
Relative Completions

P.J.W. Hofstra

September 24, 2002

Abstract

We introduce a relativised version of the regular and exact completion.

This is motivated by the fact that the standard constructions are often not

applicable in a constructive context. We show that our construction gives

more general results, for instance in the study of realizability categories

over an arbitrary base topos.

1 Introduction

Since the discovery that realizability toposes enjoy a certain universal property,

a lot of work has been done on the study of regular and exact completions, espe-

cially their applications to categories that play a prominent role in realizability.

The most important (and best-known) results in this area are, that, starting

from a partial combinatory algebra A , the category of Assemblies Ass(A ) is the

regular completion of the category of Partitioned Assemblies PAss(A ), and that

the realizability topos RT(A ) is the exact completion of PAss(A ). These results

are useful, because they give a simple presentation of a realizability topos and

also display some of its structure. An important restriction is, however, that

they rely on an essential use of the axiom of choice in the base topos. For ex-

ample, if one is to show that the E�ective Topos arises as an exact completion,

then one has to show that E� has enough projectives. But in order to do so,

one cannot avoid an appeal to choice in Set.

This paper is intended as a �rst attempt at analysing what happens if we

wish to refrain from using choice. Put di�erently, what happens when we do

not work over the base topos Set, but over an arbitrary topos E , in which the

axiom of choice fails? Can the construction of a realizability topos then still be

seen as a solution to a universal problem? Is it still some kind of completion of

the category of Partitioned Assemblies?

The paper is structured in the following manner: section 2 will contain some

basic de�nitions and notation. We assume that the reader has knowledge about

the standard completions; for those who do not, there are various references,

such as [9], [2] or [5]. We will only rehearse some notation concerning these com-

pletions. There will also be de�nitions of the categories that we will be mostly

interested in, namely categories of (Partitioned) Assemblies over an arbitrary
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base topos E , and categories associated to internal locales in a topos. Over Set,

these de�nitions are to be found in various places, such as [7] or [9], but since we

do not work over Set any longer, there are some subtleties that need attention,

whence the inclusion of precise de�nitions.

Section 3 contains the central de�nitions of the relative regular completion

and the relative exact completion. The idea is, that we do not simply form

the completion of a category C, but take into account that there is a functor

F : E ! C, which bears information about how C is related to the base topos.

We get the following picture:

E

//
F

C

//
y

C

reg

//
P

�

C

E=reg

where C

E=reg

denotes the relative regular completion. In fact, it will be con-

structed from C

reg

as a category of fractions. Thus we get a quotient functor

P

�

as in the picture above. After explaining the construction, we give some

simple examples, and we also show, that the construction may be viewed as a

Kock-Z�oberlein-doctrine.

The focus of sections 4, 5 and 6 is an analysis of the functor P

�

: this

is mainly motivated by the fact that the de�nition of section 3 is not very

elegant, and far from convenient to work with. Therefore we give two di�erent

presentations of the relative completion: the �rst one (section 4) makes use of

pushouts in the category of regular categories, and the second one (section 5)

is based on topologies. This enables us to identify some situations in which the

relative completion of a category is somewhat better behaved than in general.

In particular, we �nd a simple condition under which C is a full subcategory of

C

E=reg

. Section 6 is devoted to a more detailed analysis of the situation where

the relative completion is a re
ective subcategory of the ordinary completion,

that is, when the functor P

�

has a full and faithful right adjoint.

With the theory from sections 5 and 6, we have the major ingredients for our

characterization of assemblies, which, together with locales, will be carried out

in section 7. This will also answer the initial question that we posed, namely

that the realizability topos can still be seen as a completion of the category of

partitioned assemblies, namely the relative exact completion.

Finally, we present a number of open questions related to our constructions,

to which we think it would be nice to have an answer.

Acknowledgements. I am greatly indebted to Jaap van Oosten for various

helpful discussions and meticulous reading of earlier versions. Furthermore,

the observation (presented in section 4) that there is an analogy between the

relative completion of a category and certain constructions in algebra is due to

Ieke Moerdijk.

2 Preliminaries

Completions. As said in the introduction, we assume familiarity with the

basic theory of completions, mostly the regular completion. For convenience,
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we only repeat the usual notational conventions for the regular completion C

reg

of a category C: objects will be written

0

@

X

f #

Y

1

A

, and maps will be pictured as

0

@

X

f #

Y

1

A
//

[k]

0

@

P

g#

Q

1

A

where [k] is an equivalence class of maps k : X ! Y in C, and where k; k

0

are equivalent i� their composites with g are equal. We also recall that the

projectives in C

reg

are precisely the objects in the image of the inclusion y :

C ! C

reg

. Finally, if e is a regular epi in C, then y(e) is not regular, unless

e is split. This observation will be crucial for the comparison of the standard

completion and our relativised version.

Assemblies. Let E be an arbitrary topos, and consider an internal partial

combinatory algebra (pca) A in E . We will assume that the reader is familiar

with the (tripos-theoretic) construction of the realizability topos RT

E

(A ), and

some of its basic properties. For a standard reference, see [10], in which it is also

explained that, in absence of choice, there is an internal version and an external

version of the realizability tripos associated with a pca, the di�erence being that

for the internal version one takes a de�nable object of designated truth-values.

For our application, it turns out that an assumption on the tripos is needed:

every inhabited subobject of A must have a global element. The external tripos

always satis�es this property, but we run into trouble once we consider the

internal variant. In section 7 it will be pointed out why this assumption is

needed for our approach.

