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1 Introduction

In this paper we give an explicit description of the W-types in the effective topos Eff.
The result that the effective topos has W-types is immediate from the observation
of Moerdijk and Palmgren (see [5]) that any topos with a natural number object
has W-types. Nevertheless, we feel that an explicit construction is of interest.

We limit ourselves to the construction and will not provide an exhaustive justi-
fication for the claim that it is the W-type. The missing details can be found in the
article [1] (this paper will contain references to the relevant points in that article).

We warn the reader who is concerned about foundations, or is working over an
arbitrary topos, that the validity of the description that we give depends on the
validity of the internal axiom of choice in Set. We refer to the remark at the end
of this paper.

A final word about the outline of this paper. Before giving an explicit description
of the W-type for a map f in the effective topos, we first isolate a full subcategory of
it, the category Ass of assemblies, and give an explicit description of the W-types
in this category. Then we show that these W-types are also the W-types in the
whole category. In the last section we demonstrate how this can be used to give an
explicit description of all W-types in the effective topos.

2 The construction of W-types in Ass

In this section we will introduce a full subcategory of the effective topos, the category
of assemblies, and show that it has W-types.

An assembly is a set X together with a function Ex : X — P;N. Here P;N
means the set of inhabited subsets of N. (Such an assembly can be regarded as an
object in the effective topos in an obvious way.) If n € Ex(x), n will be called a
realizer or a witness for x. The set X is the underlying set of the assembly (X, Fx)
and we will use X both as a name for the assembly and its underlying set.

If Y is some other assembly, a morphism of assemblies from Y to X is a function
f Y — X (the underlying function) with the property that f is tracked (or
realized) by some partial recursive function r. This means that for every element y
and every realizer n of y, r-n is defined and equal to a realizer of f(y). (Nota bene:
- is the symbol for Kleene application, and partial recursive functions will always
be assumed to be coded as natural numbers.)

It is well known that the category of assemblies is a locally cartesian closed
regular category with natural number object and finite disjoint sums. We will show



that it also has W-types, but first we will give an explicit description of the Py-
functor is the category of assemblies.

So let f: B — A be a fixed morphism of assemblies and let X be an arbitrary
assembly. Now the underlying set of P;(X) is the set of pairs (a,t) where a is an
element of A and t is a function from B, to X. A natural number n is a realizer
for (a,t), if n =< mng,n1 > is such that ng realizes a and n; tracks ¢ (the latter
meaning, of course, that for every b € B, and every realizer m of b, ny -m is defined
and equal to a realizer of ¢b).

The W-type for f is now constructed as follows. First construct the W-type
W for the underlying function f in the category Set. We now define a function
E : W — PN by transfinite induction: E(sup,t) consists of those natural numbers
n =< ng,ny > such that (i) ng realizes a; and (ii) ny tracks ¢, that is, for every
b € B, and every realizer m of b, ny - m is defined and a member of E(tb). We call
a member n of F(w) a decoration or a realizer of the tree w € W. The trees w
that have a decoration are called decorable and V will be the name of the set of all
decorable trees.

The set V is the underlying set of an assembly that has the restriction of E to
V as second component. This assembly, that will also be called V, is, we claim,
the W-type for f in the category of assemblies. It is not hard to see that it has the
structure of a Py-algebra. Let a be an element of A and ¢ be a function B, — V.
The element sup,(t) € W is actually an element of V, because if n is a realizer
of (a,t) in Py(V), then n is a decoration of sup,(t) (this is immediate from the
definition of E). So one has a map of assemblies s : P;(V) — V that is tracked by
the identity.

Now we want to invoke the following theorem (theorem 25 in [1]) to show that
V' is the W-type.

Theorem 2.1 Let C be a locally cartesian closed regular category with a natural
number object and finite disjoint sums and let f : B — A be a morphism in C.
Assume that (V,s : P(V) — V) is a Ps-algebra having the following two properties:
(i) its structure map s is mono; (i) it has no proper Pr-subalgebras. Then V is the
W-type for f.

One immediately sees that s is monic, simply because sup is (in fact, it is not
hard to see that s is iso). Therefore we only need to show that V has the second
property.

Let (X,m : P;(X) — X) be a subalgebra of V. We may assume that the
underlying set X is actually a subset of V' and that m is the restriction of s to
P;(X) on the level of underlying functions. First of all, we show that X =V on
the level of sets. Let P be set of trees w € W for which we have that:

weV=welX

We show that P = W by transfinite induction, which immediately shows that X =
V as sets. So suppose sup,t € W and tb € P for allb € B, (herea € A,t: B, — W,
of course). We want to show that sup,t € P, so assume that sup,t € V. Because s
is iso, we have that tb € V and hence, by induction hypothesis, tb € X. Since on
the level of sets, m is the restriction of s which is a restriction of sup, we have that
sup,t is in X. This completes the proof.

