
Filtered colimits in the Effective Topos

Jaap van Oosten

Department of Mathematics

Utrecht University

P.O.Box 80.010, 3508 TA Utrecht, The Netherlands

jvoosten@math.uu.nl

September 21, 2004; revised May 10, 2005

Abstract

It is shown that the “constant sheaves” functor ∇ : Sets → Eff does
not preserve ω1-filtered colimits, and that as a consequence of this,
the full subcategory of Eff on the countable projective objects is not
dense.

AMS Subject Classification (2000): 18B25

Introduction

The present note aims to contribute to the study of the Effective Topos Eff .
Eff , introduced in [1], is one of the prime examples of elementary topoi
which are not Grothendieck. In fact, Eff is not cocomplete, and the global
sections functor Γ : Eff → Sets does not have a left adjoint, but a right
adjoint ∇ : Sets → Eff .

A fundamental question is: how does Eff compare to Grothendieck
topoi? Is it possible to embed Eff into a Grothendieck topos in a nice
way? In [6], a functor from Eff into the “recursive topos” of Mulry ([4])
is defined, but this functor does not preserve a lot of structure (it is, for
example, not an embedding).

Nice embeddings can be obtained by considering small full dense sub-
categories of Eff . Recall that for every category E , a subcategory C ⊂ E
is dense if for every object X of E , the natural cocone with vertex X for

the diagram C↓X
dom
→ C → E is colimiting. If this is the case, and J is the

Grothendieck topology on C induced by the canonical topology on E , then
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the left Kan extension of the Yoneda embedding on C, the functor from E
to [Cop,Sets] which sends X to E(−,X), factors through the sheaf topos
Sh(C, J) and this factorisation is full and faithful, cartesian closed, and pre-
serves all limits and colimits of E ; hence also the natural numbers object.
This is standard topos theory, for which the most complete reference is now
[2].

The category Eff is an exact completion ([5]) and therefore, if a small
full dense subcategory C of Eff exists, we may assume that C consists of
projective objects of bounded cardinality. In fact, I started out from the
conjecture that the countable projectives might provide such a dense sub-
category; to my surprise, this is wrong as this paper shows (it is fairly easy
to see that the countable projectives do form a separating set, i.e. that the
natural cocone mentioned earlier is always an epimorphic family).

Basically, this note contains two theorems: theorem 1.2 states an equiv-
alent condition for the full subcategory of λ-small (i.e., having underlying
set of cardinality less than λ) projectives to be dense in Eff , relating this
to the preservation by ∇ of λ-filtered colimits. Then, after a few folklore
results included for completeness’ sake, theorem 1.5 states that ∇ does not
preserve ω1-filtered colimits.

I have not been able to settle the matter for higher cardinals such as
P(ω)+. However, the proof of theorem 1.5 carries the suggestion that there
is infinitary set-theoretic combinatorics at work here, and that any result
might well depend on axioms independent of ZFC.

1 Filtered Colimits and Dense Subcategories in

Eff

For definitions and basic facts concerning Eff the reader is referred to [1].
However there is one further fact, mentioned in [5], which is helpful to un-
derstand theorem 1.2 and its proof. Let N denote the natural numbers
object of Eff . Then Γ(N) = N; let ηN : N → ∇(N) be the unit of the
adjunction, and η∗N : Eff/∇(N) → Eff/N the pullback functor. There is a
functor ∇N : Sets/N → Eff/N obtained by composing with η∗N . Further-
more denote, as usual, the forgetful (domain) functor Eff/N → Eff by ΣN .
Then:

Lemma 1.1 (Robinson, Rosolini) An object of Eff is projective if and
only if it is isomorphic to one in the image of ΣN◦∇N .
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Theorem 1.2 Let λ > ω be a regular cardinal. Then the following two
assertions are equivalent:

i) The full subcategory of Eff on the λ-small projectives is dense.

ii) ∇ : Sets → Eff preserves λ-filtered colimits.

For λ = ω, the implication i)⇒ii) still holds.

Proof. i)⇒ii): First observe that, since ∇ preserves epi-mono factorizations,
statement ii) is equivalent to saying that for any set X, ∇(X) is the vertex
of a colimiting cocone for the diagram consisting of all ∇(Y ) for Y ⊆ X
λ-small, and (∇-images of) inclusions. Now since for any X, any cocone to
∇(X) for a diagram of λ-small projectives also yields a cocone for a diagram
of ∇’s of λ-small subsets of X (by sheafification), it is clear that i) implies
ii).

For ii)⇒i), observe that if ∇ : Sets → Eff preserves λ-small colimits then
the same is true for the functor ∇/N : Sets/N → Eff/∇(N) because the
forgetful functors ΣN : Sets/N → Sets and Σ∇(N) : Eff/∇(N) → Eff preserve
and create colimits. Since the pullback functor η∗N : Eff/∇(N) → Eff/N
has a right adjoint, the composite functor ∇N : Sets/N → Eff/N preserves
λ-filtered colimits too.

