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1 Introduction

1.1 Background and Motivation

The notion of Relative Realizability goes back to the work of Kleene and Ves-
ley [14] (actually, it is even older than that; see 4.3 of this paper) and it was
described by means of tripos theory right from the beginnings of that theory,
see, e.g., [17, Section 1.5, item (ii)]. Recently there has been a renewed interest
in Relative Realizability, both in Thomas Streicher’s “Topos for Computable
Analysis” [18] and in [2, 1, 4]. The idea is, that instead of doing realizability
with one partial combinatory algebra A one uses an inclusion of partial combi-
natory algebras A4y C A (such that there are combinators k,s € Ay which also
serve as combinators for A), the principal point being that “(A4y-) computable”
functions may also act on data (in A) that need not be computable.

In [2] there is an analysis of the relationships between relative realizability
over Ay C A and the ordinary realizabilities over Ay and A. Let RT(A4y, A)
be the relative realizability topos, and RT(A4y), RT(A) the ordinary (effective
topos-like) realizability toposes; then

o there is a local geometric morphism from RT(A4y, A) to RT(4y); and
o there is a logical functor from RT(Ay, A) to RT(A).

*Most of the work reported here was carried out while the first author was employed by
the School of Computer Science, Carnegie Mellon University, Pittsburgh. The first author
was supported by the Danish Research Agency (Grant numbers 26-00-0309 and 51-00-0315).

tThe second author acknowledges the PIONIER project “The Geometry of Logic”, led
by Professor I. Moerdijk, and Carnegie Mellon University, which invited him to a visit in
February 1999.



The motivation for the present paper was the observation that there is a general
pattern underlying these results.

The basic point is the following. We view A = (43 — A) as an internal
partial combinatory algebra in the topos Set™ (sheaves over Sierpinski space)
and we write P4 for the standard Set ™ -indexed realizability tripos over A. This
internal partial combinatory algebra is what we call j-regular with respect to
the open topology j = ——; here this just boils down to the fact that Ay is closed
under application in A. Then one has that P4 ;, the tripos of j-closed subsets
of A, is an open subtripos of P4 which gives the relative relizability topos
RT(A4y, A); and its closed complement () 4 ; gives what we call relative modified
realizability. In the case where Ay = A = N, the standard Kleene partial
combinatory algebra on the natural numbers, our notion of relative modified
realizability topos agrees with the standard modified realizability topos [6, 9, 21].

In this basic setup, there is an embedding from Ay = (4; — 4;) to A =
(Ay — A) in Set™ of partial combinatory algebras, which is what we call el-
ementary. Here this just means that whenever Set™ k& Jx:A4, we also have
that Set™ |= Jx:Ay, which holds because of the Kripke interpretation of 3 in
Set ™. Because of this elementary embedding it follows from our general results
that there is a local geometric morphism P4 — P4, which restricts to a local
geometric morphism P4 ; — P4, ; which exactly induces the above mentioned
local map RT(Ay, A) — RT(A;). The local geometric morphism Pq — Py,
also restricts to a local geometric morphism among the modified realizability
triposes Qa,; — Qa, ;-

There is a third internal partial combinatory algebra in Set™, namely B =
(A — A) and because the subobject A — B is j-dense (still with j = ==) it
follows from our general results that there is logical functor P4 ; — Pg ;, which
exactly induces the logical functor RT(4;, A) to RT(A) mentioned above.

1.2 Outline

In Section 2.1 we present the precise definition of an internal partial combinatory
algebra and establish some notation to be used in the sequel. Then in Section 2.2
we embark on a general theory of triposes on a topos £. One of the key notions
appears to be that of an elementary map (Definition 2.2) in £. We show that if
there 1s an elementary map of partial combinatory algebras A — B, then there
is a geometric morphism of triposes Pp — P4, which is local when the map
A — B is monic (in &).

In Section 2.3, we consider realizability triposes relative to internal topolo-
gies. Given a topology j on &, we define what 1t means that A is j-regular.
When this is the case, we show that there is a geometric inclusion from Py ;,
the tripos built using only the j-closed subsets of A, to P4, the standard real-
izability tripos over A. Moreover, when A and B are both j-regular, and there
is an elementary map A — B, then the (local) geometric morphism Pp — Py
restricts to a (local) geometric morphism Pg ; — Pa ;.