We start by de�ning the categories of Partitioned Assemblies, PAss

E

(A ),

and Assemblies, Ass

E

(A ). The objects of PAss

E

(A ) are pairs (X;E

X

), where

X is an object of E , and E

X

: X ! A is a map in E to the internal pca

A . An arrow from (X;E

X

) to (Y;E

Y

) is a map f : X ! Y in E such that

E j= 9a : A 8x : X: a �E

X

(x)# ^ a � E

X

(x) = E

Y

(fx). An assembly is also a

pair (X;E

X

), but now E

X

: X ! P

i

(A ), where P

i

(A ) stands for the object of

inhabited subsets of A . Similarly, a map f : X ! Y is a map of assemblies if

we have E j= 9a : A 8x : X8b 2 E

X

(x): a � b# ^ a � b 2 E

Y

(fx).

In the de�nition of an assembly, we might just as well take functions into

the object of nonempty subsets of A rather than the inhabited subsets, since

this gives equivalent categories.

As usual, we have an embedding r : E ! PAss

E

(A ), that has a faithful

left adjoint, denoted �. r preserves regular epis, although PAss

E

(A ) is not a

regular category. We use the same notation r;� to denote the localization of

E in Ass

E

(A ). Again, r is a regular functor.

Lemma 2.1 The category Ass

E

(A ) of assemblies is equivalent to the full sub-

category of RT

E

[A ] on the subobjects of objects of the form r(X).
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Proof. This is straightforward.

�

In [6], it is explained that there is a monad on the category of ordered par-

tial combinatory algebras, based on the fact that the collection of non-empty

downsets in a pca inherits the combinatorial structure. This generalizes to pcas

in an arbitrary topos. Thus we get that Ass

E

(A ) is equivalent to PAss

E

(IA ),

where I is the nonempty (or, equivalently, the inhabited) downset-monad.

In the classical case, one has a convenient characterization of regular epis in

Assemblies; this goes through in the general setting:

Lemma 2.2 In Ass

E

(A ), a map e

0

: (Y

0

; E

Y

0

)! (X;E

X

) is regular epi if and

only if it is isomorphic (over (X;E

X

)) to a map e : (Y;E

Y

) ! (X;E

X

) that

satis�es E

X

(x) =

S

e(y)=x

E

Y

(y).

Proof. As usual.

�

Lemma 2.3 The functor � : Ass

E

(A ) ! E preserves regular projectives.

Proof. Its right adjoint preserves regular epis.

�

Lemma 2.4 An object (X;E

X

) in Ass

E

(A ) is projective if and only if it is a

partitioned assembly and X is projective in E .

Proof. Observe �rst that any assembly can be covered by a partitioned

assembly, namely cover (X;E

X

) by (Q;E

Q

), where Q = f(x; a)ja 2 E

X

(x)g.

Moreover, the partitioned assemblies are closed under �nite limits. Now if

(X;E

X

) is projective, then this cover has a section, presenting (X;E

X

) as a

regular subobject of a partitioned assembly, hence as a partitioned assembly.

Also, X is projective in E by the previous lemma.

Conversely, any partitioned assembly (X;E

X

) with X projective in E is

projective. For let e : (Y;E

Y

)! (X;E

X

) be regular epi. Then e(y) = x implies

E

Y

(y) = E

X

(x). So take any section in E , and it will be tracked by the identity.

�

We refer to the covering Q as in the lemmaas the canonical covering of (X;E

X

).

From this lemma it follows that Ass

E

(A ) is in general not equivalent to

the regular completion of PAss

E

(A ), since in this completion, every partitioned

assembly is projective.

Finally, we recall a folklore theorem [3]:

Theorem 2.5 Let P be a tripos on a category C, let C[P] denote the resulting

topos and write r : C ! C[E ] for the constant objects functor. Then C[P] is

the ex=reg-completion of its full subcategory on the subobjects of objects in the

image of r.
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For us, the main implication of this theorem is, that the realizability topos

RT[A ] is the ex=reg-completion of Ass(A ).

Locales. Let H be a locale in E . The category of elements forH, denoted

R

E

H

has pairs (X;�) as objects, where X is an object of E , and � : X ! H a map

into the localeH; maps are arrows f : X ! X

0

for which �(x) � �

0

(f(x)) for all

x 2 X. In case that E = Set, this is the usual category Fam(H), the coproduct

completion of H, viewed as a small category.

R

E

H is a regular category.

Given H, form a new locale by taking non-empty downsets in H, denoted

I

�

H, ordered by inclusion. There is an embedding H ! I

�

H (which is given

by a 7! #(a)), that induces an embedding

R

E

H !

R

E

(I

�

H).

3 A Universal Construction

We �x a category E with �nite limits (this is the minimum amount of structure

required for the construction; in most applications however, E will be a topos).

Consider the category E=LEX. Objects are left exact functors F : E ! C

with C a lex category, and morphisms are commutative triangles of lex functors.

Similarly, we have a category E=REG where all categories and functors involved

are regular, and E=EX, where all categories and functors are exact. The theorem

that we aim for is the following:

Theorem 3.1 The forgetful functor E=REG! E=LEX has a left biadjoint.

