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1 Introduction

1.1 Background and Motivation

The notion of Relative Realizability goes back to the work of Kleene and Ves-

ley [14] (actually, it is even older than that; see 4.3 of this paper) and it was

described by means of tripos theory right from the beginnings of that theory,

see, e.g., [17, Section 1.5, item (ii)]. Recently there has been a renewed interest

in Relative Realizability, both in Thomas Streicher's \Topos for Computable

Analysis" [18] and in [2, 1, 4]. The idea is, that instead of doing realizability

with one partial combinatory algebra A one uses an inclusion of partial combi-

natory algebras A

]

� A (such that there are combinators k; s 2 A

]

which also

serve as combinators for A), the principal point being that \(A

]

-) computable"

functions may also act on data (in A) that need not be computable.

In [2] there is an analysis of the relationships between relative realizability

over A

]

� A and the ordinary realizabilities over A

]

and A. Let RT(A

]

; A)

be the relative realizability topos, and RT(A

]

), RT(A) the ordinary (e�ective

topos-like) realizability toposes; then

� there is a local geometric morphism from RT(A

]

; A) to RT(A

]

); and

� there is a logical functor from RT(A

]

; A) to RT(A).

�
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The motivation for the present paper was the observation that there is a general

pattern underlying these results.

The basic point is the following. We view A = (A

]

! A) as an internal

partial combinatory algebra in the topos Set

!

(sheaves over Sierpinski space)

and we write P

A

for the standard Set

!

-indexed realizability tripos over A. This

internal partial combinatory algebra is what we call j-regular with respect to

the open topology j = ::; here this just boils down to the fact that A

]

is closed

under application in A. Then one has that P

A;j

, the tripos of j-closed subsets

of A, is an open subtripos of P

A

which gives the relative relizability topos

RT(A

]

; A); and its closed complement Q

A;j

gives what we call relative modi�ed

realizability. In the case where A

]

= A = N , the standard Kleene partial

combinatory algebra on the natural numbers, our notion of relative modi�ed

realizability topos agrees with the standard modi�ed realizability topos [6, 9, 21].

In this basic setup, there is an embedding from A

]

= (A

]

! A

]

) to A =

(A

]

! A) in Set

!

of partial combinatory algebras, which is what we call el-

ementary. Here this just means that whenever Set

!

j= 9x:A, we also have

that Set

!

j= 9x:A

]

, which holds because of the Kripke interpretation of 9 in

Set

!

. Because of this elementary embedding it follows from our general results

that there is a local geometric morphism P

A

! P

A

]

, which restricts to a local

geometric morphism P

A;j

! P

A

]

;j

which exactly induces the above mentioned

local map RT(A

]

; A) ! RT(A

]

). The local geometric morphism P

A

! P

A

]

also restricts to a local geometric morphism among the modi�ed realizability

triposes Q

A;j

! Q

A

]

;j

.

There is a third internal partial combinatory algebra in Set

!

, namely B =

(A ! A) and because the subobject A ! B is j-dense (still with j = ::) it

follows from our general results that there is logical functor P

A;j

! P

B;j

, which

exactly induces the logical functor RT(A

]

; A) to RT(A) mentioned above.

1.2 Outline

In Section 2.1 we present the precise de�nition of an internal partial combinatory

algebra and establish some notation to be used in the sequel. Then in Section 2.2

we embark on a general theory of triposes on a topos E . One of the key notions

appears to be that of an elementary map (De�nition 2.2) in E . We show that if

there is an elementary map of partial combinatory algebras A! B, then there

is a geometric morphism of triposes P

B

! P

A

, which is local when the map

A! B is monic (in E).

In Section 2.3, we consider realizability triposes relative to internal topolo-

gies. Given a topology j on E , we de�ne what it means that A is j-regular.

When this is the case, we show that there is a geometric inclusion from P

A;j

,

the tripos built using only the j-closed subsets of A, to P

A

, the standard real-

izability tripos over A. Moreover, when A and B are both j-regular, and there

is an elementary map A ! B, then the (local) geometric morphism P

B

! P

A

restricts to a (local) geometric morphism P

B;j

! P

A;j

.

We then look in particular at the case where j is an open topology; in this

situation we �nd that also the inclusion P

A;j

! P

A

is open and P

B;j

is then the

2



pullback of P

A;j

along P

B

! P

A

. Since P

A;j

! P

A

is open it makes sense to

look at its closed complement, which we de�ne as the modi�ed realizability tripos

and denote by Q

A;j

; the topos it represents is denoted M

A;j

. We show that

the local geometric morphism P

B

! P

A

restricts to a local geometric morphism

Q

B;j

! Q

A;j

and that Q

B;j

is the pullback of Q

A;j

along P

B

! P

A

.

In Section 2.4 we show that if we have a j-dense inclusion A! B of partial

combinatory algebras, then P

B;j

is a �lter-quotient of P

A;j

and thus there is a

logical functor P

A;j

! P

B;j

.

