Filtered colimits in the Effective Topos

Jaap van Oosten Department of Mathematics Utrecht University P.O.Box 80.010, 3508 TA Utrecht, The Netherlands jvoosten@math.uu.nl

September 21, 2004; revised May 10, 2005

Abstract

It is shown that the "constant sheaves" functor ∇ : Sets $\rightarrow \mathcal{E}ff$ does not preserve ω_1 -filtered colimits, and that as a consequence of this, the full subcategory of $\mathcal{E}ff$ on the countable projective objects is not dense.

AMS Subject Classification (2000): 18B25

Introduction

The present note aims to contribute to the study of the *Effective Topos* $\mathcal{E}ff$. $\mathcal{E}ff$, introduced in [1], is one of the prime examples of elementary topoi which are not Grothendieck. In fact, $\mathcal{E}ff$ is not cocomplete, and the global sections functor $\Gamma : \mathcal{E}ff \to \text{Sets}$ does not have a left adjoint, but a right adjoint $\nabla : \text{Sets} \to \mathcal{E}ff$.

A fundamental question is: how does $\mathcal{E}ff$ compare to Grothendieck topoi? Is it possible to embed $\mathcal{E}ff$ into a Grothendieck topos in a nice way? In [6], a functor from $\mathcal{E}ff$ into the "recursive topos" of Mulry ([4]) is defined, but this functor does not preserve a lot of structure (it is, for example, not an embedding).

Nice embeddings can be obtained by considering small full dense subcategories of $\mathcal{E}ff$. Recall that for every category \mathcal{E} , a subcategory $\mathcal{C} \subset \mathcal{E}$ is dense if for every object X of \mathcal{E} , the natural cocone with vertex X for the diagram $\mathcal{C} \downarrow X \xrightarrow{\text{dom}} \mathcal{C} \to \mathcal{E}$ is colimiting. If this is the case, and J is the Grothendieck topology on \mathcal{C} induced by the canonical topology on \mathcal{E} , then the left Kan extension of the Yoneda embedding on \mathcal{C} , the functor from \mathcal{E} to $[\mathcal{C}^{\text{op}}, \text{Sets}]$ which sends X to $\mathcal{E}(-, X)$, factors through the sheaf topos $\text{Sh}(\mathcal{C}, J)$ and this factorisation is full and faithful, cartesian closed, and preserves all limits and colimits of \mathcal{E} ; hence also the natural numbers object. This is standard topos theory, for which the most complete reference is now [2].

The category $\mathcal{E}ff$ is an exact completion ([5]) and therefore, if a small full dense subcategory \mathcal{C} of $\mathcal{E}ff$ exists, we may assume that \mathcal{C} consists of projective objects of bounded cardinality. In fact, I started out from the conjecture that the countable projectives might provide such a dense subcategory; to my surprise, this is wrong as this paper shows (it is fairly easy to see that the countable projectives do form a separating set, i.e. that the natural cocone mentioned earlier is always an epimorphic family).

Basically, this note contains two theorems: theorem 1.2 states an equivalent condition for the full subcategory of λ -small (i.e., having underlying set of cardinality less than λ) projectives to be dense in $\mathcal{E}ff$, relating this to the preservation by ∇ of λ -filtered colimits. Then, after a few folklore results included for completeness' sake, theorem 1.5 states that ∇ does not preserve ω_1 -filtered colimits.

I have not been able to settle the matter for higher cardinals such as $\mathcal{P}(\omega)^+$. However, the proof of theorem 1.5 carries the suggestion that there is infinitary set-theoretic combinatorics at work here, and that any result might well depend on axioms independent of ZFC.

1 Filtered Colimits and Dense Subcategories in $\mathcal{E}ff$

For definitions and basic facts concerning $\mathcal{E}ff$ the reader is referred to [1]. However there is one further fact, mentioned in [5], which is helpful to understand theorem 1.2 and its proof. Let N denote the natural numbers object of $\mathcal{E}ff$. Then $\Gamma(N) = \mathbb{N}$; let $\eta_N : N \to \nabla(\mathbb{N})$ be the unit of the adjunction, and $\eta_N^* : \mathcal{E}ff/\nabla(\mathbb{N}) \to \mathcal{E}ff/N$ the pullback functor. There is a functor $\nabla_N : \operatorname{Sets}/\mathbb{N} \to \mathcal{E}ff/N$ obtained by composing with η_N^* . Furthermore denote, as usual, the forgetful (domain) functor $\mathcal{E}ff/N \to \mathcal{E}ff$ by Σ_N . Then:

Lemma 1.1 (Robinson, Rosolini) An object of $\mathcal{E}ff$ is projective if and only if it is isomorphic to one in the image of $\Sigma_N \circ \nabla_N$.