Proof. Send F : E ! C to the composite

E

//
F

C

//
y

C

reg

//
P

�

C

reg

[�

�1

]:

Here, C

reg

[�

�1

] refers to the category obtained from C

reg

by formally inverting

all arrows in a class �. This class of arrows � is de�ned as follows: consider a

regular epi f : X ! Y in E . The functor F sends f to Ff , and the embedding y

takes this to yFf . In C

reg

, the arrow yFf has a regular epi-mono factorization,

as in the diagram:

yFX

// //
[1]

0

@

FX

Ff #

FY

1

A

// //
[Ff ]

yFY:

The re
ection of F : E ! C in E=REG must be a regular functor, which means

that the arrow [Ff ] has to be inverted. So de�ne �

0

to be the class of all the

arrows [Fe] that arise as in diagrams such as the one above. Then de�ne � to

be the least class of maps containing �

0

, with the properties that

� All isomorphisms are in �,

� If two out of three sides of a commutative triangle are in �, then so is the

third,
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� � is pullback-stable,

� If e

�

� 2 � for some regular epi e, then � 2 �.

Following B�enabou, we call a collection of arrows � satisfying these closure

properties a local pullback congruence. Now it follows from the theory of cate-

gories of fractions that C

reg

[�

�1

] is a regular category, and that P

�

is a regular

functor (see [1], Theorem 2.2.2).

For the universal property, consider any left exact functor G : C ! D where

D is a regular category, and where the composite GF is regular. Then in the

diagram below:

E

//
F

C

))

G

❙❙
❙❙❙

❙❙
❙❙❙

❙❙
❙❙❙

❙❙
❙❙

//
y

C

reg

%%

^

G

❏
❏

❏
❏

❏
//

P

�

C

reg

[�

�1

]

��

~

G

✤

✤

✤

D

the regular functor

^

G arises because of the universal property of C

reg

.

^

G inverts

all arrows in �

0

and therefore also all arrows in �. Hence the universal property

of the category of fractions gives us the required regular

~

G.

�

We introduce the following terminology: given F : E ! C left exact, we shall

write C

E=reg

for the value (at F ) of the biadjoint of theorem 3.1, and we call it

the relative regular completion of C (relative to E).

One can summarize the idea behind the construction as follows: the ordinary

regular completion y : C ! C

reg

sends regular epis to epis which are not regular

(except for those that have a splitting), so it destroys the regular structure that

exists in C. The fraction construction tries to restore as much of this structure

as possible.

Although we concentrate on the relative regular completion in this paper,

we mention that there is also a natural notion of a relative exact completion:

Theorem 3.2 The forgetful functor from E=EX ! E=REG has a left biad-

joint.

Proof. Send F : E ! C to the composite

E

//
F

C

//
y

C

ex=reg

:

It is easily seen that this gives the required propery.

�

Let us denote these biadjoints by (�)

E=reg

,(�)

E=ex=reg

and their composite by

(�)

E=ex

.

Our motivating examples, namely Partitioned Assemblies and locales, will

appear in section 7. At this point, we will give some simpler examples, to give

the reader a feel for the construction.
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Examples 3.3 1. First of all, let's see what happens when applying this

construction to the identity on C, when C is an arbitrary �nite limit cat-

egory. If there exists a regular epi in C which has no section, then the

relative completion C

C=reg

will preserve such a map, and hence C

C=reg

will

di�er from C

reg

. Somewhat more generally, let C

0

! C be the inclusion

of a subcategory which is closed under �nite limits. Then the relative

completion may be seen as the closest approximation to C

reg

, in which the

regular structure of C

0

is preserved.

2. Now let C be regular, and consider again the identity functor on C. Then

the relative completion of C is equivalent to C itself (and in fact, the

quotient functor from C

reg

to C

C=reg

' C is simply the left adjoint to the

inclusion y : C ! C

reg

).

3. On the other hand, we might take any �nite limit category for E , and

the functor which has the terminal object 1 of C as constant value. Then

the relative completion coincides with the ordinary regular completion.

(For, each map in � is an isomorphism.) Somewhat more generally, if F

sends every regular epi to an isomorphism, or even to a split epi, then

C

reg

' C

E=reg

.

4. The ordinary regular completion will always send non-equivalent cate-

gories to non-equivalent completions. The relative version need not do

so; as an example, take F : E ! C such that C

E=reg

is not equivalent to

C

reg

. Then consider (C

E=reg

)

E=reg

and (C

reg

)

E=reg

. These are easily seen

to be equivalent, since they have the same universal property. For a more

general treatment of this phenomenon, see section 6.

As one expects, the relative completion may be viewed as a KZ-doctrine on the

category E=LEX, just as the ordinary completions are KZ-doctrines on LEX,

the category of all small left exact categories. (For an account of KZ-doctrines,

see [8].) Let us exhibit part of the relevant structure:

Lemma 3.4 Suppose F : E ! D is a regular functor, and D a regular category.

Then the embedding D ! D

E=reg

has a regular left adjoint, and the counit of

the adjunction is an isomorphism.

Proof. Consider

E

//
F

D

//
y

))

1

❘❘
❘❘

❘❘
❘❘

❘❘
❘❘

❘❘
❘❘

❘❘ D

reg

//
P

�

$$

a

0

❍❍
❍❍

❍❍
❍❍

❍
D

E=reg

��

a

✤

✤

✤

D:

Because D is regular, there is an extension a

0

with a

0

� y

�

=

1, and since F is

regular, so is a

0

� y � F

�

=

F , and by the universal property of D

E=reg

this gives

the functor a as in the diagram. a sends an object of D

E=reg

to its image in D,
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and since a

0

inverts all morphisms in �, one easily �nds that a a P

�

� y.

�

Theorem 3.5 E=REG is equivalent to the category of algebras for the monad

(�)

E=reg

.

Proof. The previous lemma stated that every object of E=REG carries

an algebra structure (which is then unique up to isomorphism, since it is left

adjoint to the unit). Conversely, let D have an algebra structure a : D

E=reg

!D.

Composed with P

�

, we get a map a �P

�

: D

reg

!D, which is an algebra map.