In Section 3 we explore the relationship with the topos of sheaves for j. We

show that, in general, Sh

j

(E) is the pullback of E [P

A;j

] along the inclusion of E

into E [P

A

] and that, in case j is open with closed complement k, Sh

k

(E) is the

pullback of M

A;j

along the inclusion of E into E [P

A

].

The �nal Section 4 contains applications and relations to existing work in

the literature.

2 Triposes over Internal Pca's

2.1 Internal Partial Combinatory Algebras

In this section we intend to lay down some basic de�nitions and to �x notation.

We shall work, throughout this section, in an arbitrary topos E . We shall

employ the internal language and logic freely, and assume the reader is familiar

with its use.

Let A be an object of E , and f : A �A * A a partial map. We shall write

D

A

for its domain, i.e. the object de�ned by the pullback diagram

D

A

//

��

A� A

��

f

A

//

�

A

~

A

where A

�

A

!

~

A is the partial map classi�er of A.

We see this as a structure for a language with just a partial binary function

symbol, which we write as juxtaposition: a; b 7! ab. In composite expressions

we assume association to the left, i.e. abc is short for (ab)c. In manipulating

terms in this language we use the symbol \#" (\is de�ned"). For a term t,

composed from variables x

1

; : : : ; x

n

of type A and juxtaposition, we de�ne its

meaning t[~u] = t[u

1

; : : : ; u

n

] and the formula t[~u]# by a simultaneous induction

(here u

1

; : : : ; u

n

denote generalized elements of type A, i.e. morphisms U ! A

for some parameter object U ):

x[~u]# = > x[u] = u

ts[~u]# = t[~u]# ^ s[~u]# ^ (t[~u]; s[~u]) 2 D

A

ts[~u] = f�ht[~u]; s[~u]i

Note that t# implies t

0

# for any subterm t

0

of t. Given two terms t and s, we
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use the expression t � s as an abbreviation for

(t# $ s#) ^ (t# ! t = s)

.

De�nition 2.1 a) The structure (A;D

A

f

! A) is called a partial combina-

tory algebra in E , if the statements:

k 9k:A8xy:A:kxy# ^ kxy = x

s 9s:A8xyz:A:sxy# ^ sxyz � xz(yz)

are both true in the internal logic of E .

b) Given two partial combinatory algebras (A;D

A

f

! A) and (B;D

B

g

! B)

in E , a map � : A ! B is called an applicative map if the following

conditions hold:

i) the map D

A

���

! B � B factors through D

B

ii) the diagram

D

A

//
���

��

f

D

B

��

g

A

//

�

B

is a pullback in E (in particular, it commutes!)

iii) the formulas

9k:A8xy:B:�(k)xy# ^ �(k)xy = x

9s:A8xyz:B:�(s)xy# ^ �(s)xyz � xz(yz)

are true in E .

Note that the combinator axioms k and s do not require k and s to be global

elements of A. We �nd this appropriate because we do not require the maps to

preserve the chosen k and s.

The standard facts about partial combinatory algebras (see, e.g.,[3]) that we

need, are all constructively valid, and carry over to internal partial combinatory

algebras in a topos E . In particular, we shall use

� Sch�on�nkel's Combinatory Completeness: for any term t and any variable

x, there is a term �x:t such that for any term s, (�x:t)s � t[s=x] holds;

� Pairing: the sentence

9p; p

0

; p

1

:A:8xy:A:pxy# ^ p

0

(pxy) = x ^ p

1

(pxy) = y

is true in E . In fact, any choice of k and s in A give p; p

0

; p

1

de�nable in

k, s.
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Given a partial combinatory algebra A we de�ne the two maps

^

A

;)

A

: 


A

�


A

! 


A

internally by:

X ^

A

Y = fx 2 A j p

0

x 2 X and p

1

x 2 Y g

X )

A

Y = fa 2 A j 8b 2 X(ab# ^ ab 2 Y )g

The notations ^;) will be extended to morphisms: X ! 


A

by composition;

and the subscript will be used only if confusion is possible.

2.2 Realizability Triposes on E

Let (A;D

A

f

! A) be a partial combinatory algebra in E . We shall not de�ne

the notion of a tripos (instead, refer the reader to [8]), but just for de�niteness

we recall the de�nition of the standard realizability tripos on E with respect to

A, which we shall denote by P

A

. P

A

(X) is the set of arrows: X ! 


A

in E .

P

A

(X) is preordered by: for ';  2 P

A

(X), ' �  if and only if the sentence

9a:A:8x:X:a 2 ['(x))  (x)]

is true in E .

P

A

(X) is a Heyting prealgebra, and the (extensions of the) maps ^

A

, )

A

serve as meet and Heyting implication, respectively.

For any arrow f :X ! Y we have P

A

(f):P

A

(Y ) ! P

A

(X) by composition.

