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Abstract

It is shown that the “constant sheaves” functor V : Sets — Eff does
not preserve wi-filtered colimits, and that as a consequence of this,
the full subcategory of £ff on the countable projective objects is not
dense.
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Introduction

The present note aims to contribute to the study of the Effective Topos Eff.
Eff, introduced in [1], is one of the prime examples of elementary topoi
which are not Grothendieck. In fact, £ff is not cocomplete, and the global
sections functor I' : Eff — Sets does not have a left adjoint, but a right
adjoint V : Sets — Eff.

A fundamental question is: how does Eff compare to Grothendieck
topoi? Is it possible to embed Eff into a Grothendieck topos in a nice
way? In [6], a functor from Eff into the “recursive topos” of Mulry ([4])
is defined, but this functor does not preserve a lot of structure (it is, for
example, not an embedding).

Nice embeddings can be obtained by considering small full dense sub-
categories of £ff. Recall that for every category &, a subcategory C C &
is dense if for every object X of £, the natural cocone with vertex X for

the diagram C| X e | eis colimiting. If this is the case, and J is the
Grothendieck topology on C induced by the canonical topology on &, then



the left Kan extension of the Yoneda embedding on C, the functor from &
to [C°P, Sets] which sends X to £(—, X), factors through the sheaf topos
Sh(C, J) and this factorisation is full and faithful, cartesian closed, and pre-
serves all limits and colimits of £; hence also the natural numbers object.
This is standard topos theory, for which the most complete reference is now
[2].

The category Eff is an exact completion ([5]) and therefore, if a small
full dense subcategory C of Eff exists, we may assume that C consists of
projective objects of bounded cardinality. In fact, I started out from the
conjecture that the countable projectives might provide such a dense sub-
category; to my surprise, this is wrong as this paper shows (it is fairly easy
to see that the countable projectives do form a separating set, i.e. that the
natural cocone mentioned earlier is always an epimorphic family).

Basically, this note contains two theorems: theorem 1.2 states an equiv-
alent condition for the full subcategory of A-small (i.e., having underlying
set of cardinality less than \) projectives to be dense in Eff, relating this
to the preservation by V of A-filtered colimits. Then, after a few folklore
results included for completeness’ sake, theorem 1.5 states that V does not
preserve wi-filtered colimits.

I have not been able to settle the matter for higher cardinals such as
P(w)*. However, the proof of theorem 1.5 carries the suggestion that there
is infinitary set-theoretic combinatorics at work here, and that any result
might well depend on axioms independent of ZFC.

1 Filtered Colimits and Dense Subcategories in

&t

For definitions and basic facts concerning Eff the reader is referred to [1].
However there is one further fact, mentioned in [5], which is helpful to un-
derstand theorem 1.2 and its proof. Let N denote the natural numbers
object of Eff. Then T'(N) = N; let ny : N — V(N) be the unit of the
adjunction, and ny : Eff /V(N) — Eff /N the pullback functor. There is a
functor Vi : Sets/N — Eff/N obtained by composing with n}. Further-
more denote, as usual, the forgetful (domain) functor Eff /N — Eff by Y.
Then:

Lemma 1.1 (Robinson, Rosolini) An object of Eff is projective if and
only if it is isomorphic to one in the image of Y noV .



Theorem 1.2 Let A > w be a reqular cardinal. Then the following two
assertions are equivalent:

i) The full subcategory of Eff on the \-small projectives is dense.
i) V :Sets — Eff preserves \-filtered colimits.
For X\ = w, the implication i)=1i) still holds.

Proof. i)=i): First observe that, since V preserves epi-mono factorizations,
statement ii) is equivalent to saying that for any set X, V(X) is the vertex
of a colimiting cocone for the diagram consisting of all V(Y) for ¥ C X
A-small, and (V-images of) inclusions. Now since for any X, any cocone to
V(X) for a diagram of A\-small projectives also yields a cocone for a diagram
of V’s of A\-small subsets of X (by sheafification), it is clear that i) implies
ii).

For ii)=i), observe that if V : Sets — Eff preserves A-small colimits then
the same is true for the functor V/N : Sets/N — Eff/V(N) because the
forgetful functors Xy : Sets/N — Sets and Xy : Eff /V(N) — Eff preserve
and create colimits. Since the pullback functor ny : Eff/V(N) — Eff/N
has a right adjoint, the composite functor V : Sets/N — Eff /N preserves
A-filtered colimits too.