We then look in particular at the case where j is an open topology; in this
situation we find that also the inclusion P4 ; — P4 is open and Pp ; is then the



pullback of P4 ; along Pp — P4. Since P4 ; — P4 is open it makes sense to
look at its closed complement, which we define as the modified realizability tripos
and denote by Q4 ;; the topos it represents is denoted M, ;. We show that
the local geometric morphism Pg — Py restricts to a local geometric morphism
Qp,; = Qa,; and that Qp ; is the pullback of Q4 ; along Pp — Py.

In Section 2.4 we show that if we have a j-dense inclusion A — B of partial
combinatory algebras, then Pp ; is a filter-quotient of P4 ; and thus there is a
logical functor P4 ; = Pp ;.

In Section 3 we explore the relationship with the topos of sheaves for 7. We
show that, in general, Sh;(€) is the pullback of £[P,4 ;] along the inclusion of £
into £[P4] and that, in case j is open with closed complement &, Sh (&) is the
pullback of M4 ; along the inclusion of &€ into E[P4].

The final Section 4 contains applications and relations to existing work in
the literature.

2 Triposes over Internal Pca’s

2.1 Internal Partial Combinatory Algebras

In this section we intend to lay down some basic definitions and to fix notation.
We shall work, throughout this section, in an arbitrary topos £. We shall
employ the internal language and logic freely, and assume the reader 1s familiar
with its use.
Let A be an object of £, and f: A x A — A a partial map. We shall write
D4 for its domain, 1.e. the object defined by the pullback diagram

Dy—Ax A

|

A na A

where A 28 A is the partial map classifier of A.

We see this as a structure for a language with just a partial binary function
symbol, which we write as juxtaposition: a,b — ab. In composite expressions
we assume association to the left, i.e. abe is short for (ab)ec. In manipulating
terms in this language we use the symbol “|” (“is defined”). For a term ¢,
composed from variables z1,...,x, of type A and juxtaposition, we define its
meaning {[i] = t[uy, ..., u,] and the formula ¢[@]} by a simultaneous induction
(here uy, ..., u, denote generalized elements of type A, i.e. morphisms U — A
for some parameter object U):

el =T efu] = u
tsfald = ([l A slald A (e[, s[il) € Dats[id] = fo(u[a], s[il)

Note that ¢} implies ' for any subterm ¢ of . Given two terms ¢ and s, we



use the expression ¢t ~ s as an abbreviation for

tHlesh)Aitl—=t=29)

Definition 2.1 a) The structure (A, Dy ERN A) is called a partial combina-
tory algebra in &, if the statements:

k Jk:AVzy: Akzyl ANkey =
s Is:AVaeyz: A.seyl A seyz ~ xz(yz)

are both true in the internal logic of £.

b) Given two partial combinatory algebras (A, D4 ERN A) and (B, Dp N B)
in & amap u : A — B is called an applicative map if the following
conditions hold:

i) the map Dy "B« B factors through Dpg
ii) the diagram
Ds 2 Dy
)
A Tf‘ B
is a pullback in £ (in particular, it commutes!)
iii) the formulas

Jk:AVey:B.u(k)zyl A p(k)ey = »
As:AVaeyz:B.p(s)eyl A p(s)zyz ~ xz(yz)

are true 1n £.

Note that the combinator axioms k and s do not require & and s to be global
elements of A. We find this appropriate because we do not require the maps to
preserve the chosen k and s.

The standard facts about partial combinatory algebras (see, e.g.,[3]) that we
need, are all constructively valid, and carry over to internal partial combinatory
algebras in a topos &£. In particular, we shall use

e Schonfinkel’s Combinatory Completeness: for any term ¢ and any variable
z, there is a term Ax.t such that for any term s, (Ax.t)s ~ t[s/x] holds;

e Pairing: the sentence
3p, po, p1:ANey:A.pryl Apo(pry) = z Api(pry) =y

is true in €. In fact, any choice of k and s in A give p, py, p1 definable in
k, s.



Given a partial combinatory algebra A we define the two maps
Aa,=a: Q4 x Q4 5 Q4
internally by:

XAaY = {z€A|pwreX and ppr e}
X=4Y = {a€cA|Vbe X(ablAabeY)}

The notations A, = will be extended to morphisms: X — Q4 by composition;
and the subscript will be used only if confusion 1s possible.

2.2 Realizability Triposes on &

Let (A, Da i) A) be a partial combinatory algebra in £. We shall not define
the notion of a tripos (instead, refer the reader to [8]), but just for definiteness
we recall the definition of the standard realizability tripos on &£ with respect to
A, which we shall denote by P4. Pa(X) is the set of arrows: X — Q4 in &.
P4(X) is preordered by: for ¢, ¢ € P4(X), ¢ < ¢ if and only if the sentence

Ja:AVe:X.a € [p(x) = ¥(x)]

is true in &.