This map is a morphism of Heyting prealgebras and has both adjoints 9

f

and

8

f

:

9

f

(')(y) = fa 2 A j 9x:X:f(x) = y ^ a 2 '(x)g

8

f

(')(y) = fa 2 A j 8x:X:f(x) = y ! a 2 (A) '(x))g

Our �rst proposition concerns geometric morphisms between realizability tri-

poses (again, the reader is referred to [8] for a de�nition). Recall from [12],

that a geometric morphism between toposes is called local if it is bounded and

its direct image part has a full and faithful right adjoint. Since any geometric

morphism which arises from a geometric morphism of triposes is automatically

bounded (indeed, localic; see [2] for a proof) we shall say that a geometric mor-

phism between triposes is local if its direct image has a full and faithful right

adjoint.

De�nition 2.2 A morphism A

i

! B in E is said to be elementary if every

subobject of B with global support intersects the image of i: if C � B and

C ! 1 is an epimorphism, so is i

�1

(C)! 1.

Note that the map A

i

! B is elementary, precisely when the internal logic of E

obeys the following rule:

E j= 9x:B:R(x)) E j= 9x:A:R(i(x))

for any closed formula 9x:B:R(x) of the internal language.
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Example 2.3 Let E be the topos Set

!

. Observe that a map

(f

1

; f

2

) : (A

1

! A

2

) ! (B

1

! B

2

)

in E is elementary i� f

1

: A

1

! B

1

is a surjective function. Therefore, if A

]

� A

in Set, the inclusion of (A

]

! A

]

) in (A

]

! A) in Set

!

is an elementary map.

The following proposition is essentially already in [2].

Proposition 2.4 Let i : A ! B be an applicative map of partial combinatory

algebras in E . If i is an elementary map, there is a geometric morphism of

triposes �: P

B

! P

A

.

If, moreover, i is monic, the geometric morphism � is local.

Proof. De�ne �

�

: P

B

! P

A

by composition with the map 


i

: 


B

! 


A

(i.e.,

inverse image of i). To show that this is order-preserving we use that A! B is

elementary: if ' �  in P

B

(X), then

9a:B8x:X:a 2 '(x))

B

 (x)

hence, by elementariness,

9a:A8x:X:i(a) 2 '(x))

B

 (x)

and since i is applicative we have

9a:A8x:X:a 2 (i

�1

('(x)))

A

i

�1

( (x))

We de�ne �

!

: P

A

! P

B

by composition with the map 9

i

: 


A

! 


B

. Clearly,

if ' : X ! 


A

and  : X ! 


B

then �

!

�

�

( ) �  and ' � �

�

�

!

('), so

�

!

a �

�

and �

!

is order-preserving. Moreover, �

!

preserves �nite meets: since i

is applicative, internally a choice for the pairing combinators exists in A which

are also pairing combinators for B. And since A is inhabited, �

!

preserves the

top element. So (�

�

;�

!

) is a geometric morphism of triposes: P

B

! P

A

.

Now assume that i is monic. It is an easy exercise to show, using elemen-

tariness of i, that �

!

is full and faithful.

We de�ne �

�

: P

A

! P

B

using the internal logic of the tripos P

B

, by letting,

for  2 P

A

(X),

�

�

( ) = 9�:


B

:�^ (�

!

�

�

(�)! �

!

( )):

By internal reasoning in P

B

it is obvious that �

�

is order-preserving. For the

proof of adjointness �

�

a �

�

, suppose that ' 2 P

B

(X) and that  2 P

A

(X).

Now if �

�

(') �  , that is, if 8x:X:�

�

(')(x)!  (x), then also

8x:X:'(x)! 9�:


B

:� ^ (�

!

�

�

(�)! �

!

( )(x))

(just take � = '(x)), so also ' � �

�

( ). For the converse, suppose that

' � �

�

( ), that is,

8x:X:['(x)! 9�:


B

:� ^ (�

!

�

�

(�)! �

!

( )(x))]
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Then by functoriality of �

�

and using that �

�

preserves 9, ^, and ! (seen by

direct inspection of the de�nitions) we have that

8x:X:[�

�

(')(x)! 9�:


B

:�

�

(�) ^ (�

�

�

!

�

�

(�)! �

�

�

!

( )(x))]

and thus, since �

!

is full and faithful, that

8x:X:�

�

(')(x)! 9�:


B

:�

�

(�) ^ (�

�

(�)!  (x))

from which the required inequality �

�

(') �  obviously follows. Note that

by elementary category theory, full and faithfulness of �

�

follows from full and

faithfulness of �

!

.

2.3 Realizability Triposes and Internal Topologies

Let A be a partial combinatory algebra in E . Now suppose that j:
! 
 is an

internal topology in E , i.e. the following axioms are true in E :

8p:
:p! j(p)

8pq:
:(p! q)! (j(p) ! j(q))

8p:
:j(j(p))! j(p)

De�nition 2.5 We call the partial combinatory algebra A j-regular if the fol-

lowing statement is true in E :

9c:A8ab:A:j(ab#)! c(pab)# ^ j(c(pab) = ab)

Note, that A is j-regular if the inclusionD

A

� A�A is j-closed (but the converse

does not seem to be true in general); also note that every total combinatory

algebra is j-regular for every j.

