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Abstract

In the paper “Extensional PERs” by P. Freyd, P. Mulry, G. Rosolini and
D. Scott, a category C of “pointed complete extensional PERs” and com-
putable maps is introduced to provide an instance of an algebraically compact
category relative to a restricted class of functors. Algebraic compactness is a
synthetic condition on a category which ensures solutions of recursive equa-
tions involving endofunctors of the category. We extend that result to include
all internal functors on C when C is viewed as a full internal category of the
effective topos. This is done using two general results: one about internal
functors in general, and one about internal functors in the effective topos.

The paper “Extensional PERs” by P.Freyd, P.Mulry, G.Rosolini and D.Scott [2]
identifies a reflective subcategory of the category of PERs, namely the category C
of pointed CEPERs – complete extensional partial equivalence relations, implicitly
over N – which is algebraically compact. Algebraic compactness ensures the existence
of solutions to recursive domain equations. In fact, for any functor F : Cop×C → C
there is an object X with an invertible arrow F (X;X) → X (see [1]).

One restriction limits the compactness of C: the functor F has to be realizable.
The category of PERs and its subcategory of pointed CEPERs exist inside the ef-
fective topos as internal categories. Any internal functor between these categories
comes with a realizer for its functorial properties. Hence the name ‘realizable func-
tor’. Unfortunately, the definition in [2] seems more restrictive. It demands that
there is a realizer of the functor preserving an index of the identity function. We
are not convinced that all internal functors satisfy that property, but the algebraic
compactness proof given depends on it.

In the research for my master thesis I found two ways to bypass this problem.
Firstly, weakly complete internal categories, like the category of PERs and the
category of pointed CEPERs, already satisfy the weaker property of algebraic com-
pleteness. We can derive algebraic compactness from a combination of algebraic
completeness with other properties of the category of pointed CEPERs. Secondly,
any internal functor is isomorphic to some other internal functor with a realizer that
does preserve indices of identity. Therefore, we can add the requirement without
loss of generality.

1 The Category of PERs: Notation

In our discussion of PERs I will employ a more common notation and terminology
than in [2].

Definition 1.1. A PER is a partial equivalence relation on the natural numbers.
Spelled out, a PER R is a subset of N2 such that:

• for all (n,m) ∈ R, (m,n) ∈ R (symmetry)

• for all (n,m) and (m, p) ∈ R, (n, p) ∈ R (transitivity)
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Any PER R forms a total equivalence relation on its domain:

domR := {n|(n, n) ∈ R}

The quotients domR/R are used to define morphisms between PERs. Given n ∈
domR, we use [n]R to denote the equivalence class containing n in domR/R.

Definition 1.2. A morphism of PERs f : R → S, is a function f : domR/R →
domS/S, which is tracked by a partial recursive function. This means that there
is a partial recursive function φ such that for all n ∈ domR φn is defined and
f([n]R) = [φn]S .

These objects and morphisms form the category of PERs P. This category is
cartesian closed: by letting (n,m) ∈ [R → S] if n and m are indices of partial
recursive functions that track the same function f : R → S, we get a PER, which
acts as an internal homset. So any f : R → S can be identified with the set of
those natural numbers that are indices of tracking functions of f . Therefore, I
will sometimes use [n]R→S to refer to the function R → S that is tracked by the
n-th partial recursive function. Finally, I write the application of the n-th partial
recursive function to some number m as a simple juxtaposition: nm.

2 Realizable and Monotone Functors

Inspired by the idea that realizable functors are internal functors of the effective
topos, we define these as follows.

Definition 2.1. An endofunctor F of the category of PERs is realizable if there
is a single partial recursive function φ that tracks F . This means: φx converges
whenever x ∈ dom([R→ S]) for every pair of PERs R and S, and

F ([x]R→S) = [φx]FR→FS (1)

The definition is slightly more general than the definition found in [2]. There, φ
has to preserve an index of the identity map of N, while we do not even require that
φ maps indices of identity to each other here. Because F as functor has to preserve
identities, we know that for any PER R and any index i of the identity function:

F ([i]R→R) = [φi]FR→FR = [i]FR→FR

Therefore i ∈
⋂

R F ([i]R→R) does hold, for any particular realizable functor. This
still doesn’t guarantee that φi = i′ for some other index i′ of the identity function,
however.