P4(X) is a Heyting prealgebra, and the (extensions of the) maps Aa, =4
serve as meet and Heyting tmplication, respectively.

For any arrow f:X — Y we have Po(f):Pa(Y) = P4a(X) by composition.
This map is a morphism of Heyting prealgebras and has both adjoints 3; and
Vi

(e)y) = {a€A|FuX f(x)=yNa€p(x)}
Vri)y) = {a€AVeXf() =y —ae (A= o)

Our first proposition concerns geometric morphisms between realizability tri-
poses (again, the reader is referred to [8] for a definition). Recall from [12],
that a geometric morphism between toposes is called local if it is bounded and
its direct image part has a full and faithful right adjoint. Since any geometric
morphism which arises from a geometric morphism of triposes is automatically
bounded (indeed, localic; see [2] for a proof) we shall say that a geometric mor-
phism between triposes 1s local if its direct image has a full and faithful right
adjoint.

Definition 2.2 A morphism A Y B in € is said to be elementary if every
subobject of B with global support intersects the image of i: if ¢ C B and
C — 1 is an epimorphism, so is i~ }(C') — 1.

Note that the map A % Bis elementary, precisely when the internal logic of £
obeys the following rule:

£ EJe:B.R(x) = £ EJe:AR(i(x))

for any closed formula 3z:B.R(z) of the internal language.



Example 2.3 Let & be the topos Set™. Observe that a map
(fi, f2) : (A1 = A2) — (B1 — B»)

in & is elementary iff f; : A1 — By is a surjective function. Therefore, if Ay C A
in Set, the inclusion of (4y — Ay) in (43 — A) in Set™ is an elementary map.

The following proposition is essentially already in [2].

Proposition 2.4 Let i : A — B be an applicative map of partial combinatory
algebras in €. If i is an elementary map, there is a geometric morphism of
triposes ®: Pp — Pj.

If, moreover, i is monic, the geometric morphism ® is local.

Proof. Define ®* : Pp — P4 by composition with the map Q' : Qf — Q4 (ie.,
inverse image of ¢). To show that this is order-preserving we use that A — B is
elementary: if ¢ < ¢ in Pp(X), then

Jda:BYx:X.a € p(z) =p (z)
hence, by elementariness,
Ja:AVz:X.i(a) € p(x) =B ¥(x)
and since i is applicative we have
Ja:AVe:X.a € (i7Hp(x)) =4 i ((x))

We define ®, : P4 — Py by composition with the map 3; : Q4 — QF. Clearly,
if o : X = Q4 and ¢ : X — QF then ®,®*(¢) < ¥ and ¢ < &*By(yp), so
®, 4 ®* and @y 1s order-preserving. Moreover, @ preserves finite meets: since ¢
is applicative, internally a choice for the pairing combinators exists in A which
are also pairing combinators for B. And since A is inhabited, ® preserves the
top element. So (®*, &) is a geometric morphism of triposes: Pgp — Pj4.

Now assume that ¢ is monic. It is an easy exercise to show, using elemen-
tariness of ¢, that ®, i1s full and faithful.

We define @, : P4 — Pp using the internal logic of the tripos Pg, by letting,
for ¢ € P4(X),

B, () = QP .a A (8,0 () = By(1))).

By internal reasoning in Pp it is obvious that @, is order-preserving. For the
proof of adjointness ®* 4 &, suppose that ¢ € Pp(X) and that ¢ € P4(X).
Now if & () < 4, that is, if Yo: X.®*(¢)(x) = ¢(x), then also

Vo X.p(x) = QP a A (210 () = &1(¢)(2))

(just take o = (), so also ¢ < ®,.(¢p). For the converse, suppose that
© < &, (¢), that is,

Vo X.[p(x) = 3a:QP .a A (00* (o) — Bi()(2))]



Then by functoriality of ®* and using that ®* preserves 3, A, and — (seen by
direct inspection of the definitions) we have that

Vo X. [0 (p)(2) = F:QP 3% (a) A (B* DD () — O* By () ()]
and thus, since ®y is full and faithful, that
Vi X.®*(p)(x) = Ja:QB .0 () A (®%(a) = ¥(x))

from which the required inequality ®*(¢) < ¢ obviously follows. Note that
by elementary category theory, full and faithfulness of ®. follows from full and
faithfulness of ®..

||

2.3 Realizability Triposes and Internal Topologies

Let A be a partial combinatory algebra in £. Now suppose that j:Q — Q is an
internal topology in &, 1.e. the following axioms are true in &:

Vp:Q.p — j(p)
Vpg:Q.(p = q) = (j(p) — i(q))
Vp:2i(i(p)) = i(p)

Definition 2.5 We call the partial combinatory algebra A j-regular if the fol-
lowing statement is true in &:

de:AVab:A.j(abl) — c(pab)l A j(c(pab) = ab)

Note, that A is j-regular if the inclusion Dy C Ax A is j-closed (but the converse
does not seem to be true in general); also note that every total combinatory
algebra is j-regular for every j.