Then apply the fact that the ordinary regular completion is a KZ-doctrine, so

that a � P

�

is left adjoint to the unit at D. In particular, D is regular, and so

is the functor a � P

�

. Because of the universal property of D

E=reg

, a � P

�

has

an extension, which must be isomorphic to a. Thus a is also regular. It is also

evident that F : E ! D is regular. Thus F is indeed an object of E=REG.

�

4 Algebraic Presentation

In this section we give an alternative characterization of the category C

E=reg

,

and derive some consequences. First, we show that C

E=reg

can be constructed

as a pseudo-pushout in the category of regular categories. It is essential that

the base category E is regular, so that the embedding E ! E

reg

has a regular

left adjoint r.

Proposition 4.1 Let E be regular, C have �nite limits and let F : E ! C

preserve �nite limits. The following square is a pseudo-pushout in REG:

E

reg

//
F

reg

��

r

C

reg

��

P

�

E

//

P

�

�y�F

C

E=reg

:

Proof. Consider the diagram

E

//
F

��

y

C

��

y

E

reg

//
F

reg

��

r

C

reg

��

P

�

E

//

P

�

�y�F

C

E=reg

:
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First, the large square commutes since r � y

�

=

Id. Also, the top square com-

mutes, so we have P

�

� F

reg

� y

�

=

(P

�

� y � F ) � r � y : E ! C

E=reg

. Both

P

�

�F

reg

and (P

�

� y �F )� r are regular functors from E

reg

to C

E=reg

, and hence

determined up to isomorphism by their composites with y : E ! E

reg

. These

are isomorphic, so it follows that P

�

� F

reg

�

=

(P

�

� y � F ) � r, and the below

square commutes.

For the universal property we take regular functors G : C

reg

! D and

H : E ! D, such that H � r

�

=

G � F

reg

. Then H

�

=

H � r � y

�

=

G � F

reg

� y

is regular, and thus G � y � F : E ! D. By the universal property of C

E=reg

,

we obtain a factorization G

�

=

K � P

�

. It only remains to be checked that

H

�

=

K � (P

�

� y � F ). But

H

�

=

H � r � y

�

=

G � F

reg

� y

�

=

(K � P

�

) � F

reg

� y

�

=

K � (P

�

� y � F );

which completes the proof.

�

We can also easily show the analogous statement for the relative exact comple-

tion (for this to make sense, assume E to be exact):

Proposition 4.2 Let E be exact, C have �nite limits and let F : E ! C preserve

�nite limits. The following square is a pseudo-pushout in EX:

E

ex

//
F

ex

��

r

C

ex

��

E

//
C

E=ex

:

Proof. Apply the ex=reg-construction to the pushout of proposition 4.1.

The ex=reg-construction is a left bi-adjoint, and therefore preserves pseudo-

pushouts.

�

Before we have a look at some of the consequences of these presentations, we

show that the situation is surprisingly similar to some constructions in algebra.

For instance, let R be a ring, M a monoid and f : R ! M a map of monoids.

If we write F (R) and F (M ) for the free rings on R and M , we construct a ring

F

R

(M ) by forming the pushout

F (R)

//
F (f)

��

F (M )

��

R

//
F

R

(M ):

9



The ring F

R

(M ) is the free ring on M such that R ! F

R

(M ) is a ringhomo-

morphism, i.e. for any ring N and any map of monoids k : M ! N such that

kf : R! N is a ringhomomorphism, there is a unique

^

k : F

R

(M )! N through

which k factors.

Observe that it now follows that the relative exact completion can also be ob-

tained as a category of fractions; this follows from the fact that for any functor

P : C ! D in LEX, and any class of maps � in C, the the following square is a

pushout, where P� denotes the image of � under P :

C

//
P

��

P

�

D

��

P

P�

D[�

�1

]

//
D[P�

�1

]:

Combined with the fact that E is a localization of E

ex

(and may therefore be

seen as a category of fractions), we see that C

ex

! C

E=ex

, being a pushout of

E

ex

! E , is itself of this form.

As a simple corollary of proposition 4.1, we get that the ordinary regular com-

pletion coincides with the relative completion when the base category E satis�es

the axiom of choice (meaning that every regular epi splits):

Corollary 4.3 If E is regular and E j= AC, then C

reg

' C

E=reg

.

Proof. If every regular epi splits in E , then E ' E

reg

(see, for instance [9]).

So, in the pushout square of proposition 4.1 the left-hand map is an equivalence,

and therefore the right-hand map is an equivalence, too.

�

A converse to this corollary holds if we assume the functor F : E ! C to be full:

Proposition 4.4 If F : E ! C is full, and C

reg

' C

E=reg

, then E j= AC.

Proof. Consider a regular epi e : X ! Y in E . This is sent to yF (e) :

yF (X) ! yF (Y ) in C

reg

. This map is again regular epi, because the composite

yF is now a regular functor. This in turn means that the mono part of the

reg-epi/mono factorization of yF (e) is an isomorphism. Thus it has an inverse

yF (Y )

//
[k]

0

@

FX

Fe#

FY

1

A

and the underlying arrow k : FY ! FX is easily seen to be a splitting for Fe.

Now F is full, so k is in the image of F , say k = Fh, and h is a splitting for e.

�

Similar statements hold when E is an exact category.

Finally, we show that relative completions, just like ordinary completions,

inherit chaotic stiuations. The notion of a chaotic situation was formulated
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in [9]: C has E as a chaotic situation if E is a topos, and if there is an embedding

F : E ! D which has a faithful left adjoint G. So assume that this is the case.