To show, finally, that the X and V are isomorphic as assemblies, we have to show
that the identity map ¢ : V' — X is tracked by some partial recursive function r.
For this, let p be a partial recursive function tracking m and let H be the primitive
recursive function computing the composition of two partial recursive functions
(that is, H(z,y)-n =z - (y-n)). Now solve r from the following equation using the



First Recursion Theorem:
r- <ng,ny >=p <ng,H(r,ny) >

It is easy to see that r tracks 7, by proving by transfinite induction that for any tree
w € W and any decoration n of w, 7 - n is defined and a realizer of i(w).

This completes the proof of the fact that V is the W-type of f in the category
of assemblies.

Remark 2.2 The fact that Ass has W-types is probably well-known, although the
only written proof that we could find is contained in [2]. The argument that we
give here is based on some unpublished notes by Ieke Moerdijk.

3 The inclusion 7 : Ass — Eff preserves W-types

In this section we intend to show that the inclusion ¢ : Ass — Eff preserves W-

types. What we mean is that the W-type for a map f in Ass will be sent to the

Wh-type for the map if in the effective topos. The proof will be very easy once we

make the following two observations. But let’s fix notation first: let f : B — A be a

morphism of assemblies and let W be the W-type of f in the category of assemblies.
First of all, observe that the following diagram commutes:

Ass % Eff

S

Ass f) Eff

In words, this means that if one takes an assembly X for which one wishes to
compute P;r(iX) in the effective topos, one might do this by computing P;(X) in
the category of assemblies and then take the corresponding object in the effective
topos. (The reason is that an exponential of two assemblies in the effective topos
yields the same object as in assemblies, also when one is working in a slice over an
assembly.) This means that iWW is a P;s-algebra in the effective topos and that the
structure map is an isomorphism.

The second observation is that a subobject of an assembly in the effective topos
is, up to isomorphism, again an assembly. This is immediate, when one notes that
the assemblies are, up to isomorphism, the separated objects of the effective topos.
(See [3], pp. 182 and 185.)

This means that the result follows immediately from theorem 2.1. (One could
also invoke proposition 1 in [4].)

4 W-types in Eff

In this section we assume the internal axiom of choice (IAC) in Set and we construct
Wh-types for all maps f in the effective topos. But first we need to introduce a full
subcategory of Ass, the category Pass of partitioned assemblies.

A partitioned assembly is a set X together with a function 7x : X — N and a
morphism of partitioned assemblies is a function f : Y — X which is tracked by
some partial recursive function r. This means that for every element y, r - 7wy (y) is
defined and equal to mx (f(y)). Any partitioned assembly is clearly an assembly.

Recall that Eff has enough partitioned assemblies: if (X, =) is an object in Eff
then (N x X' ) where X' = {z € X | E[z] # 0} and m; is the first projection,
covers (X, =), and we call such a cover a pass cover for (X, =).



By theorem 28 of [1], given a diagram as follows:

B ——B

{3}
|
I—A
A {3
where ¢ a choice map and the square a quasi-pullback, W := W(f) can be con-

structed as a subquotient of W' := W(¢). More precisely, consider the following
relation on W', defined inductively in the internal logic by: sup,7 ~ sup,, 7" iff

{a} ={d}AVB € ¢ (), V3 € ¢~ (o) : {B} = {B} = 7B~ T'F

~ is symmetric and transitive. We construct W by considering the reflexive elements
and dividing out by the equivalence relation ~.

Besides, the structure map sup : Ps(W) — W is the unique arrow making the
following diagram commute:

Py(W)e—— R* —— Ps(W')

: 9 -
isup lsup lsup
: q

W4 R W

where R is the object of reflexive elements, ¢ the quotient map and ¢* is defined on
a pair (o, 7 : B, — W’) such that sup,7 € R as the pair (a,t), with a = {a} and
t: B, — W defined by t({5}) = [7(8)] (which is well-defined, because sup,7 € R).
(It is in showing that ¢* is epi that one uses the fact that ¢ is a choice map.)

Now, assuming the internal axiom of choice (IAC) in Set, this is all what we
need in order to give an explicit description of the W-types in Eff, because of the
following lemmas.

Lemma 4.1 (with IAC) If P is a partitioned assembly, then (=) preserves any
ept whose domain is also a partitioned assembly.

Proof: Let e : X — Y be an epi and X a partitioned assembly. Let also E be
a representative for e (i.e. e = [E]) and 8 : P x Y — P(N) be such that “g is a
functional relation” is realized by some m € N.

There are two recursive functions ¢, and ¢, both recursive in m, such that,
for any p,y and for any n € B(p,y): ¢m(n) is defined and ¢, (n) € E(x,y) for some
x € X and for any p,y and for any n € B(p,y): ¢, (n) is defined and ¢! (n) =
m(x) for some x € X (using the facts that i) § is strict, ii) e is epi and iii) F is
strict). There is also a recursive function ,,, recursive in m, such that, for any p:
Ym(m(p)) = w(x) for some x € X (using the totality of 8 and the above).

