceptable variants of the axioms of Zermelo-Fraenkel set theory. The theory
will be briefly recapitulated during the following lines.

The basic axioms of Extensionality, Pairing, Union and Emptyset remain un-
changed as does Infinity.

Separation is only demanded to hold for bounded formulas1 to achieve of pred-
icativeness. So for a bounded formula Φ(x),

∀x∃y. y = {z ∈ x|Φ(z)}

This restricted scheme is called ∆0-Separation.
Replacement is replaced by the constructively stronger Strong Collection, an ax-

iom positing not only images of sets under functions (like Replacement) but under
total relations (multi-valued functions). It means that

∀x∈a∃y θ(x, y)

implies the existence of a set b with

∀x∈a∃y∈b θ(x, y) ∧ ∀y∈b∃x∈a θ(x, y)

Foundation is reduced to the scheme of Set Induction which is just the induction
principle for the ∈-relation.

Instead of the Powerset Axiom, CZF includes the weaker axiom of Subset Collec-
tion. It demands for every formula θ and for all A, B the existence of a C such that
for any u:

∀x∈A∃y∈B θ(x, y, u)→ ∃z∈C.(∀x∈a∃y∈z θ(x, y, u) ∧ ∀y∈z∃x∈a θ(x, y, u))

One of the most important applications of Subset Collection is that it entails the
class of all functions between two given sets to be a set.

So the full list of Axioms is: Extensionality, Emptyset, Pairing, Union, ∆0-
Separation, Strong Collection, Subset Collection, Set Induction.

2 Applicative Topologies

Generalising Heyting and realizability models compels to first generalise the algebraic
structures with which these models work, i.e. formal topologies2 and applicative

1Recall that a formula is called bounded in case it only contains quantifiers that are restricted, i.e.
∀a ∈ b or ∃a ∈ b

2Indeed, these are better suited in a predicative contexts than Heyting algebras themselves [6].



structures, also known as partial combinatory algebras or pca’s..
Recall that a formal topology (S,≤,C) consists of a poset (S,≤) together with a

covering relation C ⊂ S × ℘(S) which normally is a proper class. It needs to fulfill
the following axioms:

a ∈ p→ aC p

a ≤ b ∈ pC q → bC q

aC p, q → aC {b|∃c ∈ p, d ∈ q.b ≤ c, d}

Here pC q is to be understood as ∀x ∈ p.xC q.
Formal topologies are said to be set-presented if the relation C is given by a

function R : S → ℘(℘(S)) such that

aC p⇔ ∃u ∈ R(a) u ⊆ p

While formal topologies have the complexity of a class (due to C), set-presented
formal topologies only have the complexity of a set, as they can be seen to consist
only of S,≤ and R with C only as a defined notion.

It is interesting to study a definition weaker than the following where the formal
topology need not be set-presented. This yields relative class models of CZF without
Subset Collection — but as this article intends to study full CZF, these things are
better done elsewhere [13].

Definition 1. A applicative topology is a set-presented formal topology (S,≤
,C, R) equipped with a subset ∇ ⊆ S, two special elements k ∈ ∇ and s ∈ ∇ as
well as a partial binary operation ◦ called application. The following axioms need to
be satisfied:

1. ∀x ∈ p, y ∈ q xy↓→ (aC p ∧ bC q)→ ab↓ ∧abC {xy|x ∈ p, y ∈ q}
2. xy↓ ∧ x, y ∈ ∇ → xy ∈ ∇
3. ∀x, y ∈ S. kxy↓ ∧kxy C {x}
4. ∀x, y ∈ S sxy↓
5. ∀x, y, z ∈ S. ((xz)(yz)↓ ∨ sxyz ↓)→ (sxyz ↓ ∧ (xz)(yz)↓ ∧sxyz C {(xz)(yz)})
6. @e ∈ ∇ eC {}

Frames with a set presentation g where g is closed by meets and contains >3

yield applicative topologis where the application operation is just the meet, ∇ the
top element and the C-relation is defined as

aC p :↔ a ≤
∨
p

Applicative structures with discrete topology and ∇ = S also yield applicative
topologies. An example for applicative topologies which come neither from applica-
tive structures nor from formal topologies are Oosten’s ordered pca’s [7] with the

3If there is any set presentation, there is also one with these properties



minimal topology4 on them. The herein presented applicative topologies can be seen
as a generalisation of ordered pcas.