Theorem 1.2 Let $\lambda > \omega$ be a regular cardinal. Then the following two assertions are equivalent:

- i) The full subcategory of $\mathcal{E}ff$ on the λ -small projectives is dense.
- ii) ∇ : Sets $\rightarrow \mathcal{E}ff$ preserves λ -filtered colimits.

For $\lambda = \omega$, the implication i) \Rightarrow ii) still holds.

Proof. i) \Rightarrow ii): First observe that, since ∇ preserves epi-mono factorizations, statement ii) is equivalent to saying that for any set X, $\nabla(X)$ is the vertex of a colimiting cocone for the diagram consisting of all $\nabla(Y)$ for $Y \subseteq X$ λ -small, and (∇ -images of) inclusions. Now since for any X, any cocone to $\nabla(X)$ for a diagram of λ -small projectives also yields a cocone for a diagram of ∇ 's of λ -small subsets of X (by sheafification), it is clear that i) implies ii).

For ii) \Rightarrow i), observe that if ∇ : Sets $\rightarrow \mathcal{E}ff$ preserves λ -small colimits then the same is true for the functor ∇/\mathbb{N} : Sets/ $\mathbb{N} \rightarrow \mathcal{E}ff/\nabla(\mathbb{N})$ because the forgetful functors $\Sigma_{\mathbb{N}}$: Sets/ $\mathbb{N} \rightarrow$ Sets and $\Sigma_{\nabla(\mathbb{N})}$: $\mathcal{E}ff/\nabla(\mathbb{N}) \rightarrow \mathcal{E}ff$ preserve and create colimits. Since the pullback functor η_N^* : $\mathcal{E}ff/\nabla(\mathbb{N}) \rightarrow \mathcal{E}ff/N$ has a right adjoint, the composite functor ∇_N : Sets/ $\mathbb{N} \rightarrow \mathcal{E}ff/N$ preserves λ -filtered colimits too.

In order to prove i), it clearly suffices to prove that every projective object X is a colimit of its λ -small sub-projectives. So suppose that for every λ -small sub-projective Y of X we are given a map $\phi_Y : Y \to (Z, =)$ in $\mathcal{E}ff$, such that for $Y' \subset Y$, $\phi_Y \upharpoonright Y' = \phi_{Y'}$. Each such projective Y is a set Y together with a map $e : Y \to \mathbb{N}$; equivalently, an N-indexed family of sets $(Y_n)_{n \in \mathbb{N}}$. Any map $(Y_n)_{n \in \mathbb{N}} \to (Z, =)$ is represented by a function $f : Y \to Z$ such that for some partial recursive function p we have that for all n such that $Y_n \neq \emptyset$, p(n) is defined and

$$p(n)\in \bigcap_{y\in Y_n}[f(y)=f(y)]$$

In such a case, one says that p tracks f. Two such functions $f, g: Y \to Z$ represent the same morphism iff there is a partial recursive function q such that for all n with $Y_n \neq \emptyset$, $q(n) \in \bigcap_{y \in Y_n} [f(y) = g(y)]$.

Now I claim that for some partial recursive function p, it holds that for $Y \subset X$ λ -small, every ϕ_Y has a representative which is tracked by p; for otherwise choose for every p a λ -small $Y_p \subset X$ for which no representative tracked by p exists; since there are only countably many partial recursive

functions the union $\bigcup_p Y_p$ is still λ -small (since $\lambda > \omega$); a contradiction is easily obtained.