Because E is regular, the universal property of C

reg

gives an extension of G to

^

G : C

reg

! E , which is left adjoint to the composite y � F : E ! C

reg

. Thus we

get

E

reg

//
F

reg

��

r

C

reg

��

^

G

��

P

�

E

,,

//

P

�

�y�F

C

E=reg

E

and there is a factorization through the pushout

~

G : C

E=reg

! E . It is easily

veri�ed that this map is again faithful, and left adjoint to the embedding of E

in C

E=reg

.

5 Sheaves

Next, we concentrate on a presentation in terms of sheaves. We make use of

the notion of a quasi-topology and of a topology on C. These were introduced

in [9], but we provide a short recapitulation.

De�nition 5.1 Let C be a �nite limit category. A quasi-topology on C is a

family J(X) for each object X of C, of maps with codomain X, subject to the

following conditions:

� 1

X

2 J(X)

� for f : Y ! X, if g 2 J(X) then f

�

g 2 J(Y ) (where f

�

g denotes the

pullback of g along f)

� if g � h 2 J(X), then g 2 J(X)

� if f : Y ! X 2 J(X) and g 2 J(Y ) then f � g 2 J(X).

De�nition 5.2 A map h : Z ! X is closed for a quasi-topology J if for every

f : Y ! X, f

�

h 2 J(Y ) implies that f factors through h.

De�nition 5.3 A quasi-topology J is a topology if for every map f : Y ! X

there is a g : V ! W 2 J(W ) and a closed h : W ! X such that f factors

through h � g and vice versa.

The point of these de�nitions is, that topologies on C correspond to universal

closure operators on C

reg

(and on C

ex

). A (quasi-)topology J is called subcanon-

ical if every map in J is regular epi.

11



Construction 5.4 Consider again a functor F : E ! C. We will construct a

quasi-topology on C by de�ning:

� f 2 K(C) i� there is a diagram

P

//
f

��

C

��

�

F (E

0

)

//
Fe

F (E)

where e is a regular epi in E , and the square is a pullback.

� J is the closure if K under composition and under right-halves, i.e. if

hk 2 K then so does h.

The veri�cation that J is a quasi-topology on C is straightforward. Now there

is a technical lemma to be proved:

Lemma 5.5 Let f : X ! Y be a map in C, inducing a mono [f ] : f ! yY in

C

reg

. Then f 2 J(Y ) implies [f ] 2 �.

We give the proof of this in the appendix, since it is purely technical.

Theorem 5.6 The quasi-topology J is a topology i� C

E=reg

is a re
ective sub-

category of C

reg

(in which case it is of the form sheaves for the induced closure

operator on C

reg

).

Proof. If J is a topology, then there is an induced universal closure operator

on C

reg

, with the property that for any arrow f : C

0

! C, [f ] : f ! yC is dense

i� f 2 J . Using the previous lemma, we get that [f ] dense implies [f ] 2 �.

From this, it follows that all dense monos are in �.

On the other hand, all maps in �

0

are dense, and hence are all monos in �.

We conclude that the class of dense maps coincides with the class �.

�

This theorem shows that in some cases, the relative completion may be seen as a

category of sheaves for a universal closure operator; the next section studies this

situation in some more detail, and we will see that this gives a more manageable

presentation than one in terms of categories of fractions.

It is clear that, in general, C is not a full subcategory of C

E=reg

, and also, that

the image of F : E ! C need not be so. The following is an obvious criterion:

Lemma 5.7 1. C is a full subcategory of C

E=reg

i� every map in J is regular

epi;

2. Im(F ) is a full subcategory of C

E=reg

i� objects in the image of F think

that all maps in J are regular epi. By this, we mean that for every map

f : X ! Y in J(X) with kernel f

0

; f

1

, and every map m : X ! F (W ) for

which mf

0

= mf

1

, there is a unique extension of m along f .

12



Proof. For 1), clearly, every map in J is regular epi i� J is subcanonical,

see [9]. But then we �nd that C is a full subcategory of C

E=reg

.

2) is treated similarly.

�

As example 3.3.4. showed, non-equivalent categories may yield the same com-

pletion. The following lemma provides some insight:

Lemma 5.8 Let F : E ! C be given and consider y : C ! C

E=reg

. De�ne

D to be the full subcategory of C

E=reg

on the objects in the image of y. Then

C

E=reg

' D

E=reg

.

Proof. We have a factorization of y as

E

//
F

C

//
y

��

G

C

E=reg

D

<<

�

②②②②②②②②

Consider y

0

: D ! D

E=reg

. By the universal property of C

E=reg

, the map y �G :

C ! D

E=reg

can be extended along y to give a map

^

G : C

E=reg

! D

E=reg

. On

the other hand, the universal property of D

E=reg

gives an extension �̂ of � along

y

0

. Then �̂ and

^

G are pseudo-inverses of each other.

�

6 Minimal Coverings and Sheaves

We further analyse the situation of the previous section, in which the relative

completion was re
ective in the ordinary completion. To this end, we �rst

introduce a technical notion, called a minimal covering.

Let C be a lex category, D a regular category and let F : C ! D be a left

exact full and faithful functor. First we recall that a map k : FC ! D is called

C-projecting [9] if every other map FC

0

! D factors through e. Then we de�ne:

De�nition 6.1 F : C ! D is called a minimal covering i� for every D in D

there is a C in C and a C-projecting regular epi e : FC ! D.

The connection between minimal coverings, topologies and regular comple-

tions can be formulated as:

Lemma 6.2 Let F : C ! D be a lex, full and faithful functor, with D regular.