Example 2.6 We continue Example 2.3 and now suppose that A

]

! A is an

applicative map of partial combinatory algebras in Set. Now regard (A

]

! A)

as an internal partial combinatory algebra in the topos Set

!

. This topos has

a point 0 : Set ! Set

!

, corresponding to the open point of Sierpinski space:

0

�

(X) = (X

id

! X), 0

�

(X ! Y ) = Y . Moreover, 0

�

embeds Set as ::-sheaves

into Set

!

. The partial combinatory algebra (A

]

! A) is ::-regular in Set

!

,

because A

]

! A is applicative.

Henceforth we shall deal with a topology j for which our partial combinatory

algebras are assumed j-regular.

As usual, 


j

denotes the image of j; 


A

j

is the object of j-closed subsets of A

and j

A

: 


A

! 


A

j

is the internal closure map. In the logic, j

A

(�) = fx j j(x 2

�)g. Note that if A is a j-regular partial combinatory algebra, we have

�ab:c(pab) 2

\

�;�2


A

(�) j

A

(�)) ) (j

A

(�)) j

A

(�))

7



(where c 2 A is an element satisfying De�nition 2.5)

Note also, that

8��:


A

:j

A

(� ^

A

�) = j

A

(�) ^

A

j

A

(�)

holds in E .

We de�ne the realizability tripos P

A;j

by: P

A;j

(X) is the set of arrows

X ! 


A

j

in E . We regard this as a subset of P

A

(X), and give P

A;j

(X) the

sub-preorder. Using the above remarks, the veri�cation that this is a tripos is

straightforward. The following easy proposition was essentially in [19].

Proposition 2.7 A is j-regular if and only if taking pointwise j-closure gives

a left adjoint to the indexed inclusion P

A;j

! P

A

induced by the inclusion




A

j

! 


A

. In this case, we have a geometric inclusion of triposes.

Proof. We shall only show that j-regularity is necessary, leaving the other de-

tails (which are straightforward) to the reader. Actually, j-regularity is needed

to show that the map

' 7! �x:j

A

('(x))

is order-preserving.

Let X = f(a; b) 2 A � A j j(ab#)g. In P

A

(X) we have the objects  (a; b) =

fpab j ab#g and '(a; b) = fab j ab#g. Then clearly  ` '. By de�nition of X,

j

A

( (a; b)) = fpabg, so the requirement that j

A

( ) ` j

A

(') gives us a c 2 A

satisfying De�nition 2.5.

Proposition 2.8 If A

i

! B is an elementary applicative map, the geometric

morphism: P

B

! P

A

of 2.4 restricts to a geometric morphism P

B;j

! P

A;j

.

That is, there is a commutative diagram

P

B;j

��

//
P

A;j

��

P

B

//
P

A

of geometric morphisms of triposes.

Moreover, if i is monic, the geometric morphism P

B;j

! P

A;j

is also local.

Proof. Adapt the proof of 2.4 by inserting j's at the appropriate points, to

obtain j-closed predicates. For example �

!

: P

A;j

! P

B;j

sends ' : X ! 


A

j

to

the map x 7! j

B

(i['(x)]). The adjointness follows readily from elementariness

and j-regularity; moreover it is easy that �

!

is full and faithful if i is monic.

De�ne �

�

: P

A;j

! P

B;j

by

�

�

(')(x) = fa:B j j(9�:


B

j

:a 2 � ^ ((i[i

�1

(�)])

B

j

B

('(x)))g

Since the proof of the adjunction �

�

a �

�

in 2.4 is in the tripos logic and uses

only that �

�

preserves ^, ! and 9 and that �

!

is full and faithful, it can be

used here verbatim.

Finally, the diagram in the statement of the proposition commutes because

j-closed subobjects are preserved by pulling back (intersection).
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Remark 2.9 We wish to point out that, in contrast with the special case con-

sidered later in this paper, the diagram of toposes resulting from 2.8 is not in

general a pullback (of toposes). Our `running example' (E = Set

!

) with ele-

mentary applicative map (A

]

! A

]

) ! (A

]

! A) provides a counterexample,

if we let A

]

! A be an applicative map of total combinatory algebras in Set,

for example the inclusion P (!)

r:e:

! P (!), and k the unique nontrivial closed

topology in Set

!

. Note, that k-closed subobjects of A

]

! A are of form U ! A,

with U � A

]

. And note that by totality, both algebras are k-regular.

Letting A = (A

]

! A

]

), B = (A

]

! A), we see that both P

A;k

and P

B;k

give

the standard realizability topos RT(A

]

); the inclusion of P

A;k

in P

A

is open,

but P

B;k

! P

B

isn't. Since open maps are stable under pullback, the square

cannot be a pullback in this case.

