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Abstract

Following the book Algebraic Set Theory from Andr�e Joyal and Ieke Moerdijk

[8], we give a characterization of the initial ZF-algebra, for Heyting pretoposes

equipped with a class of small maps. Then, an application is considered (the

e�ective topos) to show how to recover an already known model (McCarty

[9]).

Introduction

When looking at models for unrestricted intuitionistic set theory IZF, one is natu-

rally led to consider categorical models, since the internal logic governing categories

is, in general, intuitionistic. In their book [8], Andr�e Joyal and Ieke Moerdijk pro-

posed a new approach to set theory which is particularly suitable for categorical

treatment, being essentially algebraic and entirely constructive.

They build a very general theory working for Heyting pretoposes with a natural

number object, based on axioms for a \class of small maps". It turns out that,

under some extra assumptions, the initial ZF-algebra for such a class of small maps

is a model of IZF.

They invite the reader to explore in further details some examples of this theory

and their \relation" with existing models in the literature. Our original aim was

to investigate one of these examples: the e�ective topos (Eff). In the �rst section

we focus on Heyting pretoposes equipped with such a class and prove a theorem

characterizing the initial ZF-algebra among the ZF-algebras. The second section

is devoted to an application of the theorem: we show that McCarty's realizability

model of IZF can be embedded as an object of the e�ective topos and that it

is isomorphic to the initial ZF-algebra model proposed by Joyal and Moerdijk. In

other words, we make clear what was the nature of the relation between the models:

they are in fact isomorphic.

Hence we see that an already knownmodel of set theory is now given a framework

to live in, giving us potentially new tools to investigate it as well as its underlying

theory.

Acknowledgements.We would like to thank Benno van den Berg, Martin Hyland

and Ieke Moerdijk for their interest in the topic and the useful discussions we had

with them.
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1 Characterization

We follow the book by Joyal and Moerdijk [8] for the axioms for small maps, the

de�nition of a ZF-algebra and the whole theory. Basic de�nitions are recalled in

Appendix A.1. Hence, we will always consider a Heyting pretoposes with such a

class of small maps (Other people have proposed alternative axiomatizations, most

notably Awodey, Butz, Simpson and Streicher: see [1]).

We start by giving a characterization of the initial ZF-algebra.

Recall that given a ZF-algebra (L; �) a membership relation can be de�ned as

follows: y�x if and only if �(y) � x. As usual, the notation P

s

(L) is used to denote

the object of \small subsets" of L.

Theorem 1.1 Let E be a Heyting pretopos and S a class of small maps in E . If

(L; �) is a ZF-algebra satisfying:

1. (Extensionality) 8x; y (8z(z�x! z�y)! x � y)

2. (Strict mono) 8x; y : �(x) � �(y) ! x = y

3. (Smallness) 8x : fy 2 L jy�xg is small, i.e. the map
�

// //
L� L

//
�

2

L

is small

4. (Irreducibility of successors) 8x; 8E 2 P

s

(L) : �(x) �

W

y2E

y ! 9y 2 E :

�(x) � y

5. (�-induction) for any object Z and any subobject A of Z � L, it holds in E :

8z 2 Z[8x 2 L(8y�x ((z; y) 2 A)! (z; x) 2 A)! 8x 2 L (z; x) 2 A]

then L is the initial ZF-algebra.

Remark. The conditions 1.{5. are also necessary for L to be initial: for conditions

2.{4. this is [8], Corollary II.1.4; for 1., [8], Proposition II.5.1 and 5. holds because

if L is initial in E then Z�L is initial in the slice E=Z for the class of small maps S

Z

de�ned in [8], section I.1 (this is implicit in [8], II.1.1 and the proof of mathematical

induction II.5.1 can be adapted for �-induction).

Proof: We start by noting that conditions 1. and 3. imply that 8x 2 L (x =

W

y�x

�(y)) holds.