Fix such a p as in the previous paragraph. Construct an object (Z', =') from (Z, =) by putting

$$Z' = \{(n, z) \mid p(n) \text{ is defined and } p(n) \in [z = z]\}$$

and

$$[(n,z) ='(m,z)] = \begin{cases} \{n\} \land [z=z'] & \text{if } n=m \\ \emptyset & \text{otherwise} \end{cases}$$

Recall that $\{n\} \wedge [z = z']$ is $\{\langle n, a \rangle | a \in [z = z']\}$, where $\langle -, - \rangle$ is a recursive bijection $\mathbb{N}^2 \to \mathbb{N}$.

The object Z' comes with maps $Z' \xrightarrow{\pi_1} N$ and $Z' \xrightarrow{\pi_2} Z$ such that every $\phi_Y : Y \to Z$ factors through some $\phi'_Y : Y \to Z'$ which has the property that if one regards $Y = (Y_n)_{n \in \mathbb{N}}$ as an object of $\mathcal{E}ff/N$, ϕ'_Y is a map over N.

We have therefore a cocone for the λ -filtered diagram of sub-projectives of X, regarded as objects of $\mathcal{E}ff/N$, with vertex the object $Z' \xrightarrow{\pi_1} N$. Since the diagram is in the image (under ∇_N) of a λ -filtered diagram in Sets/N and ∇_N preserves λ -filtered colimits, its colimit is the projective X (as object of $\mathcal{E}ff/N$), and there is a unique mediating map $X \to Z'$ over N. But then the composite $X \to Z$ is the unique mediating map for the original cocone of the ϕ_Y 's.

It is worth noting that this result also applies to other realizability toposes based on partial combinatory algebras A, provided (for the implication ii) \Rightarrow i)) one replaces ω by |A|.

So, we are led to study the preservation of λ -filtered colimits by ∇ . The first two results in this direction are easy, and folklore facts. Recall that there is a full subcategory Ass of *assemblies* in $\mathcal{E}ff$ which is reflective and such that ∇ factors through Ass. Ass can be described as follows: objects are pairs (X, E) where X is a set and $E : X \to \mathcal{P}(\mathbb{N})$; morphisms $(X, E) \to (Y, F)$ are functions $f : \{x \in X \mid E(x) \neq \emptyset\} \to Y$ with the property that for some partial recursive function p it holds that whenever $n \in E(x)$ then p(n) is defined and an element of F(f(x)) (one says that p tracks f, as before). The factorization ∇ : Sets \to Ass sends X to (X, E_{∇}) where $E_{\nabla}(x) = \mathbb{N}$ for all $x \in X$.

Clearly, if ∇ : Sets $\rightarrow \mathcal{E}ff$ preserves λ -filtered colimits then so does ∇ : Sets \rightarrow Ass.

Proposition 1.3 ∇ : Sets \rightarrow Ass does not preserve filtered colimits.

Proof. Let $e \mapsto [e] : \mathbb{N} \to \mathcal{P}_{\text{fin}}(\mathbb{N})$ be a bijective coding of finite subsets of \mathbb{N} . Let A be the assembly (\mathbb{N}, E) where $E(n) = \{e \mid n \in [e]\}$. Then for any finite subset [e] of \mathbb{N} there is a map of assemblies $\nabla([e]) \to A$, tracked by the function which is constant e; and this system of maps is clearly a cocone for the diagram of ∇ 's of finite subsets of \mathbb{N} and inclusions between them. But there is no mediating map: $\nabla(\mathbb{N}) \to A$.

Proposition 1.4 ∇ : Sets \rightarrow Ass preserves ω_1 -filtered colimits.

Proof. Easy.

Theorem 1.5 The functor ∇ : Sets $\rightarrow \mathcal{E}ff$ does not preserve ω_1 -filtered colimits.

Proof. Let D be the ω_1 -filtered diagram of countable subsets of ω_1 and inclusions between them; clearly, in Sets, the cocone $D \to \omega_1$ is colimiting. We shall see that $\nabla(D) \to \nabla(\omega_1)$ is not colimiting in $\mathcal{E}ff$.

Recall the necessary ingredients of the construction of an ω_1 -Aronszajn tree (see [3] for the full story). If α is a countable ordinal and $s, t : \alpha \to \omega$, we write $s \sim t$ if the set $\{\xi \in \alpha \mid s(\xi) \neq t(\xi)\}$ is finite. If $s \sim t$, let d(s, t) be the cardinality of this set.