The applicative structures can be thought of containing both computational in-
formation (as realizability structures do) and information about different cases which
might happen (as Heyting algebras do). Those cases which are sure to happen resp.
those computations which we can trust are stored in ∇.

Having fixed such an S, we can talk about applicative terms t (consisting of free
variables and constants in S) and their inductively values tS as is usually done for
applicative structures.

Definition 2. 1. A closed term t denotes (t↓) if ∃a∈S tS = a.

2. A term t convinces (t!) if for all substitutions σ of elements of S for the free
variables, we have: t[σ]↓ → t[σ]S∈∇

3. Let t E t′ mean that if one of the terms denotes, then both do and tS C {t′S}.

The E-relation plays a similar role as the '-relation does for pcas, although it
requires more subtle a handling since it is only a partial order, not an equivalence
relation.

The most important feature of applicative structures is their combinatorical com-
pleteness, which applicative topologies cannot hope to match. But they come suffi-
ciently close for our purposes:

Lemma 1. Let t be an applicative term, v a variable. Then there is a denotating
applicative term λv.t for with the same free variables except v such that

(λvn.t)vn E t

If all constants from t convince, then so does λv.t. If v was free in t or t′ ↓, it follows

(λv.t)t′ E t[v := t′]

Proof. Use the definition of λvn.t by induction on t which is usually used for pca’s
[12]. It works for ordered pca’s [7] and it works here. q.e.d.

This enables us to prove a weaker form of the fixed point lemma:

Lemma 2. There is a convincing applicative term τ fix, such that

∀a∈S. τ fix[v1 := a] E a(τ fix[v1 := a])

Proof. The term τ fix = ((λv2.v1(v2v2))(λv2.v1(v2v2))) works. q.e.d.

Also, applicative topologies contain elements p, l, r,D which serve as pairing, left
and right projections and case distinctions (between l and r) in the way one would
expect, e.g. Dlab E a instead of Dlab ' a [13].

When talking about applicative terms as if they were elements of S, we use the
convention of really talking about their values and implicitely add the demand that
they denote to every statement about them. For example, the statement ab! (for
a, b elements of S) would be taken to mean that ◦ is defined for (a, b) and yields an
element of ∇.

4aC p↔ ∃b ∈ p a ≤ b



3 Defining the Model

The underlying idea for the definition of the relative model is that we equip every set
not only with the information which its elements are, but also which computational
and factual information this elementhood entails. So each set in the class model V (S)
will have its elements valued by members of S. This only resulting in a change at the
surface, we demand that these valuations should be C-closed for technical reasons.
For p ⊆ S we shall write Cp for the set of b ∈ S which are covered by p.

Definition 3. V (S) is the smallest class such that

∀a ⊆ S × V (S). ∀(e, b)∈a a−1b = C(a−1b) → a ∈ V (S)

The proof in [13] that this definition works is just a simple alteration of Rathjen’s
proof in [10] and uses general facts about inductive definitions in CZF [11, 2].

The idea of the pairing is that the first component tells the reason for or computa-
tional content of the fact that the second component is in the set (as in realizability),
combined with the case in which it is in the set (as in Heyting models). These rea-
sons need be closed under C by our technical definition, yet when defining a set in
V (S), it often gets tiresome to manually close these sets. This makes the following
convention valuable:

Definition 4. For a set a ⊆ S × V (S), S(a) is defined to be the smallest superset of
a which is in V (S)

This is predicative and unique, as for such sets a

S(a) = {(e, y)|eC {f |(f, y) ∈ a}, y ∈ range(a)}

Note that this requires the separability5 of C.
Now the realizability relation can be defined by induction over formulae with

parameters in V (S):

Definition 5. For the elements of S, define e  φ (read as: e realizes φ) inductively:

1. e  ⊥ if eC ∅
2. e  x∈̇y if eC y−1x

3. e  x ∈ y if eC {f ∈ S|∃z ∈ Bi(y).lf  z∈̇y ∧ rf  x = y}
4. e  x = y if ∀z ∈Bi(x)∀f  z∈̇x. lef  z ∈ y und ∀z ∈Bi(y)∀f  z∈̇y. ref 

z ∈ x
5. e  φ ∧ ψ if le  φ ∧ re  ψ
6. e  φ ∨ ψ if eC {f ∈ S|(lf E l ∧ rf  φ) ∨ (lf E r ∧ rf  ψ)}
7. e  φ→ ψ if ∀f ∈ S.f  φ→ ef  ψ

8. e  ∀xφ(x) if ∀a ∈ V (S) e  φ[a]

5i.e. the fact that Cp is always a set, which is true for set-presented formal topologies



9. e  ∃xφ(x) if eC {f ∈ S|∃a ∈ V (S) f  φ[a]}

Note that for the atomic formulas, another inductive definition as in [10] is nec-
essary. The atomic formulas of type x∈̇y can be seen as only a technical convenience
to define the other cases more easily.

The above definition can relatively easily be seen as equivalent6 to a definition
where subtly altered clauses are used[13]. These alterations are often more convenient
and the herein used are

1. e  ∃x∈y φ(x) if eC {f ∈ S|∃(lf, a)∈y rf  φ[a]}
2. e  ∀x∈y φ(x) if ∀(f, a)∈y ef  φ[a]

Both [10] and [6] similarily use extra clauses for bounded quantification, which
makes it much easier to prove ∆0-Collection.

We define the truth value JφK of a formula as the class of its realizers and call
the formula realized ( φ) if it has a convincing realizer, i.e. a realizer in ∇. These
truth values are saturated with respect to the C-relation.

Theorem 1. Let φ be a closed formula of set theory with parameters in V (S). Then

CJφK = JφK

Proof. By induction over φ. The cases ⊥, ∈̇,∈,∨ and ∃ are trivial by definition.
For edification, the ∧ case will be done here. The details for the rest can be found
in [13] (the atomic a = b case seems the most complex).

Let φ be ψ ∧ θ and CJψK = JψK as well as CJθK = JθK. Consider an arbitrary
eC JφK, i.e.

eC {f ∈ S|lf  ψ ∧ rf  θ}

We have lf ↓ and rf ↓ for elements f of the right side7, thus

leC {lf ∈ S|lf  ψ ∧ rf  θ} ⊆ {f ∈ S|f  ψ}

reC {rf ∈ S|lf  ψ ∧ rf  θ} ⊆ {f ∈ S|f  θ}

As the truth values of ψ and φ are saturated with respect to C, we get

le  ψ ∧ re  θ

And hereby e ∈ Jψ ∧ θK. q.e.d.

6In the sense that the realized formulas are the same
7This is part of the convention above: When terms are treated like elements of S in some statement,

then this statement really talkes about their values and includes the statement that they denote.



4 The Consistency Results

To show that we get a relative model, we need consistency results: We need to know
that the realized formulae are closed under deduction in an intuitionistic predicate
calculus. Then we need to know that all axioms of the theory under consideration
(i.e. CZF) are realized. That the relized formulae don’t form a trivial theory is then
clear by the definition of  ⊥ (assuming CZF itself is correct).

Theorem 2. If Γ is a set of formulae with  φ for all φ ∈ Γ and Γ ` ψ in intu-
itionistic predicate logic, then  ψ. In particular, all intuitionistic tautologies are
realized.

Proof. See [13], Satz 57. The proof is lenghty but not overly illuminating and
mostly follows [9]. q.e.d.

Main Theorem 1. All axioms of CZF are realized.

This is done by showing realizedness for each axiom, possibily using equivalent
formulations for CZF in consideration of economy of time. By treating these new
models using applicative topologies in the same way as Rathjen’s [10] treats standard
realizability (e.g. recursively defining the -relation instead of the truth values J·K), it
is made possible to incorporate many ideas from [10] in our approach and a substantial
part of each proof for the consistency of the axioms is alike to the corresponding proof
of [10].

Some axioms are quite straightforward:

Lemma 3. 1. λv.v realizes ∀xy.∀z ∈ x z ∈ y ∧ ∀z ∈ y z ∈ x → z = x. This is
equivalent to extensionality.