Hence, for any homomorphism� of ZF-algebras fromL to (M; � ), 8x 2 L (�(x) =

W

y�x

� (�(x)) holds. Conversely, if this last formula is true then � is a homomor-

phism of ZF-algebras: since 8x 2 L (8y 2 L (y��(x) $ y = x)) holds by 2. and

the de�nition of �, also 8x 2 L (

W

y��(x)

� (�(y)) = � (�(x))) is true, which means

that the map � commutes with the successor operations. Commutation with small

sups follows too, because for E 2 P

s

(L),

W

e2E

�(e) =

W

e2E

W

y�e

� (�(y)) holds by

assumption on �; moreover, the equalities

_

e2E

_

y�e

� (�(y)) =

_

y�

W

E

� (�(y)) = �(

_

E)

hold by, respectively, assumption on �, 4. and assumption on � again.

Now suppose that � and  are two homomorphisms of ZF-algebras from L to

M . Using 5. we can show that � =  must hold: let A = fx 2 L j�(x) =  (x)g

(and Z = 1). From the fact that both � and  satisfy the identity just derived it is

immediate that A is inductive, so A = L and � =  .
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So, there exists at most one homomorphism of ZF-algebras from L to M . In

order to prove that one exists, we �rst construct a `transitive closure' operation in

L. Let T = fx 2 L j 8y�x8z�y (z�x)g. Then de�ne

A = fx 2 L j 9y 2 L (y 2 T ^ x � y ^ 8z 2 T (x � z ! y � z))g

We write TC(x) for the unique y 2 L, if it exists, which witnesses that x 2 A (note

that TC(x) is indeed uniquely determined). In order to see that A is inductive,

assume 8y�x (y 2 A). By condition 3. and the uniqueness just mentioned we can

form x _

W

z�x

TC(z) and it is easy to see that this element witnesses that x 2 A.

So A is inductive and we have a map TC : L! L with the expected properties.

In the following we shall often confuse an element x 2 L with the (small) subset

fy 2 L j y�xg; by 1., this is legitimate.

Let (M; � ) be any ZF-algebra. De�ne the following subset of L:

B = fx 2 L j 9!f

x

: TC(x)!M 8y�TC(x)(f

x

(y) =

_

z�y

� (f

x

(z)))g

Note that the quanti�er 9f

x

is admissible: because TC(x) is small and small maps

are exponentiable, M

TC(x)

exists.

We prove that B is inductive. Suppose 8y�x(y 2 B). We have to �nd f

x

:

TC(x)!M . By construction, TC(x) = x_

W

z�x

TC(z). Hence, by 4., y�TC(x) is

equivalent to y�x _ 9z�x(y�TC(z)).

For y�x put f

x

(y) =

W

w�y

� (f

y

(w)); for y�TC(z), z�x put f

x

(y) = f

z

(y). This is

well-de�ned, because if both cases apply (y�x, y�TC(z), z�x) then by the induction

hypothesis y 2 B and consequently the uniqueness of f

y

, f

y

must agree with the

restriction of F

z

to TC(y), and hence

_

w�y

� (f

y

(w)) =

_

w�y

� (f

z

(w)) = f

z

(y)

A similar reasoning applies if for z; z

0

�x, y�TC(z) and y�TC(z

0

). Clearly, the

map f

x

thus de�ned satis�es the condition in the de�nition of the set B, and it is

unique with this property. So x 2 B. We conclude that B is inductive, so applying

5., B = L.

We can now de�ne a homomorphism of ZF-algebras � : L ! M by �(x) =

f

�(x)

(x). The veri�cation that � is a homomorphismof ZF-algebras is now straight-

forward, and left to the reader. 2

Remark 1.2 Note that as soon as Smallness holds, we can de�ne two maps: Ext :

L ! P

s

L and Int : P

s

L ! L which have the property that Extensionality +

Strict mono + Irreducibility of successors hold if and only if (Ext,Int) forms an

isomorphism. Ext(x) is just de�ned by fy 2 Lj y�xg and Int(E) :=

W

y2E

�(y)

(the notation is due to Moerdijk and Palmgren [11] and stands for respectively

\externalization" and \internalization"). In other words, a ZF-algebra satisfying

the smallness condition is initial if and only if it is a well-founded �xpoint w.r.t.

� and the maps Ext and Int (this is similar to other results on initial algebras in

category theory: for example, suppose that o : 1 ! X and f : X ! X make the

object X into an algebra for the functor (�) + 1. Then X is with this structure a

natural numbers object if and only if

�

f

o

�

: X +1! X is an isomorphism and X

is well-founded w.r.t. the relation f(x; y) j y = f(x)g).