Consider the extension

^

F : C

reg

!D. Then the following are equivalent:

1. The functor

^

F has a right adjoint G with GF

�

=

y and

^

FG

�

=

Id;

2. F is a minimal covering, and every object in D embeds into an object in

the image of F ;
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3. There is a subcanonical topology on C such that D is equivalent to the

category of sheaves for the induced universal closure operator on C

reg

.

Proof. First assume 2. We de�ne G : D ! C

reg

as follows. An object D

gives a composite map

FC

// //
e

D

// //
m

FC

0

with e a regular epi. Since F is full, there is a map f : C ! C

0

in C with

Ff = me. This map f is the value of G on D. This is well-de�ned, because

any other cover e

0

will factor through e and vice versa. (note in particular that

G(FC) = C.) For arrows, consider the diagram

FC

����

e

1

//

�

f

❴❴❴
FB

����

e

2

D

//
f

��

��

m

1

E

��

��

m

2

FC

0

FB

0

:

The lifting

�

f exists because fe

1

factors through e

2

. Since F is a full embedding,

�

f is of the form Fh : FB ! FC, and h, in turn, represents an arrow in C

reg

from GD to GE. The adjointness is easily veri�ed, just as the facts

^

FG

�

=

Id

and GF

�

=

y. This proves 1).

For the converse, if a right adjoint G exists with GF = y and counit iso, then

cover an object D in D as follows: G sends D to some map k : C ! C

0

. This

gives Fk : FC ! FC

0

. The image of Fk is D, so the factorization of Fk = me

gives a cover of D. Also, D embeds into FC

0

. If p : FB ! D is any arrow,

then Gp is a map in C

reg

from GFB = yB to k. Thus it has a representative

h : B ! C. This shows that p factors through e. Therefore e is a cover with

the required properties.

For the equivalence between 1) and 3), we start from the correspondence of

topologies on C and universal closure operators on C

reg

. Thus, any topology

gives a category D of sheaves, and the condition GF

�

=

y corresponds to this

topology being subcanonical, i.e. to the condition that C is full in D.

�

Let us remark that if the right adjoint is regular, then it is automatically an

equivalence, since D then has the same universal property as C

reg

.

For the remainder of this section we assume that F : E ! C is such, that the

induced class J is a subcanonical topology. By the above lemma, this means that

C

E=reg

is re
ective in C

reg

. In this case, we make the following easy observations:

Lemma 6.3 If J is a subcanonical topology, then:
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1. C

E=reg

is the full subcategory of C

reg

on the objects

0

@

X

f #

Y

1

A

for which f is

closed w.r.t J ;

2. the functor F : E ! C is regular;

3. the functor P

�

� y : C ! C

E=reg

is regular and is a minimal covering;

4. an object is projective in C

E=reg

if it is isomorphic to an object of the form

P

�

y(X) for which X is projective w.r.t. all regular maps in J in C. Thus

P

�

y preserves projectives.

Proof. Item 1) is direct from the correspondence between topologies on C

and closure operators on C

reg

. 2) follows from the de�nition of J , 3) follows

from Lemma 6.2 and 4) follows from the observation that the regular epis in

C

E=reg

are the maps for which the underlying arrow is a map in J .

�

This lemma gives a good description of the properties of C

E=reg

as a subcategory

of C

reg

. Moreover, we show that C

E=reg

is in fact the largest such subcategory:

Theorem 6.4 Let J be a topology. Then C

E=reg

is characterized as the largest

category with the following properties:

� C ! C

E=reg

is a minimal covering;

� the composite E ! C ! C

E=reg

is regular.

This means, that any other category of E=REG that satis�es those properties

will be a full re
ective subcategory of C

E=reg

.

Proof. The previous lemma showed that C

E=reg

indeed has those properties.

If some category D also has them, then this implies that there is a topology H

on C such that D is sheaves for the induced closure operator on C

reg

. Moreover,

from the fact that E ! C ! D is regular, we �nd that this topology H is larger

than J , because maps in � are dense for it. Therefore, any map f in C that is

closed for H is automatically closed for J . Now D is the full subcategory of C

reg

on the H-closed maps, whereas C

E=reg

is the full subcategory on the J-closed

maps. Hence D is contained in C

E=reg

. A re
ection is obtained via the universal

property of C

E=reg

.

�

It would be desirable to know what the role of the objects of C inside the

category C

E=reg

is. It is clear that they are not, in general, the projective

objects. A closely related question is: given a minimal covering as in Lemma6.2,

how can we, categorically, distinguish the objects of C inside D? Although we

could not provide a full answer to this question, the following is worth noticing:

the objects if C are precisely the objects which are projective w.r.t. a certain

class of regular epimorphisms. This class can be described in various ways;
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for instance, it is the class of regular epis that are preserved by the inclusion

D ! C

reg

. Unfortunately, we could not �nd a description of this class that

makes no reference to the category C.

We conclude this section with a remark about the topology J and a question.

The smallest possible topology is that of the split epis: this is obtained by taking

a functor F : E ! C that sends every regular epi of E to a split epi (cf. example

3.3.3). On the other hand, the largest topology that we can obtain is the

topology consisting of all regular epis in C. The tripos-theoretic examples that

we will deal with in section 7 will be instances of this. It might be good to know

necessary and su�cient conditions on F : E ! C under which J is a topology

consisting of all regular epis.

7 Assemblies and Locales

We have now enough concepts and facts to give a categorical characterization of

the category of assemblies Ass

E

(A ). We stress, that the approach below uses a

mild assumption on the partial combinatory algebra: each inhabited subobject

B � A should have a global element 1! B.