It is possible to construct a sequence $\{s_{\alpha} : \alpha \in \omega_1\}$ such that for each α , s_{α} is a 1-1 function from α into ω , and such that for $\alpha < \beta$, $s_{\alpha} \sim (s_{\beta} \upharpoonright \alpha)$.

Let T^* consist of all injective functions $s : \alpha \to \omega$, defined on some countable α , such that $s \sim s_{\alpha}$. Note that for each $\alpha \in \omega_1$, the set $L_{\alpha} = \{s \in T^* | \operatorname{dom}(s) = \alpha\}$ is countable.

Equip T^* with the structure of an object of $\mathcal{E}ff$, by defining

$$[s = t] = \begin{cases} \emptyset & \text{if } \operatorname{dom}(s) \neq \operatorname{dom}(t) \\ \{n \mid d(s, t) \leq n\} & \text{otherwise} \end{cases}$$

Clearly, if $n \in [s = t]$ and $m \in [t = u]$ then $m + n \in [s = u]$, so this is a welldefined equality relation. $(T^*, =)$ is a uniform object since $0 \in \bigcap_{s \in T^*} [s = s]$.

For each $\alpha \in \omega_1$ let $\phi_\alpha : \alpha \to T^*$ be defined by

$$\phi_{\alpha}(\beta) = s_{\alpha} \restriction \beta$$

Then for each pair $\alpha < \alpha'$ in ω_1 we have that

$$d(s_{\alpha}, s_{\alpha'} \restriction \alpha) \in \bigcap_{\beta \in \alpha} [\phi_{\alpha}(\beta) = \phi_{\alpha'}(\beta)]$$

which means that the functions ϕ_{α} and $\phi_{\alpha'} \upharpoonright \alpha$ define the same morphism from $\nabla(\alpha)$ to $(T^*, =)$ in $\mathcal{E}ff$; we shall denote this morphism also by ϕ_{α} .

If $A \subset \omega_1$ is a countable set, let $\phi_A : A \to T^*$ be the restriction of ϕ_α to A, where $\alpha = \sup\{\beta + 1 \mid \beta \in A\}$. Clearly then, the system $\{\phi_A : \nabla(A) \to (T^*, =) \mid A \subset \omega_1 \text{ countable}\}$ defines a cocone on $\nabla(D)$ with vertex $(T^*, =)$. I claim that this cocone does not factor through $\nabla(\omega_1)$.

Suppose, to the contrary, that there is a morphism $\Phi : \nabla(\omega_1) \to (T^*, =)$ such that for each $\alpha \in \omega_1$, $\Phi \circ \nabla(\iota_\alpha) = \phi_\alpha$, where ι_α is the inclusion of α in ω_1 . Then $\Phi : \omega_1 \to T^*$ has the property that for every α there is an $n \in \omega$ such that

$$n \in \bigcap_{\beta \in \alpha} [\phi_{\alpha}(\beta) = \Phi(\beta)]$$

Then there must be a number n such that the set

$$A_n = \{ \alpha \in \omega_1 \, | \, n \in \bigcap_{\beta \in \alpha} [\phi_\alpha(\beta) = \Phi(\beta)] \}$$

is unbounded in ω_1 . Fix such an *n* for the rest of the proof. If $\alpha < \alpha'$ are elements of A_n , then

$$2n \in \bigcap_{\beta \in \alpha} [\phi_{\alpha}(\beta) = \phi_{\alpha'}(\beta)]$$

So for each $\beta < \alpha$ there are at most 2n ordinals $\xi \in \beta$ such that $s_{\alpha}(\xi) \neq s_{\alpha'}(\xi)$; it follows that $2n + 1 \in [s_{\alpha} = s_{\alpha'} \upharpoonright \alpha]$.

However, this is a contradiction once we have proved the following

CLAIM 1. Let A be unbounded in ω_1 ; then there exist, for each $k \in \omega$, elements $\alpha < \alpha'$ of A such that $d(s_\alpha, s_{\alpha'} \upharpoonright \alpha) \ge k$.