Recall that a topology j is open if there is a global element u of 
 such that

j(x) = u ! x for all x 2 
. By analogy we say that a geometric inclusion

�

�

` �

�

of triposes: P ! Q is open, if there is an element � of Q(1) such that

for every ' 2 Q(X), �

�

�

�

(') is isomorphic to Q(!)(�) ) ' where ! denotes

X ! 1, and ) is the Heyting implication of Q(X).

It is an easy exercise to show that open inclusions of triposes yield open

inclusions between the corresponding toposes, and that the open topology in

E [Q] corresponds to the subobject of 1 determined by �.

Proposition 2.10 If j is an open topology, then the inclusion P

A;j

! P

A

is

open and, moreover, the square in Proposition 2.8 is a pullback diagram.

Proof. Let j(p) = u! p for some u 2 
; let U be the subobject of 1 classi�ed by

u. In P

A

(1) we have the imageA

0

of the projection A�U ! A, so A

0

= fa:A jug.

We calculate, for ' 2 P

A

(X), the element A

0

) ':

A

0

) '(x) = fa j 8b:A:u! (ab# ^ ab 2 '(x))g

= fa j 8b:A:ab# ^ (u! ab 2 '(x)))g

= A) j

A

('(x))

Now clearly, �x:X:A ) '(x) is isomorphic to ' in P

A

(X); so �x:X:A

0

) '(x)

is isomorphic to �x:X:j

A

('(x)). Hence, the inclusion P

A;j

! P

A

is open.

The square in Proposition 2.8 is a pullback diagram because whenever one

has an open inclusion �

�

a �

�

of triposes P ! Q given by an element � 2 Q(1),

then the pullback along a geometric morphism f

�

a f

�

: R ! Q is again an

open inclusion, determined by the inverse image of � (i.e., the element f

�

(�) 2

R(1)), and here in the case at hand, we clearly have that the inverse image of

A

0

= fa:A jug along P

B

! P

A

is equal to B

0

= fb:B jug (and B

0

of course

determines the inclusion P

B;j

! P

B

by the argument given above).

De�nition 2.11 Let E be a topos, j an open topology in E , and A a j-regular

internal partial combinatory algebra in E . The Modi�ed Realizability Topos

M

A;j

with respect to A and j, is de�ned as the closed complement of E [P

A;j

]

in E [P

A

] and the Modi�ed Realizability Tripos Q

A;j

with respect to A and j is

de�ned as the tripos representing M

A;j

.

9



We shall see in Section 4.2 that this de�nition agrees with traditional usage

of the term \modi�ed realizability". Note that we do not claim that if k is

the closed complement of j, M

A;j

is E [P

A;k

]! In fact this is false for our basic

example, see Section 4.2.

We now describe the modi�ed realizability tripos Q

A;j

explicitly. Suppose j

is the open topology x 7! u! x, then we saw in 2.10 that the inverse image of

the inclusion P

A;j

! P

A

is given by

' 7! �x:X:A

0

) '(x);

where A

0

= fa:A jug. Therefore the tripos Q

A;j

representing M

A;j

can be

de�ned by

Q

A;j

(X) = f' : X ! 


A

j (�x:X:A

0

) � 'g;

where � refers to the order in P

A

(X). The reection P

A

(X) ! Q

A;j

(X) is

given by ' 7! (�x:X:A

0

)_', where _ is the join in the Heyting algebra P

A

(X).

At this point we insert a folklore fact from topos theory which we have not

found in text books:

Lemma 2.12 Suppose F

f

! E is a geometric morphism of toposes, and j and

k the open and closed topologies in E corresponding to the subobject U � 1 in

E . Then the pullbacks along f of the sheaf subtoposes Sh

j

(E) and Sh

k

(E) are,

respectively, the open and closed subtoposes of F corresponding to the subobject

f

�

(U ) � 1.

Proof. [Sketch] The pullback along f of Sh

j

(E) is the subtopos of F given

by the least topology which makes f

�

(>) : 1 ! f

�

(J) dense, where 1 ! J

is the generic j-dense subobject in E . However, this is equivalent to making

f

�

(U )! 1 dense, and clearly the open topology corresponding to f

�

(U ) is the

least such.

For the closed case one observes that 0! U is k-dense; hence an arbitrary

geometric morphism g : G ! E factors through Sh

k

(E) if and only if g

�

(U ) is

isomorphic to 0 in G. So if now g : G ! F , then fg factors through Sh

k

(E) if

and only if g

�

(f

�

(U ))

�

=

0, that is: g factors through the closed subtopos of F

determined by f

�

(U ).

Proposition 2.13 If A

i

! B is an elementary applicative map, the geometric

morphism P

B

! P

A

restricts to a geometric morphism Q

B;j

! Q

A;j

. Moreover,

Q

B;j

is the pullback of Q

A;j

along P

B

! P

A

, that is, there is a pullback diagram

Q

B;j

��

//
Q

A;j

��

P

B

//
P

A

of geometric morphisms of triposes.