Example 2.6 We continue Example 2.3 and now suppose that Ay — A is an
applicative map of partial combinatory algebras in Set. Now regard (4y — A)
as an internal partial combinatory algebra in the topos Set™. This topos has
a point 0 : Set — Set™, corresponding to the open point of Sierpinski space:
0.(X) = (X Y X), 0(X - Y) =Y. Moreover, 0, embeds Set as =—-sheaves
into Set™. The partial combinatory algebra (4; — A) is =—-regular in Set™,
because Ay — A is applicative.

Henceforth we shall deal with a topology j for which our partial combinatory
algebras are assumed j-regular.

As usual, Q; denotes the image of j; Qf 1s the object of j-closed subsets of A
and j4 : Q4 — Qf is the internal closure map. In the logic, j4(a) = {z | j(= €
«)}. Note that if A is a j-regular partial combinatory algebra, we have

Aab.c(pab) € ﬂ (a = jA(ﬁ)) = (jA(a) = j* (8))
a,fEQA



(where ¢ € A is an element satisfying Definition 2.5)
Note also, that

Vag:Q4 A (a A B) = 4 (@) Aa 2 (0)

holds in &.

We define the realizability tripos P4 ; by: Pa;(X) is the set of arrows
X - Qf in £&. We regard this as a subset of P4(X), and give P4 ;(X) the
sub-preorder. Using the above remarks, the verification that this is a tripos is
straightforward. The following easy proposition was essentially in [19].

Proposition 2.7 A is j-reqular if and only if taking pointwise j-closure gives
a left adjoint to the indered inclusion Py j; — P induced by the inclusion
Qf — Q4. In this case, we have a geometric inclusion of triposes.

Proof. We shall only show that j-regularity is necessary, leaving the other de-
tails (which are straightforward) to the reader. Actually, j-regularity is needed
to show that the map

o A A (o(x)
is order-preserving.

Let X = {(a,b) € A x Alj(abl)}. In P4(X) we have the objects ¢(a,b) =
{pab|abl} and ¢(a,b) = {ab|abl}. Then clearly ¢ F ¢. By definition of X,
A (¥(a, b)) = {pab}, so the requirement that j4(¢) F j4(p) gives us a c € A
satisfying Definition 2.5.

Proposition 2.8 If A % B s an elementary applicative map, the geometric
morphism: Pp — P4 of 2.4 restricts to a geometric morphism Pp; — Py ;.
That is, there is a commutative diagram

Ppj——Pa;

I

Pg — Py

of geometric morphisms of triposes.
Moreover, if 1 1s monic, the geometric morphism Pp; — P4 ; is also local.

Proof. Adapt the proof of 2.4 by inserting j’s at the appropriate points, to
obtain j-closed predicates. For example ® : Py ; — Pp; sends ¢ : X — Qf to
the map = — jZ(i[¢(x)]). The adjointness follows readily from elementariness

and j-regularity; moreover it 1s easy that @, is full and faithful if ¢ is monic.
Define ®, : P4 ; = Pp; by

0. () () = {a:B | j(3a:7 .a € a A ((i[i™ ()] =5 77 (¢(x)))}

Since the proof of the adjunction ®* 4 @, in 2.4 is in the tripos logic and uses
only that ®* preserves A, — and 3 and that @, is full and faithful, it can be
used here verbatim.

Finally, the diagram in the statement of the proposition commutes because
Jj-closed subobjects are preserved by pulling back (intersection). [ |



Remark 2.9 We wish to point out that, in contrast with the special case con-
sidered later in this paper, the diagram of toposes resulting from 2.8 is not in
general a pullback (of toposes). Our ‘running example’ (£ = Set™) with ele-
mentary applicative map (4y — Ay) — (44 — A) provides a counterexample,
if we let Ay — A be an applicative map of fotal combinatory algebras in Set,
for example the inclusion P(w);. — P(w), and k the unique nontrivial closed
topology in Set ™. Note, that k-closed subobjects of Ay — A are of form U — A,
with U C Aj. And note that by totality, both algebras are k-regular.