In order to prove i), it clearly suffices to prove that every projective
object X is a colimit of its λ-small sub-projectives. So suppose that for
every λ-small sub-projective Y of X we are given a map φY : Y → (Z,=)
in Eff , such that for Y ′ ⊂ Y , φY ↾Y ′ = φY ′ . Each such projective Y is a
set Y together with a map e : Y → N; equivalently, an N-indexed family
of sets (Yn)n∈N. Any map (Yn)n∈N → (Z,=) is represented by a function
f : Y → Z such that for some partial recursive function p we have that for
all n such that Yn 6= ∅, p(n) is defined and

p(n) ∈
⋂

y∈Yn

[f(y) = f(y)]

In such a case, one says that p tracks f . Two such functions f, g : Y → Z
represent the same morphism iff there is a partial recursive function q such
that for all n with Yn 6= ∅, q(n) ∈

⋂

y∈Yn
[f(y) = g(y)].

Now I claim that for some partial recursive function p, it holds that for
Y ⊂ X λ-small, every φY has a representative which is tracked by p; for
otherwise choose for every p a λ-small Yp ⊂ X for which no representative
tracked by p exists; since there are only countably many partial recursive
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functions the union
⋃

p Yp is still λ-small (since λ > ω); a contradiction is
easily obtained.

Fix such a p as in the previous paragraph. Construct an object (Z ′,=′)
from (Z,=) by putting

Z ′ = {(n, z) | p(n) is defined and p(n) ∈ [z = z]}

and

[(n, z) =′ (m, z)] =

{

{n} ∧ [z = z′] if n = m
∅ otherwise

Recall that {n}∧ [z = z′] is {〈n, a〉 | a ∈ [z = z′]}, where 〈−,−〉 is a recursive
bijection N

2 → N.
The object Z ′ comes with maps Z ′ π1→ N and Z ′ π2→ Z such that every

φY : Y → Z factors through some φ′
Y : Y → Z ′ which has the property that

if one regards Y = (Yn)n∈N as an object of Eff/N , φ′
Y is a map over N .

We have therefore a cocone for the λ-filtered diagram of sub-projectives
of X, regarded as objects of Eff/N , with vertex the object Z ′ π1→ N . Since
the diagram is in the image (under ∇N ) of a λ-filtered diagram in Sets/N and
∇N preserves λ-filtered colimits, its colimit is the projective X (as object
of Eff/N), and there is a unique mediating map X → Z ′ over N . But then
the composite X → Z is the unique mediating map for the original cocone
of the φY ’s.

It is worth noting that this result also applies to other realizability toposes
based on partial combinatory algebras A, provided (for the implication
ii)⇒i)) one replaces ω by |A|.

So, we are led to study the preservation of λ-filtered colimits by ∇. The first
two results in this direction are easy, and folklore facts. Recall that there is
a full subcategory Ass of assemblies in Eff which is reflective and such that
∇ factors through Ass. Ass can be described as follows: objects are pairs
(X,E) where X is a set and E : X → P(N); morphisms (X,E) → (Y, F )
are functions f : {x ∈ X |E(x) 6= ∅} → Y with the property that for some
partial recursive function p it holds that whenever n ∈ E(x) then p(n) is
defined and an element of F (f(x)) (one says that p tracks f , as before). The
factorization ∇ : Sets → Ass sends X to (X,E∇) where E∇(x) = N for all
x ∈ X.

Clearly, if ∇ : Sets → Eff preserves λ-filtered colimits then so does
∇ : Sets → Ass.

Proposition 1.3 ∇ : Sets → Ass does not preserve filtered colimits.
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Proof. Let e 7→ [e] : N → Pfin(N) be a bijective coding of finite subsets of
N. Let A be the assembly (N, E) where E(n) = {e |n ∈ [e]}. Then for any
finite subset [e] of N there is a map of assemblies ∇([e]) → A, tracked by
the function which is constant e; and this system of maps is clearly a cocone
for the diagram of ∇’s of finite subsets of N and inclusions between them.
But there is no mediating map: ∇(N) → A.

Proposition 1.4 ∇ : Sets → Ass preserves ω1-filtered colimits.

Proof. Easy.

Theorem 1.5 The functor ∇ : Sets → Eff does not preserve ω1-filtered
colimits.

Proof. Let D be the ω1-filtered diagram of countable subsets of ω1 and
inclusions between them; clearly, in Sets, the cocone D → ω1 is colimiting.
We shall see that ∇(D) → ∇(ω1) is not colimiting in Eff .

Recall the necessary ingredients of the construction of an ω1-Aronszajn
tree (see [3] for the full story). If α is a countable ordinal and s, t : α → ω,
we write s ∼ t if the set {ξ ∈ α | s(ξ) 6= t(ξ)} is finite. If s ∼ t, let d(s, t) be
the cardinality of this set.

It is possible to construct a sequence {sα : α ∈ ω1} such that for each α,
sα is a 1-1 function from α into ω, and such that for α < β, sα ∼ (sβ↾α).