Moreover, if i is monic, the geometric morphism Q

B;j

! Q

A;j

is local.

10



Proof. Most of this is immediate from 2.12 and 2.10. We shall only show that

if i is monic, the indexed functor �

�

: P

A

(X)! P

B

(X) restricts to Q

A;j

(X)!

Q

B;j

(X).

To this end, suppose that ' 2 Q

A;j

(X), that is, that

8x:X:A

0

! '(x)

holds in P

A

(X). Since A

0

= �

�

(B

0

) and since �

!

is a functor, it follows that

8x:X:�

!

�

�

(B

0

)! �

!

(')(x)

holds in P

B

(X). Thus also (with � = B

0

)

8x:X:B

0

! 9�:


B

:� ^�

!

�

�

(B

0

)! �

!

(')(x);

which is to say that �

�

(') 2 Q

B;j

, as required.

2.4 Dense Embeddings and Logical Functors

We now turn to the situation of a monic applicative map A! B of partial com-

binatory algebras in E where A is a j-dense subobject of B, but the embedding

is not assumed to be elementary. Generally, we don't have geometric morphisms

any more. However, there is an interesting E-indexed functor: P

A;j

! P

B;j

.

In order to explain the situation, we recall from Pitts' thesis ([17]) that for

any tripos P on E and any �lter � on the Heyting pre-algebra P (1), one can

consider the �lter quotient tripos P

�

: P

�

(X) is the same set as P (X), but the

order is de�ned by:

' �

�

 i� 8

!

(')  ) 2 �

where ! : X ! 1 and ) is the Heyting implication in P (X).

Every �lter � on P (1) gives a �lter

^

� of subobjects of 1 in the topos E [P ],

and the topos E [P

�

] is the �lter quotient E [P ]

^

�

([17]). The �lter quotient

construction (which, by the way, is called \�lter power" in [10]) is well explained

in [15]. For us it is important, that for any �lter quotient there is a logical functor

from the topos to the quotient.

We make the following de�nition.

De�nition 2.14 An E-indexed functor F : P ! Q between E-triposes is called

logical if the following conditions hold:

i) For any object X of E and ';  2 P (X),

F

X

(')  )

�

=

F

X

(')) F

X

( )

ii) For any map f : X ! Y in E and any ' 2 P (X),

F

Y

(8

f

('))

�

=

8

f

(F

X

('))

iii) If � 2 P (�) is a generic element for P , then F

�

(�) 2 Q(�) is a generic

element for Q.

11



Since, in a tripos, the whole structure is de�nable from implication, universal

quanti�cation and the generic element, any logical functor between triposes

gives rise to a logical functor between the corresponding toposes. Moreover, the

�lter quotient functor: P ! P

�

is a logical functor of triposes.

Proposition 2.15 Suppose A! B is a monic applicative map of partial com-

binatory algebras in E , such that the inclusion A ! B of objects is j-dense.

Then there is a �lter � on P

A;j

such that the triposes P

B;j

and (P

A;j

)

�

are

isomorphic; hence, there is a logical functor of triposes: P

A;j

! P

B;j

.

Proof. Let � � P

A;j

(1) be the set of those j-closed subobjects � of A such

that

E j= 9b:B:j(b 2 �)

It is easy to check that this is a �lter; we de�ne functors F : (P

A;j

)

�

! P

B;j

and G : P

B;j

! (P

A;j

)

�

which are each other's inverse.

F

X

: (P

A;j

)

�

(X)! P

B;j

(X) sends ' : X ! 


A

j

to

�x:X:j

B

('(x)) : X ! 


B

j

F is order preserving: in (P

A;j

)

�

, ' �  if and only if

E j= 9b:B:j(8x:X8a 2 '(x):ba# ^ ba 2  (x))

Clearly, this implies

E j= 9b:B8x:X8a 2 j

B

('(x)):ba# ^ ba 2 j

B

( (x))

which is the de�nition of F

X

(') � F

X

( ).

G : P

B;j

! (P

A;j

)

�

is de�ned by G

X

(') = �x:X:'(x) \A. To show that G

is order-preserving, reason internally. ' �  in P

B;j

(X) means

E j= 9b:B8x:X8a 2 '(x):ba# ^ ba 2  (x)

so let b:B satisfy this formula. Clearly, b 2 A implies

8x:X8a 2 '(x) \A:ba# ^ ba 2  (x) \A

Since A is dense in B, we have therefore

E j= 9b:B:j(8x:X8a 2 '(x) \A:ba# ^ ba 2  (x) \A)

so G

X

(') � G

X

( ) in (P

A;j

)

�

(X).

Finally, since for � 2 


A

j

and � 2 


B

j

we have the identities j

B

(�) \ A =

j

A

(�) = �, and j

B

(� \A) = � (the last one because A ! B is dense), we see

that F and G are each other's inverse.
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3 Relations with the base topos

In this section we exhibit connections between the toposes E , E [P

A

], E [P

A;j

],

and Sh

j

(E) (the topos of j-sheaves in E). Recall from the theory of triposes [17]

that there is a geometric inclusion E ! E [P

A

], whose direct image functor is the

\constant-objects functor."