Letting A = (4; — Ay), B= (4y — A), we see that both P4 ; and Pg  give
the standard realizability topos RT(A4y); the inclusion of P4 in P4 is open,
but Psj; — Pp isn’t. Since open maps are stable under pullback, the square
cannot be a pullback in this case.

Recall that a topology j is open if there is a global element u of €2 such that
Jj(@) = u = z for all z € Q. By analogy we say that a geometric inclusion
®* - @, of triposes: P — @ is open, if there is an element « of Q(1) such that
for every ¢ € Q(X), ®.P*(¢) is isomorphic to Q(!)(a) = ¢ where ! denotes
X — 1, and = is the Heyting implication of Q(X).

It is an easy exercise to show that open inclusions of triposes yield open
inclusions between the corresponding toposes, and that the open topology in
E[Q] corresponds to the subobject of 1 determined by a.

Proposition 2.10 If j is an open topology, then the inclusion Py ; — Py s
open and, moreover, the square in Proposition 2.8 is a pullback diagram.

Proof. Let j(p) = u — pforsome u € Q; let U be the subobject of 1 classified by
u. In P4 (1) we have the image A’ of the projection AxU — A, s0 A’ = {a:A | u}.
We calculate, for ¢ € P4(X), the element A’ = ¢:

A= p(x) = {a|VhAu— (abl Aab € (x))}
{a|Vb:A.abl A (u — ab € p(x)))
= A= p()

1

Now clearly, Az:X.A = ¢(z) is isomorphic to ¢ in P4(X); so Az:X. A" = ¢(x)
is isomorphic to Az:X.j4(¢(x)). Hence, the inclusion P4 j — P4 is open.

The square in Proposition 2.8 is a pullback diagram because whenever one
has an open inclusion ®* - @, of triposes P — @ given by an element o € Q(1),
then the pullback along a geometric morphism f* 4 f. : R — @ is again an
open inclusion, determined by the inverse image of « (i.e., the element f*(a) €
R(1)), and here in the case at hand, we clearly have that the inverse image of
A" = {a:A|u} along Pp — P4 is equal to B’ = {b:B|u} (and B’ of course
determines the inclusion Pg ; — Pp by the argument given above). | |

Definition 2.11 Let £ be a topos, j an open topology in &£, and A a j-regular
internal partial combinatory algebra in €. The Modified Realizability Topos
M4 ; with respect to A and j, is defined as the closed complement of £[Py4 ;]
in £[P4] and the Modified Realizability Tripos Q4 ; with respect to A and j is
defined as the tripos representing M4 ;.



We shall see in Section 4.2 that this definition agrees with traditional usage
of the term “modified realizability”. Note that we do not claim that if k 1s
the closed complement of j, My ; is E[Pa ]! In fact this is false for our basic
example, see Section 4.2.

We now describe the modified realizability tripos Q4 ; explicitly. Suppose j
is the open topology © — u — z, then we saw in 2.10 that the inverse image of
the inclusion P4 ; — P4 is given by

o= A X A = p(x),

where A" = {a:A|u}. Therefore the tripos Q4 ; representing M, ; can be
defined by
Qai(X)={p: X = Q" (Ae:X.A) < g},

where < refers to the order in P4(X). The reflection P4(X) — Qa4 ;(X) is
given by ¢ — (Az:X.A") V ¢, where V is the join in the Heyting algebra P4 (X).

At this point we insert a folklore fact from topos theory which we have not
found in text books:

Lemma 2.12 Suppose F 1ogisa geometric morphism of toposes, and j and
k the open and closed topologies in & corresponding to the subobject U C 1 in
E. Then the pullbacks along f of the sheaf subtoposes Sh;(E) and Shy (&) are,
respectively, the open and closed subtoposes of F corresponding to the subobject

) cl.

Proof. [Sketch] The pullback along f of Sh;(£) is the subtopos of F given
by the least topology which makes f*(T) : 1 — f*(J) dense, where 1 — J
is the generic j-dense subobject in £. However, this is equivalent to making
F*(U) — 1 dense, and clearly the open topology corresponding to f*(U) is the
least such.