Our �rst aim is to show the following theorem:

Theorem 7.1 The categories PAss

E

(A )

E=REG

and Ass

E

(A ) are equivalent.

First, it is easily seen that the inclusion i : PAss

E

(A ) ! Ass

E

(A ) is a minimal

covering: we already described how to cover an assembly (X;E

X

) with a par-

titioned assembly (Q;E

Q

). If m : (Y;E

Y

) ! (X;E

X

) is any map with (Y;E

Y

)

partitioned, then we have E j= 9r : r �E

Y

(y) 2 E

X

(m(y)). Now we use our as-

sumption and pick a global element r : 1! A Now put �m(y) = (m(y); r�E

Y

(y)).

Thus we have a lifting �m : (Y;E

Y

) ! (Q;E

Q

), which shows that Ass

E

(A ) is

a re
ective subcategory of (PAss

E

(A ))

reg

. Denote the topology on Ass

E

(A )

corresponding to this closure operator with M .

The corresponding universal closure operator may therefore be described

in the following manner: given f : (X;�) ! (Y; �), we de�ne an equivalence

relation on X : x � x

0

, f(x) = f(x

0

) ^ �(x) = �(x

0

). This induces an object

(X=�; �̂) and a factorization of f through (X=�; �̂), where (X;�)! (X=�; �̂)

is regular epi.

Now it is easily derived that if a map is in the corresponding topology, then

it must be a cartesian map, hence in the topology induced by the regular epis in

the image of r. Conversely, for such a regular epi r(e), we see that it already a

sheaf (considered as an object of (PAss

E

(A ))

reg

. So the two topologies coincide.

�

Note, that the topology J on the category PAss

E

(A ) consists of all regular

epis. This implies that Ass

E

(A ) is, up to isomorphism, the unique category for

which there is a minimal covering PAss

E

(A ) ! Ass

E

(A ) which preserves the

regular structure; indeed, by the theory of the previous section, a minimal cover

corresponds to a topology in which every map is regular epi (because PAss

E

(A )
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must be a full subcategory); for any such minimal cover PAss

E

(A ) ! D we

know that D is a re
ective subcategory of Ass

E

(A ). But this means that the

topology corresponding to D is larger that J , which is impossible since it must

consist of regular epis.

The above theorem has the following corollary:

Corollary 7.2 (PAss

E

(A ))

E=ex

' RT[A ].

Proof. This is a straightforward consequence of Theorem 2.5, because we

have (PAss

E

(A ))

E=ex

' ((PAss

E

(A ))

E=reg

)

ex=reg

' (Ass

E

(A ))

ex=reg

' RT[A ].

�

Our second application concerns locales; in [9] one �nds the following theorem:

Theorem 7.3 (Menni) Let H be a locale, and let I

�

H denote the non-empty

downsets in H. Then Fam(H)

reg

' Fam(I

�

H).

We will generalize this to an arbitrary locale in an arbitrary topos. So let E be

such a topos, and let H be a locale in E . Then, with notation as in section 2,

we get:

Theorem 7.4 The categories (

R

E

H)

E=reg

and

R

E

(I

�

H) are equivalent.

Proof. This is virtually the same construction as for assemblies. There is an

embedding of

R

E

H into

R

E

(I

�

H), via (X;�) 7! (X;�

0

) with �

0

(x) = #(�(x)).

We cover an object (Y; �) of

R

E

(I

�

H) with (Q; �), with Q = f(y; a)ja 2 �(y)g,

and �(y; a) = #(a). Then one shows that maps f : (Y; �)! (Y

0

; �

0

) lift to these

covers. Also, one embeds (Y; �) in (Y;>), where >(y) = H. For any functor

G :

R

E

H !D in E=REG, the extension

^

G :

R

E

(I

�

H)!D is de�ned by sending

an object (Y; �) to the image of the map G(Q; �) ! G(Y;>). This gives the

universal property.

�

8 Discussion and Open Questions

There are a lot of interesting open questions, to which we have not provided

any answers. The typical type of theorems that are proved about completions

are of the form: the regular/exact completion of C has property X i� C has

property Y , where Y is usually some weakened version of X. For example,

C

ex

is locally cartesian closed i� C has weak dependant products [4]. Or: C

ex

is a topos i� C has weak dependant products and a generic proof [9]. For the

relativised version, the same questions can be asked, but there are even more

basic questions:

1. How can we characterize those objects of E=REG that are in the image

of (�)

E=reg

?
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2. How can we characterize those objects of C

E=reg

that are in the image of

y : C ! C

E=reg

?

3. Same questions for the relative exact completion.

The problem here seems to be to �nd the right relativation of the notion of

projectivity, which is at the heart of the answers to the classical questions.

Another interesting point is, that our main examples were tripos-theoretic

in nature. This suggests that a uniform treatment should be possible. Is there

an operation on indexed pre-orders that corresponds, on the level of their cat-

egories of elements, to the relative regular completion? In fact, we can give an

a�rmative answer here, but this will be the subject of another paper.

Furthermore, in our treatment of assemblies, we used the assumption that

the underlying pca had enough global elements. Although this is not a se-

vere limitation (it is certainly satis�ed if the terminal object 1 is projective,

for instance), we feel obliged to say a word about what would happen if we

omitted it. From the constructions of the canonical covers, it is clear that this

approach makes essential use of the assumption, so the theorem Ass

E

(A ) '

(PAss

E

(A ))

E=reg

would be simply false if we drop it. However, one might

try something along the following line: rede�ne the categories PAss

E

(A ) and

Ass

E

(A ), by taking the same objects, but as morphisms (X;�) ! (Y; �) total

relations R � X � Y for which E j= 9a : A 8x : X9y : Y (R(x; y) ^ a � �(x) #

^�(y) = a � �(x)). This certainly circumvents the need for global elements,

but now the relationship of these newly de�ned categories with the realizability

topos is less clear...