Let ψi = i and ψx = φx if x 6= i. ψ is a recursive function, and one might wonder
if it can take the place of φ, saving the original definition. (1) is satisfied when x 6= i
and in the case that S = R, the same equation holds when x = i. The difficult
case is x = i and S 6= R. Note that [i] : R → S iff R ⊆ S. Therefore, if R ⊆ S
and if F ([i]R→S) = [ψi]FR→FS = [i]FR→FS , then FR ⊆ FS. This means that all
functors which are tracked by an i preserving function are monotone mappings of
PERs. On the other hand for any monotone functor tracked by φ, the function ψ
defined above is another tracking function of the functor that preserves i. So the
functors defined in [2] are a special kind of realizable functor.

Definition 2.2. A realizable endofunctor F of the category of PERs is monotone,
if its object map is monotone with respect to the inclusion ordering on PERs. In
other words, if R ⊆ S, then FR ⊆ FS.

I could not prove (or refute, by the way) that all realizable functors are mono-
tone, or find a proof in the literature. Sadly, in [2] the least fixpoints that monotone
functors have, are used in the algebraic compactness proof: for any monotone func-
tor F we have a fixpoint X :=

⋂
{R|FR ⊆ R}, where FX = X.
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3 Algebraic Completeness

The category of pointed CEPERs is an internal CPO category of the effective topos,
and with the theory developed in [3], we can prove that it is algebraically compact
if it is algebraically complete. The following lemma concerns the algebraic com-
pleteness of internal categories.

Lemma 3.1. For any topos E, and any weakly complete internal category C in
E, C is algebraically complete: for any internal endofunctor F , there is an initial
algebra.

Weak completeness of a category C means that for arbitrary internal categories
D and each internal functor D → C a limiting cone exists, but that the functor
C → CD that maps objects to constant functors, has no internal right adjoint.

Proof of lemma 3.1. E allows the construction of the category of algebras of any
endofunctor F of C internally, so both the category of F -algebras F -alg, and the
underlying object functor U : F -alg → C are internal to E . This underlying functor
creates limits, and since C is weakly complete (relative to E), F -alg must be weakly
complete too. Therefore it has an initial object – the limit of the identity functor
on F -alg – and this object is an initial algebra for F .

The category of CEPERs is weakly complete as an internal category of the
effective topos. It inherits that property from the category of PERs (see [10] and
[11]), of which it is a reflective subcategory (see [2], the proof doesn’t depend on
monotonicity of endofunctors). We may conclude that the category of pointed
CEPERs is algebraically compact indeed.

3.1 Constructing a Fixmap

For an endofunctor F of a category C, an F -algebra is a pair (R, a : FR→ R), where
a : FR → R is the structure map of the algebra. A morphism of F -algebras is a
morphism of C that commutes with structure maps. The structure map of an initial
algebra is necessarily an isomorphism. Because of the similarity with fixpoints of
monotone endofunctions on a complete poset, I propose that we call the underlying
objects of initial algebras fixobjects, and the structure maps fixmaps. For realizable
endofunctors F of the category of pointed CEPERs C, initial algebras always exists,
because of combinatory completeness. We can even give a construction for such a
fixmap.

An intial algebra is a limit of the identity functor, and this limit is a pair (R0, a0)
where R0 is a limit of the underlying PER functor U : F -alg → C, and where a0 is
the unique structure map that commutes with the limiting cone. As any limit, R0

can be constructed as a regular subobject of a product. In C we can use subsets of
PERs to represent regular subobjects. The product we need is an internal product
of all PERs over all of the F -algebras. Therefore, given any such product

∏
U , we

can assume: R0 ⊆
∏
U .

If we fix a PER R, then [FR→ R] is a PER of all algebras based on R. Every
element x ∈ dom(

∏
U) restricts to a mapping xR : [FR→ R] → R:

xR(a) = x(R,a)

This is a morphism of PERs, because the category of PERs is a full subcategory of
the effective topos. As a consequence xR itself is an element of the PER [[FR →
R] → R].