In order to prove i), it clearly suffices to prove that every projective
object X is a colimit of its A-small sub-projectives. So suppose that for
every A-small sub-projective Y of X we are given a map ¢y : Y — (Z,=)
in Eff, such that for Y/ C Y, ¢y Y’ = ¢ys. Each such projective Y is a
set Y together with a map e : ¥ — N; equivalently, an N-indexed family
of sets (Yn)nen. Any map (Yy,)nen — (Z,=) is represented by a function
f Y — Z such that for some partial recursive function p we have that for
all n such that Y;, # 0, p(n) is defined and

YyeY

In such a case, one says that p tracks f. Two such functions f,g:Y — Z
represent the same morphism iff there is a partial recursive function g such
that for all n with Y, # 0, q(n) € N,ey, [f(¥) = 9(y)]-

Now I claim that for some partial recursive function p, it holds that for
Y C X A-small, every ¢y has a representative which is tracked by p; for
otherwise choose for every p a A-small Y,, C X for which no representative
tracked by p exists; since there are only countably many partial recursive



functions the union |J, Y} is still A-small (since A > w); a contradiction is
easily obtained.

Fix such a p as in the previous paragraph. Construct an object (Z',=")
from (Z,=) by putting

Z' ={(n,z)|p(n) is defined and p(n) € [z = 2|}

and
{n}A[z=7] ifn=m
@ otherwise

(0n2) =" (m,2)] = {

Recall that {n} A[z = 2] is {(n,a) |a € [z = 2’]}, where (—, —) is a recursive
bijection N> — N.

The object Z' comes with maps Z' 55 N and Z’ 33 Z such that every
¢y Y — Z factors through some ¢} : Y — Z’ which has the property that
if one regards Y = (Y, )nen as an object of Eff /N, ¢/, is a map over N.

We have therefore a cocone for the A-filtered diagram of sub-projectives
of X, regarded as objects of £ff /N, with vertex the object Z' = N. Since
the diagram is in the image (under V) of a A-filtered diagram in Sets/N and
Vi preserves Afiltered colimits, its colimit is the projective X (as object
of Eff /N), and there is a unique mediating map X — Z’ over N. But then
the composite X — Z is the unique mediating map for the original cocone

of the ¢y’s. [ |

It is worth noting that this result also applies to other realizability toposes
based on partial combinatory algebras A, provided (for the implication
ii)=-1)) one replaces w by |A|.

So, we are led to study the preservation of A-filtered colimits by V. The first
two results in this direction are easy, and folklore facts. Recall that there is
a full subcategory Ass of assemblies in Eff which is reflective and such that
V factors through Ass. Ass can be described as follows: objects are pairs
(X, E) where X is a set and F : X — P(N); morphisms (X, E) — (Y, F)
are functions f : {z € X | E(x) # 0} — Y with the property that for some
partial recursive function p it holds that whenever n € E(z) then p(n) is
defined and an element of F'(f(x)) (one says that p tracks f, as before). The
factorization V : Sets — Ass sends X to (X, Ey) where Evy(z) = N for all
reX.

Clearly, if V : Sets — Eff preserves A-filtered colimits then so does
V : Sets — Ass.

Proposition 1.3 V : Sets — Ass does not preserve filtered colimits.



Proof. Let e — [e] : N — Pg,(N) be a bijective coding of finite subsets of
N. Let A be the assembly (N, E) where E(n) = {e|n € [e]}. Then for any
finite subset [e] of N there is a map of assemblies V([e]) — A, tracked by
the function which is constant e; and this system of maps is clearly a cocone
for the diagram of V’s of finite subsets of N and inclusions between them.
But there is no mediating map: V(N) — A. ||

Proposition 1.4 V : Sets — Ass preserves wi-filtered colimits.

Proof. Easy. [ |

Theorem 1.5 The functor V : Sets — Eff does not preserve wi-filtered
colimits.

Proof. Let D be the wy-filtered diagram of countable subsets of w; and
inclusions between them; clearly, in Sets, the cocone D — wy is colimiting.
We shall see that V(D) — V(w) is not colimiting in Eff.

Recall the necessary ingredients of the construction of an wy-Aronszajn
tree (see [3] for the full story). If « is a countable ordinal and s,¢: o — w,
we write s ~ ¢ if the set {£ € a| s(§) # ¢(€)} is finite. If s ~ ¢, let d(s,t) be
the cardinality of this set.