Theorem 3.1 There is a commutative diagram

Sh

j

(E)

��

//
E [P

A;j

]

��

E

//
E [P

A

]

which is a pullback in the category of toposes and geometric morphisms.

Proof. Let j

0

; j

1

; j

2

be the topologies in E [P

A

] whose categories of sheaves are

E , E [P

A;j

] and Sh

j

(E), respectively. Then we must show that j

2

is the join of

j

0

and j

1

in the lattice of internal topologies in E [P

A

]. The maps j

0

; j

1

; j

2

are

determined by topologies on the tripos P

A

, that is by morphisms k

0

; k

1

; k

2

:




A

! 


A

in E . Indeed, by [17], we know that j

0

is determined by

k

0

(�) = fa:A j 9a

0

:A:a

0

2 �g

and by Proposition 2.7, we know that j

1

is determined by

k

1

(�) = j

A

(�):

Finally, j

2

is j � j

0

(since that indeed is a topology), so is determined by

k

2

(�) = j

A

fa:A j 9a

0

:A:a

0

2 �g:

Since one easily has that k

2

= k

1

� k

0

it follows that j

2

indeed is the join of j

0

and j

1

, as required.

Remark 3.2 The topos E [P

A;j

] can in fact be presented by a tripos R on Sh

j

(E)

in such a way that the inclusion Sh

j

(E) ! E [P

A;j

] is the associated constant-

objects functor �

R

. To see this, let us �rst write i

�

a i

�

for the geometric

inclusion: Sh

j

(E) ! E and note that Sh

j

(E) is of form E [Q], where Q is the

tripos corresponding to the internal locale 


j

in E , and that i

�

: E ! Sh

j

(E) is

the constant objects functor �

Q

. This functor is a left adjoint, hence preserves

epimorphisms, so Pitts' iteration theorem ([17], 6.2) applies: for any tripos R on

Sh

j

(E), we have that P = R�(i

�

)

op

is a tripos on E , and there is a commutative

diagram

E

//
�

P

��

i

�

E [P ]

��

K

Sh

j

(E)

//

�

R

Sh

j

(E)[R]
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where K is an equivalence of categories.

Now it is easy to see that if we compose P

A;j

with the embedding i

�

, we get

a tripos on Sh

j

(E), because P

A;j

has a generic element living in the �bre over




A

j

, which is a j-sheaf. We see that if R is the Sh

j

(E)-tripos P

A;j

�(i

�

)

op

, the

topos Sh

j

(E)[R] is equivalent to

E [P

A;j

�(i

�

)

op

�(i

�

)

op

]

�

=

E [P

A;j

]

Hence, E [P

A;j

] is also represented by the tripos R on Sh

j

(E). In particular we

have the constant objects functor �

R

: Sh

j

(E)! E [P

A;j

].

Remark 3.3 Having noted that E [P

A;j

] can be represented by the tripos R

on Sh

j

(E), it is natural to ask if it is also represented by the Sh

j

(E)-tripos

on the partial combinatory algebra i

�

(A), i.e., whether E [P

A;j

] is equivalent to

Sh

j

(E)[P

i

�

(A)

].

For this question to make sense, one needs to observe that shea��cation, like

the inverse image of any geometric morphism, preserves partial combinatory al-

gebras. This is true because inverse image functors preserve validity of sentences

of the form 9u:U8x:X(' !  ) with ' and  geometric, and the combinator

axioms for partial combinatory algebras can be brought into this form.

The answer to the question is, in general, no; see Section 4.1 for a concrete

counter-example.

From theorem 3.1 we draw two inferences: �rstly, the implication in Propo-

sition 2.10 is actually an equivalence, because it is well known (e.g.,[11]) that

open inclusions are stable under pullback along bounded morphisms.

The second inference is more important for our purposes. Suppose now that

j is an open topology, j(x) = u! x, and k its closed complement k(x) = u_x.

We have the following obvious proposition (in view of 2.12):

Proposition 3.4 Let j be an open topology in E , A j-regular. Let k be j's

closed complement. Then

Sh

k

(E)

��

//
M

A;j

��

E

//
E [P

A

]

is a pullback diagram of toposes.

4 Applications

4.1 Relative Realizability

Given an embedding A

]

� A in Set, [2] de�nes a tripos P on Set: P (X) =

P(A)

X

but ' �  i� there is a 2 A

]

such that for all x 2 X; b 2 '(x), ab is

de�ned and an element of  (x).
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Regard A

]

! A as an internal ::-regular pca A in the topos Set

!

, as in

Example 2.6. In Set

!

, the power object 


A

is (R

�

2

! P(A)) where

R = f(U; V ) jU 2 P(A

]

); V 2 P(A); U � V g

and �

2

is the second projection.