2. p(pker)(pker) realizes ∀xy∃z. x ∈ z∧y ∈ z. This is equivalent to Pairing (given
∆0-Collection).

3. k(kpker) realizes ∀x∃y∀z ∈ x∀w ∈ z. w ∈ y. This is equivalent to the Union
Axiom (given ∆0-Collection).

4. e := τ fix[v1 := λvx.x(k(vx))] realizes ∀x((∀y∈xφ(y))→ φ(x))→ ∀xφ(x), This
is an arbitrary instance of ε-induction.

Proof.

1. Let x, y ∈ V (S) with e  ∀z ∈ x z ∈ y ∧ ∀z ∈ y z ∈ x. This implies le  ∀z ∈
xz ∈ y, and consequently ∀(f, z) ∈ x. lef  z ∈ y. In the same way we get
∀(f, z) ∈ x. ref  z ∈ x.

2. Sei x, y ∈ V (S). Sei z = S({(k, x), (k, y))}). Then we have pker  x ∈ z,
pker  y ∈ z and hereby

p(pker)(pker) ∈ {e|∃ze  x ∈ z ∧ y ∈ z}

Being an element, it is covered by this set which is what was to show.



3. Let x ∈ V (S) and let y = S({(k,w)|∃(e, (f, w)) ∈ y}). This entails

k(kpker)  ∀z∈x∀w∈z w∈y

as for (e, (f, w)) ∈ x we have k(kpker)ef E pker  w ∈ y because (k,w) ∈ y.
Consequently

k(kpker) ∈ {e|∃y.e  ∀z ∈ x∀w ∈ zw ∈ y}

Being an element, it is covered by this set.

4. Sei f  ∀x.∀y ∈ xφ(y)→ φ(x).
Let V (S)γ mean the class of those elements of V (S) whose rank is an element
of γ.
We show ef  φ(x) for all x ∈ V (S) by set-induction.
Assume this is known for all x ∈ V (S)β with β ∈ α and let x ∈ V (S)α. Then

ef E (λx.x(k(ex)))f
E f(k(ef))
 φ(x)

Note that k(ef)  ∀y ∈ xφ(y) by the induction hypothesis, as ef  φ(y) for all
y ∈ Bi(x).

q.e.d.

∆0-Collection is also not difficult, but requires a special consideration: Both in
realizability and in Heyting model theory, truth values of bounded formulae form sets
also in a predicative context. This is also true for this new kind of model if bounded
quantifiers are realized in the alternative way discussed above.

Lemma 4. Let φ be a formula. e := p(λxy.p(p(xy))er)(λx.p(p(lx)er)(rx)) realizes
∀x∃y. ∀z∈xφ(z)→ z ∈ y ∧ ∀z∈y. z∈ x∧ φ(z). This is ∆0-Collection.

Proof. Let x ∈ V (S). We need to show that

eC {e′|∃y.e′  ∀z ∈ xφ(z)→ z ∈ y ∧ ∀z ∈ y.z ∈ x ∧ φ(z)}

Actually, it will even be proved that e is an element of this set. The witnessing y
will be

y := S({(pfg)|(f, z) ∈ x, g  φ(z)})

This is indeed as set, as Jφ(z)K is a set for each z ∈ x[S] and x[S] is again a set.
For f  z∈̇x and g  φ(z) we have:

lefg E p(p(fg)er)
∈ {h|lh  z∈̇y, rh  z = z}

⊆ {h|∃z′.lh  z∈̇y, rh  z′ = z}
⊆ Jz ∈ yK



On the other hand, for f  z∈̇y, i.e. f = pgh with g  z∈̇x and h  φ(z) we get

l(rlf) E p(lx)er E pger  z ∈ x
r(rlf) E rx E h  φ(z)

q.e.d.

Infinity is a bit lengthy in detail [13], but in essence the same as in [10]. It
requires first implementing natural numbers n as n in the applicative topology and
then defining their interpretation n̄ in V (S) as S({(i, ī)|i ∈ n}). The interpretation
of the natural numbers can then be defined as S({(i, ī)|i ∈ ω}).