For the closed case one observes that 0 — U is k-dense; hence an arbitrary
geometric morphism g : G — & factors through Shy (&) if and only if g*(U) is
isomorphic to 0 in G. So if now g : G — F, then fg factors through Shy (&) if
and only if ¢*(f*(U)) = 0, that is: ¢ factors through the closed subtopos of F
determined by f*(U). [ |

Proposition 2.13 If A % B is an elementary applicative map, the geometric
morphism Pp — P4 restricts to a geometric morphism Qp; — Qa4 ;. Moreover,
Qp,; is the pullback of Q4 ; along Pp — P, that is, there is a pullback diagram

Qpj ——+Qa

I

Pg — Py

of geometric morphisms of triposes.
Moreover, if ¢ 1s monic, the geometric morphism Qp; — Qa,; s local.

10



Proof. Most of this is immediate from 2.12 and 2.10. We shall only show that
if ¢ is monic, the indexed functor ®, : P4(X) — Pp(X) restricts to Qa ;(X) —

Qp,j(X).
To this end, suppose that ¢ € Q4 ;(X), that is, that
Vo X. A" — p(x)
holds in P4(X). Since A" = ®*(B’) and since &, is a functor, it follows that
Vo X. 09" (B') — &1(p)(2)
holds in Pp(X). Thus also (with 8 = B’)
Ve:X. B — 33:QF B A 0@ (B') — Oi(p) (),

which is to say that ®.(¢) € Qg ;, as required. [ |

2.4 Dense Embeddings and Logical Functors

We now turn to the situation of a monic applicative map A — B of partial com-
binatory algebras in & where A is a j-dense subobject of B, but the embedding
is not assumed to be elementary. Generally, we don’t have geometric morphisms
any more. However, there is an interesting £-indexed functor: P4 ; — Pp ;.

In order to explain the situation, we recall from Pitts’ thesis ([17]) that for
any tripos P on &£ and any filter ® on the Heyting pre-algebra P(1), one can
consider the filter quotient tripos Pg: Pg(X) is the same set as P(X), but the
order is defined by:

p<p ¢ iff Vi(lp = ¢) €D

where 1: X — 1 and = is the Heyting implication in P(X).

Every filter ® on P(1) gives a filter ® of subobjects of 1 in the topos E[P],
and the topos £[Pg] is the filter quotient £[P]g ([17]). The filter quotient
construction (which, by the way, is called “filter power” in [10]) is well explained
in [15]. For us it is important, that for any filter quotient there is a logical functor
from the topos to the quotient.

We make the following definition.

Definition 2.14 An £-indexed functor F': P — @ between E-triposes is called
logical if the following conditions hold:

i) For any object X of & and ¢, 4 € P(X),
Fx(p = v) = Fx(p) = Fx(¥)
ii) For any map f: X — Y in € and any ¢ € P(X),
Fy (Vs (9) = Vs (Fx (#))

iii) If o € P(X) is a generic element for P, then Fx(o) € Q(T) is a generic
element for ().

11



Since, in a tripos, the whole structure is definable from implication, universal
quantification and the generic element, any logical functor between triposes
gives rise to a logical functor between the corresponding toposes. Moreover, the
filter quotient functor: P — Pg is a logical functor of triposes.

Proposition 2.15 Suppose A — B is a monic applicative map of partial com-
binatory algebras in £, such that the inclusion A — B of objects is j-dense.
Then there is a filter ® on Pa; such that the triposes Pg; and (Pa;)o are
isomorphic; hence, there is a logical functor of triposes: Py ; — Pp ;.

Proof. Let ® C P4 ;(1) be the set of those j-closed subobjects o of A such
that
EETBIOE )

It is easy to check that this is a filter; we define functors F : (P4 j)e — Pp;
and G : Pp; — (Pa j)o which are each other’s inverse.
Fx : (Paj)o(X) — Pp;(X) sends ¢ : X — Qf to

e X 55 (p(2) : X — Qf
F is order preserving: in (P4 ;)a, ¢ < ¢ if and only if
& B j(Ve:XVa € p(x).bal Aba € ()
Clearly, this implies
£ & 3b:BYr:XVa € j5(p(x)).bal A ba € j5 ((x))

which is the definition of Fix () < Fx(v).
G : Pg; — (Paj)o is defined by Gx(¢) = Az:X.¢(2) N A. To show that G
is order-preserving, reason internally. ¢ <+ in Pg ;(X) means

& Jb:BYr:XVa € p(x).bal A ba € p(x)
so let b:B satisfy this formula. Clearly, b € A implies
Ve XVa € o(x) N Abal ANba € p(z) N A
Since A is dense in B, we have therefore
EEWB.j(Ve:XVa € o(x) NAbal Aba € (x) N A)
so Gx(p) < Gx(¥) in (Paj)a(X).
Finally, since for a € Qf and 8 € Q}B we have the identities jZ(a) N A =

j4(a) = @, and jB(B N A) = B (the last one because A — B is dense), we see
that F' and G are each other’s inverse.
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3 Relations with the base topos

In this section we exhibit connections between the toposes &£, E[Pa], £[Pa jl,
and Sh; (&) (the topos of j-sheaves in £). Recall from the theory of triposes [17]
that there is a geometric inclusion & — E[P4], whose direct image functor is the
“constant-objects functor.”