Proof of Claim 1: first observe that if $A \subseteq \omega_1$ is unbounded, then for each $\xi \in \omega_1$ there is at least one *n* such that the set

$$A_{\xi,n} = \{ \alpha \in A \mid \alpha > \xi \text{ and } s_{\alpha}(\xi) = n \}$$

is unbounded.

CLAIM 2. Let A be unbounded. Then for each $\eta \in \omega_1$ there is a $\xi > \eta$ such that there are n, m with $n \neq m$ and both $A_{\xi,n}$ and $A_{\xi,m}$ unbounded.

Proof of Claim 2: suppose Claim 2 is false; then by the remark preceding it, there is $\eta \in \omega_1$ such that for each $\xi > \eta$ there is exactly one *n* such that $A_{\xi,n}$ is unbounded. Then for every $\xi > \eta$ there is a $\beta_{\xi} \in A$ such that for all $\alpha, \alpha' \in A$ that are $\geq \beta_{\xi}, s_{\alpha}(\xi) = s_{\alpha'}(\xi)$. But then the function $\xi \mapsto s_{\beta_{\xi}}(\xi)$ is easily seen to be a 1-1 function from $\{\xi \mid \eta < \xi\}$ to ω , which is impossible. Proof of Claim 1, continued: we construct, for each $k \in \omega$, sequences (ξ_1, \ldots, ξ_k) and $((n_1, m_1), \ldots, (n_k, m_k))$ with $\xi_1 < \cdots < \xi_k < \omega_1, n_i, m_i \in \omega$ such that $n_i \neq m_i$ and the sets

$$\begin{array}{ll} A_{\vec{\xi},\vec{n}} &= \{ \alpha \in A \, | \, \alpha > \xi_k \text{ and } \forall i \leq k(s_\alpha(\xi_i) = n_i) \} \\ B_{\vec{\xi},\vec{m}} &= \{ \alpha \in A \, | \, \alpha > \xi_k \text{ and } \forall i \leq k(s_\alpha(\xi_i) = m_i) \} \end{array}$$

are both unbounded.

For k = 1 simply apply Claim 2. Inductively, suppose (ξ_1, \ldots, ξ_k) and $((n_1, m_1), \ldots, (n_k, m_k))$ have been defined satisfying the conditions. Apply Claim 2 with $A = A_{\vec{\xi},\vec{n}}$ and $\eta = \xi_k$. One finds $\xi_{k+1} > \xi_k$ and $a \neq b$ such that both $A_{\xi_{k+1},a}$ and $A_{\xi_{k+1},b}$ are unbounded.

If $B_{\vec{\xi},\xi_{k+1},\vec{m},a}$ is unbounded, let $n_{k+1} = b, m_{k+1} = a$. If $B_{\vec{\xi},\xi_{k+1},\vec{m},b}$ is unbounded, let $n_{k+1} = a, m_{k+1} = b$. If neither of these two, let $n_{k+1} = a$ and pick m_{k+1} arbitrary, such that $B_{\vec{\xi},\xi_{k+1},\vec{m},m_{k+1}}$ is unbounded.

Remark. Echoing the remark following the proof of theorem 1.2, it is worth noting that theorem 1.5 holds for every realizability topos based on a partial combinatory algebra A, whatever its cardinality; since the object $(T^*, =)$ can be constructed in every such topos.

Acknowledgement. The problem studied in this note was brought to my attention by Steve Awodey.

References

- J.M.E. Hyland. The effective topos. In A.S. Troelstra and D. Van Dalen, editors, *The L.E.J. Brouwer Centenary Symposium*, pages 165–216. North Holland Publishing Company, 1982.
- [2] P.T. Johnstone. Sketches of an Elephant (2 vols.), volume 43 of Oxford Logic Guides. Clarendon Press, Oxford, 2002.
- [3] K. Kunen. Set Theory, volume 102 of Studies in Logic. North-Holland, Amsterdam, 1980.
- [4] P. Mulry. Generalized Banach-Mazur functionals in the topos of recursive sets. Journal of Pure and Applied Algebra, 26:71–83, 1982.
- [5] E.P. Robinson and G. Rosolini. Colimit completions and the effective topos. *Journal of Symbolic Logic*, 55:678–699, 1990.
- [6] G. Rosolini. Continuity and Effectiveness in Topoi. PhD thesis, University of Oxford, 1986.