More difficulties occur with the higher axioms of CZF, namely Strong Collection
and especially Subset Collection. The technical aspects of their proof are greatly fa-
cilitated by allowing pairing into the syntax of the interpreted set theory, interpreting
(a, b) as the closure of {(l, a), (r, {(l, a), (r, b)})}. With this, we get

Lemma 5. Let φ be a formula. Then e := λx.p(λy.py(xy))(λy.y) realizes

∀a.∀x ∈ a∃yφ(x, y)→ ∃b.∀x ∈ a∃y ∈ b φ(x, y) ∧ ∀y ∈ b∃x ∈ a φ(x, y)

This is Strong Collection.

Proof. Let a ∈ V (S) and f  ∀x ∈ a∃yφ(x, y) which means

∀(g, x) ∈ afg C {h|∃yh  φ(x, y)}

The class on the right hand side needn’t be a set and remembering the convention
that covered by a class means covered by a subset of the class, we get

∀(g, x) ∈ a∃c.fg C c ∧ ∀h ∈ c∃y h  φ(x, y)

We want to collect these y in a set but would lose the information where the y come
from if we don’t include the information about g in the set. A good technical way
to store the information is collecting the (pg(fg), y) in some set Y dependant of g, x
and c:

∀(g, x)∈a∃c.fgCc∧∃Y.∀h∈c∃(pg(fg), y)∈Y h  φ(x, y)∧∀(g′, y)∈Y.g = pg(fg)∧∃h∈c h  φ(x, y)

To apply Strong Collection another time, this needs to be written in a slightly
different way:

∀(g, x)∈a∃Y.∃c.fgCc∧∀h∈c∃(pg(fg), y)∈Y h  φ(x, y)∧∀(g′, y)∈Y.g = pg(fg)∧∃h∈c h  φ(x, y)

We get the existence of a set B such that the following hold.

∀(g, x)∈a∃Y ∈B∃c.fgCc∧∀h∈c∃(pg(fg), y)∈Y h  φ(x, y)∧∀(g′, y).g = pg(fg)∧∃h∈c h  φ(x, y)



∀Y ∈B∃(g, x)∈a∃c.fgCc∧∀h∈c∃(pg(fg), y)∈Y h  φ(x, y)∧∀(g′, y).g = pg(fg)∧∃h∈ch  φ(x, y)

The set we wish to construct is essentially the union of the sets in B, but more
correctly we set

b := S({(g, y) ∈
⋂
B|y ∈ V (S)})

For this b, the following hold.

∀(g, x) ∈ a∃c.fg C c ∧ ∀h ∈ c∃(pg(fg), y) ∈ b h  φ(x, y)

∀y′ ∈ b∃y∃(g, x) ∈ a.y′ = (pg(fg), y) ∧ ∃c.fg C c ∧ ∀h ∈ c h  φ(x, y)

So indeed S(b) ∈ V (S) and we can rewrite the above to:

∀(g, x) ∈ afg C {h|∃(pg(fg), y) ∈ S(b) h  φ(x, y)}

∀(g′, y) ∈ S(b) g′ C {h|∃x.lh  x∈̇a ∧ rh  φ(x)}

This means that ef is an element of the class

{h|∃b ∈ V (S).h  ∀x ∈ a∃y ∈ S(b) φ(x, y) ∧ ∀y ∈ S(b)∃x ∈ aφ(x, y)}

In particular, ef is covered by this class, and this was what was to prove. q.e.d.

Lemma 6. Let φ be a formula. Then

i := λv.pk(p(λx.p(px(vx))(r(vx)))(λx.p(ly)(r(ry))))

realizes

∀a, b∃c∀u.∀x∈a∃y∈bφ(x, y, u)→ ∃d∈c.∀x∈a∃y∈dφ(x, y, u) ∧ ∀y∈d∃x∈aφ(x, y, u)

This is Subset Collection.