The object of pointed CEPERs C0 exists in the effective topos, and is uniform.
Among other things, this means that any arrow C0 → N is constant. That makes
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⋂
R∈C0

[[FR→ R] → R], the intersection of this family of PERs, already its product
inside the category of pointed CEPERs (see [4]). Therefore, some limit R0 of U
satisfies:

R0 ⊆
⋂

R∈P
[[FR→ R] → R] (2)

To find R0, we only need to select those elements of
⋂

R∈C0
[[FR → R] → R]

that commute with all the algebra morphisms. The results in the paper [6] seem
to suggest that R0 =

⋂
R∈P [[FR → R] → R]. But in any case, (f, f ′) ∈ R0 if and

only if for any three algebras (R, a), (S, b) and (T, c) and any pair of morphisms
m : (R, a) → (T, c) and m′ : (S, b) → (T, c), (m(fa),m(′f ′b)) ∈ T :

R0
f 7→fa //

f ′ 7→f ′b

��

R

m

��
S

m′
// T

Note that I write fa for fR(a): fR(a) is constant in R because C0 is uniform. The
projection maps π(R,a)f = fa taken together form the limiting cone. Obviously,
any structure map a0 on R0 has to make the following diagram commute for any
algebra (R, a):

FR0
Fπa //

a0

��

FR

a

��
R0

πa // R

That means that for all (x, y) ∈ FR0, (a0xa, a(Fπay)) ∈ R. Because R is reflexive,
we can let a0 be any partial recursive function that satisfies a0xa = a(φπax), where
φ is some partial recursive function tracking F . The inverse of the initial algebra
is a terminal coalgebra of F , since the category of pointed CEPERs is algebraically
compact.

This construction shows we can define a functor CC → C that maps each realiz-
able endofunctors to one of its fixobjects. The existence of such a functor does not
follow from weak completeness: it is a peculiar property of the category of pointed
CEPERs as an internal category of the effective topos. We need this functor to
prove the algebraic completeness of products of C and Cop, and in turn the exis-
tence of fixobjects and fixmaps for functors (Cop)m × Cn → C (for arbitrary m and
n). All of this is done in [1].

4 Yoneda

Before we can apply the Yoneda lemma to realizable functors, we need to define
what the realizable natural transformations between them are.

Definition 4.1. A natural transformation η between two realizable endofunctors
F and G of the category of PERs is realizable if there is a single number e such
that ηR = [e]FR→GR for all PERs R. Let [F ⇒ G] be the PER of natural trans-
formations F to G: the set of pairs (n,m) where n and m are indices for the same
transformation.

Again, realizability makes the transformations internal to the effective topos.
The definition given in [2] is correct in this case.
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Because natural transformations are represented by natural numbers – or be-
cause the category of PERs is weakly complete and internal to the effective topos:
it all depends on your perspective – we can construct a PER of natural transforma-
tions between any pair of PER valued functors. In fact, categories of PER valued
functors are enriched over the category of PERs, as long as the domains are internal
categories of the effective topos.

Theorem 4.2. Every endofunctor of P is naturally isomorphic to a monotone
endofunctor.

Proof. We know because of Yoneda’s lemma that FX ∼= nat(hom(X,−), F ) natu-
rally in both F and X. Given a PER R let R∗ be the functor that maps any PER
S to [R → S] and let F∗ be the functor that maps S to [S∗ ⇒ F ]. F∗ happens to
be monotone.

If X ⊆ Y and (n,m) ∈ [Y → Z], then (n,m) ∈ [X → Z] because (nx,my) ∈ Z
whenever (x, y) ∈ Y and (x, y) ∈ Y whenever (x, y) ∈ X. Therefore Y∗ ⊆ X∗ point
wise. Furthermore, if i is an index of the identity function, it determines a natural
transformation: (i, i) ∈ [Y∗ ⇒ X∗].

Let (i, i) ∈ [G⇒ G′] for any two functors G and G′, and let (n,m) ∈ [G′ ⇒ F ].
(n,m) ∈ [G ⇒ F ], because n ◦ i and m ◦ i represent the same partial recursive
function as n and m. Therefore [G′ ⇒ F ] ⊆ [G⇒ F ].

We can see that if X ⊆ Y , then (i, i) ∈ [Y∗ ⇒ X∗] and therefore F∗X ⊆ F∗Y .
Consequently, F∗ is a monotone functor.

Although there may be non-monotone internal functors, there is no loss of gen-
erality if we assume that realizable functors are. With this information added the
original proof suffices to show that the category of pointed complete extensional
PERs is indeed algebraically compact.

I thank the referees for the useful comments on the presentation of this paper.
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