Let T ∗ consist of all injective functions s : α → ω, defined on some
countable α, such that s ∼ sα. Note that for each α ∈ ω1, the set Lα = {s ∈
T ∗ |dom(s) = α} is countable.

Equip T ∗ with the structure of an object of Eff , by defining

[s = t] =

{

∅ if dom(s) 6= dom(t)
{n | d(s, t) ≤ n} otherwise

Clearly, if n ∈ [s = t] and m ∈ [t = u] then m+n ∈ [s = u], so this is a well-
defined equality relation. (T ∗,=) is a uniform object since 0 ∈

⋂

s∈T ∗ [s = s].
For each α ∈ ω1 let φα : α → T ∗ be defined by

φα(β) = sα↾β

Then for each pair α < α′ in ω1 we have that

d(sα, sα′↾α) ∈
⋂

β∈α

[φα(β) = φα′(β)]
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which means that the functions φα and φα′↾α define the same morphism
from ∇(α) to (T ∗,=) in Eff ; we shall denote this morphism also by φα.

If A ⊂ ω1 is a countable set, let φA : A → T ∗ be the restriction of φα to
A, where α = sup{β + 1 |β ∈ A}. Clearly then, the system {φA : ∇(A) →
(T ∗,=) |A ⊂ ω1 countable} defines a cocone on ∇(D) with vertex (T ∗,=).
I claim that this cocone does not factor through ∇(ω1).

Suppose, to the contrary, that there is a morphism Φ : ∇(ω1) → (T ∗,=)
such that for each α ∈ ω1, Φ◦∇(ια) = φα, where ια is the inclusion of α in
ω1. Then Φ : ω1 → T ∗ has the property that for every α there is an n ∈ ω
such that

n ∈
⋂

β∈α

[φα(β) = Φ(β)]

Then there must be a number n such that the set

An = {α ∈ ω1 |n ∈
⋂

β∈α

[φα(β) = Φ(β)]}

is unbounded in ω1. Fix such an n for the rest of the proof. If α < α′ are
elements of An, then

2n ∈
⋂

β∈α

[φα(β) = φα′(β)]

So for each β < α there are at most 2n ordinals ξ ∈ β such that sα(ξ) 6=
sα′(ξ); it follows that 2n + 1 ∈ [sα = sα′↾α].

However, this is a contradiction once we have proved the following

Claim 1. Let A be unbounded in ω1; then there exist, for each k ∈ ω,
elements α < α′ of A such that d(sα, sα′↾α) ≥ k.
Proof of Claim 1: first observe that if A ⊆ ω1 is unbounded, then for each
ξ ∈ ω1 there is at least one n such that the set

Aξ,n = {α ∈ A |α > ξ and sα(ξ) = n}

is unbounded.

Claim 2. Let A be unbounded. Then for each η ∈ ω1 there is a ξ > η such
that there are n,m with n 6= m and both Aξ,n and Aξ,m unbounded.
Proof of Claim 2: suppose Claim 2 is false; then by the remark preceding
it, there is η ∈ ω1 such that for each ξ > η there is exactly one n such that
Aξ,n is unbounded. Then for every ξ > η there is a βξ ∈ A such that for all
α,α′ ∈ A that are ≥ βξ, sα(ξ) = sα′(ξ). But then the function ξ 7→ sβξ

(ξ) is
easily seen to be a 1-1 function from {ξ | η < ξ} to ω, which is impossible.
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Proof of Claim 1, continued: we construct, for each k ∈ ω, sequences
(ξ1, . . . , ξk) and ((n1,m1), . . . , (nk,mk)) with ξ1 < · · · < ξk < ω1, ni,mi ∈ ω
such that ni 6= mi and the sets

A~ξ,~n
= {α ∈ A |α > ξk and ∀i ≤ k(sα(ξi) = ni)}

B~ξ,~m
= {α ∈ A |α > ξk and ∀i ≤ k(sα(ξi) = mi)}

are both unbounded.
For k = 1 simply apply Claim 2. Inductively, suppose (ξ1, . . . , ξk) and

((n1,m1), . . . , (nk,mk)) have been defined satisfying the conditions. Apply
Claim 2 with A = A~ξ,~n

and η = ξk. One finds ξk+1 > ξk and a 6= b such
that both Aξk+1,a and Aξk+1,b are unbounded.

If B~ξ,ξk+1, ~m,a
is unbounded, let nk+1 = b,mk+1 = a. If B~ξ,ξk+1, ~m,b

is

unbounded, let nk+1 = a,mk+1 = b. If neither of these two, let nk+1 = a
and pick mk+1 arbitrary, such that B~ξ,ξk+1, ~m,mk+1

is unbounded.

Remark. Echoing the remark following the proof of theorem 1.2, it is worth
noting that theorem 1.5 holds for every realizability topos based on a partial
combinatory algebra A, whatever its cardinality; since the object (T ∗,=) can
be constructed in every such topos.

Acknowledgement. The problem studied in this note was brought to my
attention by Steve Awodey.
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