Proof. For a, b ∈ V (S) let

b̃ := {(g, d)|(l(rg), d) ∈ b} ∈ V (S)

For any d ∈ b̃[S]

eC b̃−1d⇒ l(re)C l(rb−1d) ⊆ b−1d⇒ (e, d) ∈ b̃

Thus b̃ ∈ V (S).
Using Subset Collection in the background theory, there exists a B ⊆ ℘(b̃) such

that for all (f, x) ∈ a, u ∈ V (S), e ∈ S and S ⊇ v ∈ r[S] the following implication
holds: If

∀j ∈ v∃(h, y) ∈ b̃.j = h ∧ (lh, x) ∈ a ∧ (l(rh), y) ∈ b ∧ r(rh)  φ[x, y, u]



then there is a b̃′ ∈ B for which ψ(f, x, u, v, e, b̃′) holds, where ψ is the conjunction
of the following two formulas:

∀j ∈ v∃(h, y) ∈ b̃′.j = h ∧ (lh, x) ∈ a ∧ (l(rh), y) ∈ b ∧ r(rh)  φ[x, y, u]

and

∀(h, y) ∈ b̃′∃j ∈ v.j = h ∧ (lh, x) ∈ a ∧ (l(rh), y) ∈ b ∧ r(rh)  φ[x, y, u]

Subset Collection now needs to be applied again and for each e ∈ S. It yields a
set Ce ⊆ ℘(B), such that for all u ∈ V (S) the following implication holds:

∀(f, x) ∈ a∃b̃′ ∈ B∃v ∈ r[S].pf(ef)C v ∧ φ(f, x, u, v, e, b̃′)

implies the existence of a B′ ∈ C with

∀(f, x) ∈ a∃b̃′ ∈ B′∃v ∈ r[S].pf(ef)C v ∧ φ(f, x, u, v, e, b̃′)

and
∀b̃′ ∈ B′∃(f, x) ∈ a∃v ∈ r[S].pf(ef)C v ∧ φ(f, x, u, v, e, b̃′)

Note that for each e ∈ S there exists such a set Ce, but the choice is not canonical,
which is to mean that there needn’t be a function which assigns such a set to each
e ∈ S, so the indexing may be seen as too suggestive. Nevertheless the important
thing works, namely that by Strong Collection there is a set C∗ such that for each
e ∈ S there is some set Ce in C∗ for which the implication above holds for all u ∈ V (S)
and all elements of C∗ are such an Ce for some element e ∈ S.

We would like to define

c = S({(k, S({(l, y)|∃b̃′ ∈ B′.(l, y) ∈ b̃′}))|B′ ∈
⋂
e∈S

Ce})

but as the relationship between the e ∈ S and their Ces isn’t functional, we can
only write

c = S({(k, S({(l, y)|∃b̃′ ∈ B′.(l, y) ∈ b̃′}))|B′ ∈
⋂
C∗})

Still, this set c is a witness for the instance of Subset Collection under consider-
ation.

To see this, take u ∈ V (S) and e  ∀x ∈ a∃y ∈ bφ(x, y, u). This means that for
all (f, x) ∈ a

∃v ∈ r[S].ef C v ∧ ∀j ∈ v∃(lh, y) ∈ b.j = h ∧ (lh, y) ∈ b ∧ rh  φ[x, y, u]

This in turn implies

∃v ∈ r[S].pf(ef)Cv∧∀j ∈ v∃(h, y) ∈ b̃.j = h∧(lh, x) ∈ a∧(l(rh), y) ∈ b∧r(rh)  φ[x, y, u]



Remembering our first application of the Subset Collection Scheme,

∃v ∈ r[S].pf(ef)C v ∧ ∃b̃′ ∈ B.ψ(f, x, u, v, e, b̃′)

So using the introduction rule for universal quantification, we arrive at

∀(f, x) ∈ a∃b̃′ ∈ B∃v ∈ r[S].pf(ef)C v ∧ φ(f, x, u, v, e, b̃′)

This is the hypothesis of one of the implications above, implying the existence of
a B′ ∈ C for which the following two formulae hold:

∀(f, x) ∈ a∃b̃′ ∈ B′∃v ∈ r[S].pf(ef)C v ∧ ψ(f, x, u, v, e, b̃′)

∀b̃′ ∈ B′∃(f, x) ∈ a∃v ∈ r[S].pf(ef)C v ∧ ψ(f, x, u, v, e, b̃′)