By (IAC), there is a function f : P — X such that, for any p: ¥, (7(p)) =
7(f(p)) and f is tracked by any code for t,,. In other words, a(p,z) := {=(p)} iff
f(p) = z (0 otherwise) is a functional relation, and a realizer for F,, can be obtained
recursively from any code for 1, hence, from any realizer for Eg. Thus, a realizer
can be found (using the above and the fact that E is single-valued) for:

(Es = J(Ea A Es A B, y) < (b, ) A E(2,9)))

B a 7 ©
But this means exactly that X — YT is epi. a

Lemma 4.2 (with IAC) Every partitioned assembly is internally projective.



Proof: Take an epi e : ¥ — X and a partitioned assembly P. Consider the
following quasi-pullback:

Y —Y

e/l le

X —X
where X’ and Y’ are pass covers of X and X’ X x Y respectively. Note that ¢’ is epi
because quasi-pullbacks preserve epis. By the preceeding lemma, applying (=) to
this diagram gives us a commutative diagram where the arrow e’ is epi because

the other three are.
Y/P — YP

[

XIP [N XP
O

Lemma 4.3 (with IAC) Every map between partitioned assemblies is a choice map.

Sketch of proof: Recall that if (IAC) holds in a topos then it holds in any slice.
Therefore, we can use the same kind of arguments as in lemmas 4.1 and 4.2. O

The next lemma now follows easily from the ones above.

Lemma 4.4 (with IAC) For every arrow f : B — A in Eff there exist partitioned
assemblies A" and B’, covering A and B respectively, and a choice map ¢ such that
the following diagram is a quasi-pullback:

p—1p

‘i

I
A—b{} A

Proof: Choose A’ and B’ to be pass covers of A and A’ x 4 B respectively. O
Using the internal logic of Eff, we can now describe W-types as follows:

Theorem 4.5 (with IAC) If f : B — A is an arrow in Eff then W := W(f) =

(Wset(¢), ~), where ¢ is as in the lemma above, and, for w = sup, T, w' = sup,, 7':

r |w ~w if and only if r =< ro,71, 72 > such that the following hold:
(1) ro |FEwA Ew'
(2) r1 |Fa=d

(8) for all 3,3, m such that m |[-3 € ¢ (a)ANB € ¢ H/)Ab=1V, ry-m is
defined and ro - m |10 ~ 7'

where o = (a,n) € Ao’ = (d,n) € ALB = (bp) € BLB = (V,p)) € B and
Ew = {decorations of w}.
Moreover, for a € |A|, T : |B| x [W| — P(N), and w € Wse(¢), we write:

E(a,T) = E(a)AN[T is a strict and single-valued relation] A

() (Fb,a) = |J Tk,w)

be|B| we|W|



Then the structure map sup : Pr(W) — W can be represented by:

sup((a,T),w) = E(a,T)A U [{a} = a) A (supaT ~ w) A
a,TE|R*|
N UwemTUBY W) A (T ~ w')]
Be|B;|

Proof: The proof consists in rewriting in terms of realizers the description we gave
using the internal logic of Eff. O

Remark 4.6 In the absence of the internal axiom of choice in Set, the description
in theorem 4.5 is no longer valid. In fact, it can be shown that the validity of the
description implies the internal axiom of choice in Set. We will outline a proof of
this statement.

Let B be any set and A a set together with an equivalence relation ~. Let
q: A — A/~ be the quotient map. We will prove the validity of the statement

Vge (A/~)PIne AB i qoh =g

in the internal logic of Set. This implies the internal axiom of choice.
It is well known that there exists a functor V that embeds Set in the effective
topos. We change the definition of V a bit in order to get a functor Vj:

where n € [a = d] if n =0 and @ = a/. Vj is naturally isomorphic to V, but the
difference is that objects in the image of V( are partitioned assemblies.

Consider the following two objects of the effective topos: V(B and Vo(A/ ~).
Observe that any function g : B — A/ ~ gives rise to an element G of |[V(A4/ ~
)V()B | .

Now consider the following morphism in the effective topos: f : VoB — 1+
Vo(A/ ~), the composition of the unique map VoB — 1 and the sum inclusion
1 — 1+ Vo(A/~). If ¢ is the composition of VoB — 1 and 1 — 1 + VA, then
f and ¢ fit into a (quasi-)pullback of the form considered in lemma 4.4 (minus the
requirement that ¢ is a choice map).

The next observation is that the equivalence classes [a] belong to W(f). To be
more precise, the elements a belong to the underlying set Wset(¢) and [a =y (y) o]
is inhabited iff a ~ a’. So the element G of |Vo(A4/~)VoB| gives rise to an element
(*,Q) in |Py(W(f))| (where * is the unique element of 1).

Now the totality of the morphism sup implies more or less immediately that
there exists a morphism h : B — A such that g o h = g. But this is precisely what
we wanted to prove.
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