Arithmetic is Categorical

Benno van den Berg Jaap van Oosten Department of Mathematics Utrecht University

May 30, 2011; revised September 26, 2014

Abstract

We show that in the Effective Topos, there is exactly one model of intuitionistic $I\Sigma_1$ (the basic theory of the nonnegative integers with induction for Σ_1 -formulas). This generalizes and reinterprets a similar theorem by Charles McCarty. We conclude that in the Effective Topos, first-order arithmetic is essentially finitely axiomatized.

In [3], McCarty showed that in the Friedman-McCarty realizability model of intuitionistic set theory, there is only one model of Heyting Arithmetic. See also [4]. The present note strengthens this result and reinterprets it. For unexplained notions concerning the Effective Topos, consult [6].

Let $I\Sigma_1^i$ be the theory in the language $\{0, S, +, \cdot, \leq\}$ axiomatized by the axioms of Q_{\leq} (see [1]) and induction for Σ_1 -formulas; but based on intuition-istic logic.

Theorem 0.1 In the effective topos $\mathcal{E}ff$ there exists (up to isomorphism) precisely one model of $I\Sigma_1^i$, namely the standard model N (the canonical structure on the natural numbers object).

Proof. We recall that $I\Sigma_1^i$ proves decidability of all Δ_0 -formulas. Hence every model of $I\Sigma_1^i$ must be a decidable object in $\mathcal{E}ff$, and therefore isomorphic to a modest set (X, E) (see [6], p.153).

Since such a model (X, E) has an element 0 and an injective endofunction S, there is an embedding from N into it: a function $i : \mathbb{N} \to X$ such that for some total recursive function t we have $t(n) \in E(n)$ for all $n \in \mathbb{N}$. The

decidability of (X, E) means that there is a partial recursive function d which is defined on the set $(\bigcup_{x \in X} E(x))^2$, and satisfies:

 $d(k, l) = 0 \iff$ there is $x \in X$ with $k, l \in E(x)$

Now if $x \in X$ is in the image of *i* then for each $a \in E(x)$ there is a unique $n \in \mathbb{N}$ such that d(a, t(n)) = 0; and this *n* can be found recursively in *a*. We conclude:

The map i embeds N as $\neg\neg$ -closed subobject in (X, E)

Therefore, if the function i is surjective, it is an isomorphism.

For the sake of a contradiction, suppose *i* is not an isomorphism. Then there is an element $c \in X$ which is not in the image of *i*, and by decidability of the linear order and the fact that *i* embeds *N* as downwards closed subset (which is all provable in $I\Sigma_1^i$) we have $\mathcal{E}ff \models \forall n: N.i(n) < c$.

Now, we can copy what is essentially McCarty's argument. Since $I\Sigma_1^i$ proves the representability and totality of all primitive recursive functions, let $\exists z T'(e, x, y, z)$ and $\exists w U'(x, i, w)$ be Σ_1 -formulas (so T' and U' are Δ_0) representing the Kleene T-predicate T(e, x, y) and result extracting function U(x) = i, respectively. Define the subobject A of (X, E) internally by

$$A = \{ x < c \,|\, \forall y < c \neg \exists z < c \exists w < c(T'(x, x, y, z) \land U'(y, 1, w)) \}$$

Then since A is given by a Δ_0 -formula, A is a decidable subobject of (X, E)and hence $i^{-1}(A)$ is a decidable subobject of N; which means that

$$R = \{ n \in \mathbb{N} \mid \mathcal{E}ff \models n \in i^{-1}(A) \}$$

is a recursive subset of \mathbb{N} .

Moreover, for the following subsets of \mathbb{N} :

$$A_0 = \{n \in \mathbb{N} \mid \varphi_n(n) = 0\}$$

$$A_1 = \{n \in \mathbb{N} \mid \varphi_n(n) = 1\}$$

we have $A_0 \subset R$ and $A_1 \cap R = \emptyset$.

So, R is a recursive separation of the sets A_0 and A_1 , but it is well-known that this is impossible.

Corollary 0.2 Let IZF be intuitionistic set theory (as formulated in, e.g., [2]). Then IZF does not prove that there is a model of classical $I\Sigma_1$. Moreover, IZF does not prove that there is a model of $I\Sigma_1^i$ which is not a model of full Heyting Arithmetic.

Proof. In [6], section 3.5, it is shown that the Friedman-McCarty realizability interpretation of IZF can be seen as an interpretation of IZF in $\mathcal{E}ff$. Any model as in the corollary would thus give rise to one such model in $\mathcal{E}ff$, which we have shown not to exist.

We conclude that whoever predicates his notion of truth on the effective topos, must accept the following nonstandard conclusions:

- a) Classical $I\Sigma_1$ is 'inconsistent' (it has no models)
- b) Heyting Arithmetic is essentially finitely axiomatized (it is equivalent to $I\Sigma_1^i$).

Remark 0.3 Both in [5] and [7], 'realizability-like' toposes are presented in which nonstandard models of PA do exist.

References

- Samuel R. Buss. First-order Proof Theory of Arithmetic. In S.R. Buss, editor, Handbook of Proof Theory. Elsevier, 1998.
- [2] H.M. Friedman. Some applications of Kleene's methods for intuitionistic systems. In A. R. D. Mathias and H. Rogers, editors, *Cambridge Summer School* in Mathematical Logic, pages 113–170. Springer-Verlag, 1973.
- [3] Charles McCarty. Variations on a Thesis: Intuitionism and Computability. The Notre Dame Journal of Formal Logic, 28(4):536–580, 1987.
- [4] Charles McCarty. Constructive Validity is Nonarithmetic. Journal of Symbolic Logic, 53:1036–1041, 1988.
- [5] B. van den Berg. The Herbrand Topos. Math. Proc. Camb. Phil. Soc., 155(02):361–374, 2013.
- [6] J. van Oosten. Realizability: an Introduction to its Categorical Side, volume 152 of Studies in Logic. North-Holland, 2008.
- [7] J. van Oosten. Realizability with a Local Operator of A.M. Pitts. *Theoretical Computer Science*, 546:237–243, 2014.