Taking b′ to be S({(l, y)|∃b̃′ ∈ B′.(l, y) ∈ b̃′}) and recalling that l(ef) E k we have
(l(ef), b′) ∈ c. It remains to show that

r(ie)  ∀x ∈ a∃y ∈ b′φ(x, y, u) ∧ ∀y ∈ b′∃x ∈ aφ[x, y, u]

Assume (f, x) ∈ a. The first of the two required properties of B′ implies the
existence of some v ∈ r[S] with pf(ef)C v and ψ(f, x, u, v, e, b̃′) for suitable b̃′ ∈ B′.
In particular this means that for each j ∈ v there exists (h, y) ∈ b̃′ such that

j = h ∧ (lh, x) ∈ a ∧ (l(rh), y) ∈ b ∧ r(rh)  φ[x, y, u]

So pf(ef) C {j|∃(j, y) ∈ b′ ∧ r(r(j))  φ[x, y, u]}. And thus the first part of the
required statement follows:

r(r(ie))f E p(pf(ef))(r(ef))  ∃y ∈ b′φ[x, y, u]

On the other hand, assume (g′, y) ∈ b′. This implies the existence of some b̃′ with
(g, y) ∈ b̃′ and g′ C b̃′−1y. We want to show that all g with (g, y) ∈ b̃′ fulfill

l(r(ie))g  ∃x ∈ aφ[x, y, u]

As truth values are closed with respect to C, this is then certainly also true for g′,
i.e.

l(r(ie))g′  ∃x ∈ aφ[x, y, u]

So if (g, y) ∈ b̃′ then the second of the two required properties of B′ implies the
existence of some (f, x) ∈ a such that

∃v ∈ r[S].pf(ef)Cv∧∀(h, y′) ∈ b̃′∃j ∈ v.j = h∧(lh, x) ∈ a∧(l(rh′), y) ∈ b∧r(rh)  φ[x, y, u]

One should note that only the second conjunct of ψ was needed here8. So if
(h, y′) := (g, y), this entails

(lg, x) ∈ a ∧ r(rg)  φ[x, y, u]

8I should like this opportunity to give my thanks to Nicola Gambino, who took the time to discuss with
me his consistency proof regarding Subset Collection for Heyting models, where a similar trick was used.



As desired, we conclude

l(r(ie))g E p(lg)(r(rg))  ∃x ∈ aφ[x, y, u]

q.e.d.

These lemmata prove the main theorem.

4.1 Conclusion and Outlook

It is always satisfying to be able to see two previously different entities as merely
different aspects of the same concept. But nevertheless the main hope in generalisa-
tions is for obtaining not only the vague feeling of new insights, but also new hard
results. Fortunately, these are available.

In [13], some minor new independance results were presented using applicative
topologies arising neither from pca’s nor from Heyting algebras and it may be hoped
that further ones could be found.

But besides finding new models, the more general framework also enables to
discover new facts about the already existing models. For example, [13] and [14]
describe how generalising Rathjens method to prove the absoluteness of the the
important regular extension axiom REA for standard realizability models makes it
possible to prove this absoluteness for the new models. This then automatically
shows REA to be absolute for Heyting models, which was not previously known,
although conjectured and taken to strengthen the position of REA as constructive
axiom [1] on the very conference where these results where presented.

The results stated above have been concerned with the theory of CZF and shown
to work for this theory. Of course the question about the scope of this method
for obtaining models of constructive set theories arises: Will it also work for other
theories?

The results from [13] show that they do work in many other set theories, although
axioms dealing with functions (like Replacement) give difficulties. Choice principles
can of course not be absolute in the general case, in fact one of the aims for develloping
forcing constructions (of which the herein presented machinery is a generalisation)
was just to find models where choice principles do not always hold, even if they
held in the background theory. But they are absolute for a large class of applicative
topologies.

Much attention has been dedicated to making these methods work in a predicative
setting. However, they still work in an impredicative setting. For example, when
using IZF in the background (one of the most prominent non-predicative set theories
with intuitionistic logic), V (S) proves to be a model of IZF again [13].

While these enlargements of the scope might lead to interesting future work, I
would intend to first delve into general absoluteness results and concrete models. This
requires finding new applicative topologies which don’t arise from formal topologies
nor from and which would lead to new, and hopefully interesting, independance
results.
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