(


::

)

A

is (R

0

�

2

! P(A)) where

R

0

= f(U; V ) jV 2 P(A); U = V \A

]

g

We see that there is a natural 1-1 correspondence between maps X

'

! P(A) in

Set, and morphisms 0

�

(X)

~'

! (


::

)

A

in Set

!

, and we have ' �  in P (X) i�

Set

!

j= 9a:A8x:0

�

(X) 8b 2 ~'(x) (ab# ^ ab 2

~

 (x))

So in fact, P is P

A;::

�(0

�

)

op

, and hence, by Remark 3.2, Set[P ] ' Set

!

[P

A;::

].

The shea��cation of A

]

! A is just A and thus the topos induced by the

standard realizability tripos on this partial combinatory algebra is just the stan-

dard realizability topos on A, which, in general, is di�erent from the topos rep-

resented by the relative realizability tripos P , thus answering the question put

forward in Remark 3.3.

Quite similarly, the standard realizability tripos over a pca A in Set is equiv-

alent to P

A;::

�(0

�

)

op

where now A = (A

id

! A).

Note, that the requirement of A

]

! A to be a monic applicative map in Set,

makes the inclusion of (A

]

id

! A

]

) into (A

]

! A) a monic elementary applicative

map in Set

!

.

Moreover, there is a ::-dense inclusion of (A

]

! A) into (A! A). So our

propositions 2.8 and 2.15 generalize the theorems in [2] on the existence of a

local map of toposes, and a logical functor between toposes.

4.2 Modi�ed and Relative Modi�ed Realizability

Let us look at the special case of the pca A = (IN! IN) in Set

!

and the open

::-topology there. The open object U is (0 ! 1), and the object A

0

(see the

proof of Proposition 2.10) is (0 ! IN). As seen in Section 4.1, Set

!

[P

A;j

] is

the e�ective topos. Applying the considerations in Remark 3.2, we see that also

Set

!

[Q

A;j

] is represented by a tripos over Set. As explained in detail in [21],

one can take the tripos R, where R(X) is the set of inclusions (U � V ) of

subsets of IN, where 0 2 V (assuming a G�odelnumbering satisfying h0; 0i =

0 and 0x = 0, for all x). The topos given by this presentation was found

around 1980 by Hyland and, independently, Grayson (see [6]) to correspond to

modi�ed realizability. We see therefore that our usage of \modi�ed realizability"

in De�nition 2.11 generalizes this.

Let k be the closed complement of :: in the lattice of topologies in Set

!

.

Since

Set

!

((X ! Y );


A

k

)

�

=

Set

!

((X ! Y );


A

k

)

�

=

Set(X;P (A))
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one �nds that E [P

A;k

] is the e�ective topos. Thus, in general, if k is the closed

complement of j, the toposes M

A;j

and E [P

A;k

] are di�erent.

An example of Relative Modi�ed Realizability occurs in [16]. Here one has

M

A;::

where A = (A

]

! A) is again the inclusion of total recursive functions

into the pca for function realizability.

4.3 Kleene's 1957-realizability

To the best of our knowledge, the �rst notion of relative realizability was dis-

covered by Kleene in 1951 and published in 1957 in [13]. This was formulated

in terms of partial recursive application in function oracles. A rather o�-hand

remark in [14] observes that this is \equivalent" to the notion of relative realiz-

ability given in loc. cit.. This means that the two notions coincide on the truth

de�nition for intuitionistic analysis; however, it does not seem straightforward

to turn the oracle de�nition into a tripos.

4.4 An almost-example

N. Goodman ([5]) has the following situation: let T be a set of partial functions

IN* IN, ordered by inclusion. A is the internal pca in Set

T

where at each partial

function r, A

r

is the ordinary pca of indices for partial functions recursive in r.

The realizability is de�ned as follows (we adapt notation to ours): for ';  :

X ! 


A

,

' �  is forced at r i� for some a 2 A

r

: for all s � r and all

x 2 X

s

; b 2 '(x)

s

, there is t � s such that ab is de�ned in A

t

and

an element of  (x)

t

.

In our tripos-theoretic context this means the following. Let j be the double-

negation topology,A the given internal pca. P (X) is the set of arrows: X ! 


A

in set

T

, and ' �  holds i�

9a:A 8x:X 8b 2 '(x) j(ab# ^ ab 2  (x))

is true in Set

T

.

It is straightforward to prove that this gives a tripos on Set

T

, and also that

' is isomorphic in P (X) to �x:X j

A

('(x)). So P looks very much like our P

A;j

.

However, Goodman's pca is not ::-regular, and there is no inclusion in the

tripos P

A

. This is obviously a variation, and the exact connection with our set-

up remains to be clari�ed. It is true that Sh

::

(Set

T

) is a subtopos of Set

T

[P ]

([19]), but we do not know whether it is equivalent to any of the toposes we

consider.

A very similar example, where the topology is di�erent from :: and the pca

is j-regular, is used in [20].
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