Another problem concerning partitioned assemblies is the following: if E , the

underlying topos, does not have choice, then (PAss

E

(A ))

ex

di�ers from RT[A ]

(in fact, the latter is a re
ective subcategory of the former). But can it happen

that (PAss

E

(A ))

ex

is still a topos? We know (see [9]), that this is equivalent

to asking whether PAss

E

(A ) has a generic proof, which in turn implies that

E has a generic proof. The only examples of toposes with generic proofs that

we are aware of, are toposes that satisfy the axiom of choice or that arise as a

coproduct completion of a small category. The latter can be characterized as

Grothendieck toposes of the form sheaves for the double negation topology on

an atomic site. We could not answer the question whether PAss

E

(A ) having a

generic proof implies that E j= AC, although it can be shown that if the classical

construction of a generic proof in PAss

E

(A ) still works, that this implies choice

for E ; in other words, if PAss

E

(A ) has a generic proof and E does not have

choice, then this generic proof is not the usual one!

Finally, we would like to see more mathematically interesting examples of

relative completions that are not of the above kind.

9 Appendix: Proof of Lemma 5.5

We prove lemma 5.5, stating that for every map f : X ! Y be a map in C,

inducing a mono [f ] : f ! yY in C

reg

: f 2 J(Y ) implies [f ] 2 �.
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Proof. We show this by induction on the structure of J . Observe, for the

basic case, that if f is of the form F (e) with e regular epi in E , then [f ] 2 �

0

(and vice versa). Next, if f arises as the pullback of such a map F (e) as in the

left diagram

0

@

M

p#

N

1

A

&&

[r]

▼▼
▼▼

▼▼
▼▼

▼▼
▼▼

▼▼
▼▼

▼▼
▼

��

[s]

✴
✴
✴
✴
✴
✴
✴
✴
✴
✴
✴
✴
✴
✴
✴
✴
✴
✴
✴
✴
✴

��

[u]

❀
❀

❀
❀

X

//
f

��

Y

��

�

0

@

X

f #

Y

1

A
//

��

[f ]

0

@

FE

0

Fe#

FE

1

A

��

[Fe]

FE

0 //
Fe

FE

y(Y )

//
y(�)

y(FE)

then we can show that the square in the diagram on the right is a pullback in

C

reg

: for consider another object (p : M ! N ) in C

reg

, and maps [r] : p !

Fe; [s] : p ! y(Y ), such that [Fe] � [r] = y(�) � [s], i.e., Fe � r = � � s. Since

the left diagram is a pullback in C, there is a unique u : M ! X, such that

�

Y

� u = s; �

FE

� u = r. No in C

reg

, u induces a map [u] : p ! f , because

(writing p

0

; p

1

for the kernel pair of p), f � u � p

0

= s � p

0

= s � p

1

= f � u � p

1

.

This map [u] is the unique map that makes [r] and [s] factor through the object

f . Hence the square is a pullback. Since � was closed under pullbacks and the

right-hand map was in it, so is the left-hand map.

Then, suppose that h is in J(Y ) because f = hg is in J(Y ). By induction

hypothesis, [f ] = [hg] is in �. We need to verify that [h] 2 �. But [h] is

mono, and � is a pullback congruence, so if [hg] will be inverted, so will [h], and

therefore [h] 2 �.

Finally, consider a composite of such arrows (it su�ces to look only at a bi-

nary composite): suppose h 2 J(Y ); g 2 J(Y

0

), so that, by induction hypothesis,

[h] : h ! y(Y ); [g] : g ! y(Y

0

) 2 �. We must show that [hg] : hg ! y(Y ) 2 �.

First, consider the following pullbacks, where the �rst one is in C, and the second

one in C

reg

:

X

))

1

❚❚❚
❚❚❚

❚❚❚
❚❚❚

❚❚❚
❚❚❚

❚❚

��

g

✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳

$$
■■

■■
■■

■■
■

X �

Y

Y

0 //

��

X

��

g

Y

0

��

h

Y

0 //
h

Y
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0

@

X

g#

Y

0

1

A

&&
▼▼

▼▼
▼▼

▼▼
▼▼

▼▼
▼▼

▼▼
▼▼

▼▼
▼▼

▼▼
▼

��
✲
✲
✲
✲
✲
✲
✲
✲
✲
✲
✲
✲
✲
✲
✲
✲
✲
✲
✲
✲
✲
✲
✲
✲
✲
✲
✲
✲

��
❁❁

❁❁
❁
❁❁

❁❁
❁
❁

0

@

X �

Y

Y

0

#

Y

0

1

A
// //

��

��

0

B

B

B

B

@

X

g#

Y

0

h#

Y

1

C

C

C

C

A

��

��

[g]

yY

0 // //
[1]

0

@

Y

0

h#

Y

1

A

In the second diagram, the object X �

Y

Y

0

! Y

0

is the projection as in the

�rst pullback. It is easily veri�ed that the outer square of the second diagram

commutes, so there is a factorization through the pullback. Now, since [g] : g !

yY

0

in �, so is [�

Y

0

] : �

Y

0

! yY

0

. Because pullbacks along regular epimorphisms

re
ect �-maps, we obtain that [g] : hg ! h is also in �. Using that � is closed

under composition, we �nd that [hg] : hg ! h! yY 2 �, and our induction is

complete.

�
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