Theorem 3.1 There is a commutative diagram

Shj(g) —_— S[PAJ’]

|

84}8[PA]

which is a pullback wn the category of toposes and geometric morphisms.

Proof. Let jp, ji1, j2 be the topologies in £[P4] whose categories of sheaves are
E, £[Pa ;] and Sh;(&), respectively. Then we must show that j, is the join of
Jo and 71 in the lattice of internal topologies in E[P4]. The maps jo, j1, j2 are
determined by topologies on the tripos P4, that is by morphisms kg, k1, k2 -
Q4 — Q4 in &. Indeed, by [17], we know that j, is determined by

ko(a) = {a:A|Fa’:Ad’ € a}
and by Proposition 2.7, we know that j; is determined by
Fi(a) = jA(a).
Finally, j2 is j o jo (since that indeed is a topology), so is determined by
ko(a) = j4{a:A|3a":A.d' € a}.

Since one easily has that ks = kq o kg it follows that j, indeed is the join of jg
and j1, as required.

Remark 3.2 The topos £[P4 ;] can in fact be presented by a tripos R on Sh; ()
in such a way that the inclusion Sh;(£) — &£[Pa ;] is the associated constant-
objects functor Ag. To see this, let us first write i* - ¢, for the geometric
inclusion: Sh;(€) — &£ and note that Sh;(&) is of form £[Q], where @ is the
tripos corresponding to the internal locale Q; in &, and that ¢* : £ — Sh;(€) is
the constant objects functor Ag. This functor is a left adjoint, hence preserves
epimorphisms, so Pitts’ iteration theorem ([17], 6.2) applies: for any tripos R on
Sh; (&), we have that P = Ro(:*)°P is a tripos on &, and there is a commutative
diagram



where K is an equivalence of categories.

Now it is easy to see that if we compose P4 ; with the embedding ., we get
a tripos on Sh; (&), because P4 ; has a generic element living in the fibre over
Qf;‘, which is a j-sheaf. We see that if R is the Sh;(&)-tripos Py jo(i4)°P, the
topos Sh;(&)[R] is equivalent to

E[Pa jo(ix)Po(i™)P] = E[Pa ]

Hence, £[P4 ;] is also represented by the tripos R on Sh;(&). In particular we
have the constant objects functor Ag : Sh;(£) — E[Pa ;].

Remark 3.3 Having noted that £[P4 ;] can be represented by the tripos R
on Sh;(&), it is natural to ask if it is also represented by the Sh;(&)-tripos
on the partial combinatory algebra i*(A), i.e., whether £[P, ;] is equivalent to
Sh; (E)[Piv(a)]-

For this question to make sense, one needs to observe that sheafification, like
the inverse image of any geometric morphism, preserves partial combinatory al-
gebras. This is true because inverse image functors preserve validity of sentences
of the form Fuw:UVe:X(p — ) with ¢ and ¢ geometric, and the combinator
axioms for partial combinatory algebras can be brought into this form.

The answer to the question 1is, in general, no; see Section 4.1 for a concrete
counter-example.

From theorem 3.1 we draw two inferences: firstly, the implication in Propo-
sition 2.10 is actually an equivalence, because it is well known (e.g.,[11]) that
open inclusions are stable under pullback along bounded morphisms.

The second inference is more important for our purposes. Suppose now that
J is an open topology, j(#) = u — z, and k its closed complement k(z) = uV x.
We have the following obvious proposition (in view of 2.12):

Proposition 3.4 Let j be an open topology in £, A j-reqular. Let k be j’s
closed complement. Then

Shk(g) —_— ./\/lij

|

g—>S[PA]

1s a pullback diagram of toposes.

4 Applications

4.1 Relative Realizability

Given an embedding A; C A in Set, [2] defines a tripos P on Set: P(X) =
P(A)X but ¢ < ¢ iff there is a € Ay such that for all € X,b € ¢(x), ab is
defined and an element of ().
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Regard Ay — A as an internal =—-regular pca A in the topos Set™, as in
Example 2.6. Tn Set™, the power object Q4 is (R 3 P(A)) where

R={(UV)|U e P(A),V eP(A),UCV}

and 7y is the second projection.

