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Abstract

We show that in the Effective Topos, there is exactly one model
of intuitionistic IΣ1 (the basic theory of the nonnegative integers with
induction for Σ1-formulas). This generalizes and reinterprets a similar
theorem by Charles McCarty. We conclude that in the Effective Topos,
first-order arithmetic is essentially finitely axiomatized.

In [3], McCarty showed that in the Friedman-McCarty realizability model
of intuitionistic set theory, there is only one model of Heyting Arithmetic.
See also [4]. The present note strengthens this result and reinterprets it. For
unexplained notions concerning the Effective Topos, consult [6].

Let IΣi
1 be the theory in the language {0, S,+, ·,≤} axiomatized by the

axioms of Q≤ (see [1]) and induction for Σ1-formulas; but based on intuition-
istic logic.

Theorem 0.1 In the effective topos Eff there exists (up to isomorphism)
precisely one model of IΣi

1, namely the standard model N (the canonical
structure on the natural numbers object).

Proof. We recall that IΣi
1 proves decidability of all ∆0-formulas. Hence every

model of IΣi
1 must be a decidable object in Eff , and therefore isomorphic to

a modest set (X,E) (see [6], p.153).
Since such a model (X,E) has an element 0 and an injective endofunction

S, there is an embedding from N into it: a function i : N → X such that
for some total recursive function t we have t(n) ∈ E(n) for all n ∈ N. The
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decidability of (X,E) means that there is a partial recursive function d which
is defined on the set (

⋃
x∈X E(x))2, and satisfies:

d(k, l) = 0 ⇔ there is x ∈ X with k, l ∈ E(x)

Now if x ∈ X is in the image of i then for each a ∈ E(x) there is a unique
n ∈ N such that d(a, t(n)) = 0; and this n can be found recursively in a. We
conclude:

The map i embeds N as ¬¬-closed subobject in (X,E)
Therefore, if the function i is surjective, it is an isomorphism.

For the sake of a contradiction, suppose i is not an isomorphism. Then
there is an element c ∈ X which is not in the image of i, and by decidability
of the linear order and the fact that i embeds N as downwards closed subset
(which is all provable in IΣi

1) we have Eff |= ∀n:N.i(n) < c.
Now, we can copy what is essentially McCarty’s argument. Since IΣi

1

proves the representability and totality of all primitive recursive functions,
let ∃zT ′(e, x, y, z) and ∃wU ′(x, i, w) be Σ1-formulas (so T ′ and U ′ are ∆0)
representing the Kleene T -predicate T (e, x, y) and result extracting function
U(x) = i, respectively. Define the subobject A of (X,E) internally by

A = {x < c | ∀y < c¬∃z < c∃w < c(T ′(x, x, y, z) ∧ U ′(y, 1, w))}

Then since A is given by a ∆0-formula, A is a decidable subobject of (X,E)
and hence i−1(A) is a decidable subobject of N ; which means that

R = {n ∈ N | Eff |= n ∈ i−1(A)}

is a recursive subset of N.
Moreover, for the following subsets of N:

A0 = {n ∈ N |ϕn(n) = 0}
A1 = {n ∈ N |ϕn(n) = 1}

we have A0 ⊂ R and A1 ∩R = ∅.
So, R is a recursive separation of the sets A0 and A1, but it is well-known

that this is impossible.

Corollary 0.2 Let IZF be intuitionistic set theory (as formulated in, e.g.,
[2]). Then IZF does not prove that there is a model of classical IΣ1. More-
over, IZF does not prove that there is a model of IΣi

1 which is not a model of
full Heyting Arithmetic.
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Proof. In [6],section 3.5, it is shown that the Friedman-McCarty realizability
interpretation of IZF can be seen as an interpretation of IZF in Eff . Any
model as in the corollary would thus give rise to one such model in Eff , which
we have shown not to exist.

We conclude that whoever predicates his notion of truth on the effective
topos, must accept the following nonstandard conclusions:

a) Classical IΣ1 is ‘inconsistent’ (it has no models)

b) Heyting Arithmetic is essentially finitely axiomatized (it is equivalent
to IΣi

1).

Remark 0.3 Both in [5] and [7], ‘realizability-like’ toposes are presented in
which nonstandard models of PA do exist.
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