It is possible to construct a sequence {s,, : @ € w1} such that for each a,
Sq is a 1-1 function from « into w, and such that for a < 3, sq ~ (sglc).

Let T™ consist of all injective functions s : @ — w, defined on some
countable «, such that s ~ s,. Note that for each « € wy, the set L, = {s €
T* | dom(s) = a} is countable.

Equip T* with the structure of an object of £ff, by defining

0 if dom(s) # dom(t)

[s=1t] = { {n|d(s,t) <n} otherwise

Clearly, if n € [s = t] and m € [t = u] then m+n € [s = u], so this is a well-
defined equality relation. (T, =) is a uniform object since 0 € (),cp.[s = s].
For each a € wy let ¢, : @« — T™ be defined by

Then for each pair @ < o’ in w; we have that

d(3a;5010) € [)[Pa(B) = b (B)]

BEa



which means that the functions ¢, and ¢, [a define the same morphism
from V() to (T*,=) in Eff; we shall denote this morphism also by ¢,.

If A C wqis a countable set, let ¢4 : A — T™ be the restriction of ¢, to
A, where a = sup{s + 1|5 € A}. Clearly then, the system {¢4 : V(A) —
(T*,=)| A C w; countable} defines a cocone on V(D) with vertex (T*,=).
I claim that this cocone does not factor through V(w1).

Suppose, to the contrary, that there is a morphism ® : V(wy) — (7%, =)
such that for each o € w1, PoV(1y) = Pq, Where ¢, is the inclusion of « in
wi. Then & : w; — T™ has the property that for every a there is an n € w
such that

n e [[pa(B) = 2(3)

BEa

Then there must be a number n such that the set

Ap = {acwi|ne ()[ga(B) = 2(8)]}

BEa

is unbounded in wy. Fix such an n for the rest of the proof. If o < o/ are
elements of A,, then

2n € ﬂ [gba(ﬂ) = gba/(ﬂ)]

BEa

So for each < « there are at most 2n ordinals £ € 3 such that s,(§) #
Sar(€); it follows that 2n + 1 € [sq = s/ @]
However, this is a contradiction once we have proved the following

CLAIM 1. Let A be unbounded in wq; then there exist, for each k£ € w,
elements « < o of A such that d(sa, s [@) > k.

Proof of Claim 1: first observe that if A C wy is unbounded, then for each
& € wy there is at least one n such that the set

Ay = {a€ Ala > € and s54(§) =n}

is unbounded.

CrAamm 2. Let A be unbounded. Then for each n € wy there is a £ > n such
that there are n, m with n # m and both A¢,, and A¢ ,, unbounded.

Proof of Claim 2: suppose Claim 2 is false; then by the remark preceding
it, there is € wy such that for each £ > 7 there is exactly one n such that
Ag¢ 5, is unbounded. Then for every { > 7 there is a §¢ € A such that for all
a,a’ € A that are > f¢, s4(§) = sor(§). But then the function € — sp,(§) is
easily seen to be a 1-1 function from {{ |n < £} to w, which is impossible.



Proof of Claim 1, continued: we construct, for each k£ € w, sequences
(51, ... ,fk) and ((nl,ml), RN (nk,mk)) with & < -+ <& < w1, Ny, M; EW
such that n; # m; and the sets

Ap. = {a€Ala> & and Vi < k(sq(&)
Bgﬂ

n;)}
{a € Ala > & and Vi < k(so(&) = my)}

are both unbounded.

For k = 1 simply apply Claim 2. Inductively, suppose ({1, ...,&) and
((n1,mq), ..., (ng,mg)) have been defined satisfying the conditions. Apply
Claim 2 with A = Afﬁ and n = &. One finds 41 > & and a # b such
that both A¢, | o and Ag, ,, » are unbounded.

If B

is

£t a is unbounded, let ngy; = b,mry1 = a. If B§§k+1,m,b
unbounded, let ng41 = a,mgy1 = b. If neither of these two, let ng11 = a
and pick my, arbitrary, such that Bz is unbounded. [ |

&:€k1,m Mg 1
Remark. Echoing the remark following the proof of theorem 1.2, it is worth
noting that theorem 1.5 holds for every realizability topos based on a partial
combinatory algebra A, whatever its cardinality; since the object (T, =) can
be constructed in every such topos.
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