(Q--)* is (R 3 P(A)) where
R ={(U, V)|V eP(A),U=VnNA}
We see that there is a natur?l 1-1 correspondence between maps X P(A) in
Set, and morphisms 0,(X) 4 (Q4-)" in Set™, and we have ¢ < ¢ in P(X) iff
Set™ = Ja:AVz:0.(X) Vb € 3(x) (ab) A ab € ¢(x))

So in fact, P is P4 ~-0(04)°P, and hence, by Remark 3.2, Set[P] ~ Set™ [P4 ).

The sheafification of Ay — A is just A and thus the topos induced by the
standard realizability tripos on this partial combinatory algebra is just the stan-
dard realizability topos on A, which, in general, is different from the topos rep-
resented by the relative realizability tripos P, thus answering the question put
forward in Remark 3.3.

Quite similarly, the standard realizability tripos over a pca A in Set is equiv-
alent to Py -0(04)°P where now A = (4 Y A).

Note, that the requirement of Ay — A to be a monic applicative map in Set,

makes the inclusion of (4 4 Ay) into (A3 — A) a monic elementary applicative
map in Set ™.

Moreover, there is a =—-dense inclusion of (4y — A) into (4 — A). So our
propositions 2.8 and 2.15 generalize the theorems in [2] on the existence of a
local map of toposes, and a logical functor between toposes.

4.2 Modified and Relative Modified Realizability

Let us look at the special case of the pca A = (IN — IN) in Set™ and the open
——-topology there. The open object U is (0 — 1), and the object A’ (see the
proof of Proposition 2.10) is (0 — IN). As seen in Section 4.1, Set 7 [P, ;] is
the effective topos. Applying the considerations in Remark 3.2, we see that also
Set7[Q4,;] is represented by a tripos over Set. As explained in detail in [21],
one can take the tripos R, where R(X) is the set of inclusions (U C V) of
subsets of IN, where 0 € V (assuming a Goédelnumbering satisfying (0,0) =
0 and 0z = 0, for all #). The topos given by this presentation was found
around 1980 by Hyland and, independently, Grayson (see [6]) to correspond to
modified realizability. We see therefore that our usage of “modified realizability”
in Definition 2.11 generalizes this.

Let k be the closed complement of == in the lattice of topologies in Set™.
Since

Set7((X = V), Q) = Set™ (X = V), Q)
= Set (X, P(A))
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one finds that £[Py4 x] is the effective topos. Thus, in general, if & is the closed
complement of j, the toposes M4 ; and E[P4 ;] are different.

An example of Relative Modified Realizability occurs in [16]. Here one has
Mg ~~ where A = (Ay — A) is again the inclusion of total recursive functions
into the pca for function realizability.

4.3 Kleene’s 1957-realizability

To the best of our knowledge, the first notion of relative realizability was dis-
covered by Kleene in 1951 and published in 1957 in [13]. This was formulated
in terms of partial recursive application in function oracles. A rather off-hand
remark in [14] observes that this is “equivalent” to the notion of relative realiz-
ability given in loc. cit.. This means that the two notions coincide on the truth
definition for intuitionistic analysis; however, it does not seem straightforward
to turn the oracle definition into a tripos.

4.4 An almost-example

N. Goodman ([5]) has the following situation: let T be a set of partial functions
IN — IN, ordered by inclusion. A is the internal pca in Set? where at each partial
function r, A, is the ordinary pca of indices for partial functions recursive in r.

The realizability is defined as follows (we adapt notation to ours): for ¢, ¢ :
X — Q4

¢ < 1 is forced at r iff for some a € A,: for all s > r and all
z € X;,b € p(x)s, there is t > s such that ab is defined in A; and
an element of ¢(x);.

In our tripos-theoretic context this means the following. Let j be the double-
negation topology, A the given internal pca. P(X) is the set of arrows: X — Q4
in set”, and ¢ < 4 holds iff

Ja:AVe: X Vb € p(x) j(abl A ab € Y(z))

is true in Set”.

It is straightforward to prove that this gives a tripos on Set” | and also that
¢ is isomorphic in P(X) to Az:X j4(p(z)). So P looks very much like our Py ;.
However, Goodman’s pca 1s not ——-regular, and there i1s no inclusion in the
tripos P4. This is obviously a variation, and the exact connection with our set-
up remains to be clarified. It is true that Sho-(Set”) is a subtopos of Set” [P]
([19]), but we do not know whether it is equivalent to any of the toposes we
consider.

A very similar example, where the topology is different from —— and the pca
is j-regular, is used in [20].
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