This characterization would not be very interesting if we would not have some

applications in mind, but we do. In fact we will use the following corollary in the

next section.
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Corollary 1.3 If in a topos we have an internal model V of IZF and a class S of

IZF-small maps (i.e. a class of small maps satisfying three extra axioms: power-

set, in�nity and separation), then V is the initial ZF-algebra if and only if it is

S-complete (for the subset ordering, the set-theoretical union giving the supremum)

and has the smallness- and the �-induction conditions. Note that the class S

V

of

maps for which the supremum exists in V along any map lacks only collection and

representability to be a class of small maps (see [7], this is in fact true as soon as

V is a (sup) semi-lattice). In other words, V is initial for S if and only if S is a

subclass of S

V

containing
�

// //
V � V

//
�

2

V

and V satis�es the �-induction

condition.

2 Applications

2.1 The e�ective topos

In Appendix A.2 we recall the de�nition of the e�ective topos Eff and some basic

properties. Regarding the category Sets, we assume the existence of a strongly

inaccessible cardinal � and the Axiom of Choice. This ensures that Eff has enough

projectives, see [13].

As demonstrated in [8], section IV.4, the e�ective topos admits a class of IZF-

smallmaps and hence an internal model of IZF, V. For morematerial on the e�ective

topos, see [6], [12] and [13]. We will write � a r for the geometric inclusion of Sets

in Eff and we will use the following standard notations from recursion theory:

\e:n ' �

e

(n)", \he

0

; e

1

i = e" (see Appendix A.2 also for some notations from

recusion theory).

2.1.1 McCarty's model

In his Ph.D. thesis [9], D.C. McCarty introduced a (non standard) realizability

model of IZF, by giving an explicit de�nition of the underlying set and a trans�nite

inductive de�nition for truth in the model. Note that McCarty derived his model

(as did Beeson in [2]) from earlier work by Friedman ([3]) and Grayson ([4]).

McCarty's model is de�ned as follows:

V

0

= ;

V

�+1

= P (! � V

�

)

�

=

P!

V

�

V

�

=

S

�<�

V

�

if � = sup

�<�

�

V

�

=

S

�<�

V

�

We say that V

�

j= � i� there exists an e such that e k��, where:

� e k�a�b i� there exists a c such that (he

0

; ci 2 b and e

1

k�a = c)

� e k�a = b i� for all c; f : (hf; ci 2 a implies that e

0

:f is de�ned and e

0

:f k�c�b

and hf; ci 2 b implies that e

1

:f is de�ned and e

1

:f k�c�a )

� e k�� ^  i� e

0

k�� and e

1

k� 

� e k�� _  i� either e

0

= 0 and e

1

k�� or e

0

6= 0 and e

1

k� 

� e k��!  i� for all f : (f k�� implies that e:f k� )

� e k�:� i� for all f : :f k��

� e k�8x� i� for all a: e k��(a)
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� e k�9x� i� there exists an a such that e k��(a)

We will also write \f 2 a(c)" for hf; ci 2 a.

McCarty proved that:

Theorem 2.1 (McCarty) V

�

j= IZF

2.1.2 Embedding McCarty into Eff

In order to compare both models, we are going to embed McCarty's model into Eff .

De�ne for each � � � the following object of Eff :

V

�

:= (V

�

;=)

where, on the RHS, [a = b] = fe j e k�a = bg. We need to check that, at every

step, we get an object of Eff (i.e. that the de�nition of equality is, in terms of

realizability, symmetric and transitive). We also want to make clear the relation

between the external sets V

�

and the corresponding internal V

�

. The following

proposition makes all of this clear (we obtain a uniform model, at each step being

a quotient of the external construction):

Proposition 2.2 For all � � � (hence in particular for � itself):

a) V

�

is uniform, V

�+1

�

=

P (V

�

), and

b) = is an equivalence relation on r(V

�

), thus r(V

�

)

// //
V

�

.

Proof: a) Using the recursion theorem, let f be a solution of f:n ' hn; hf; fii and

e = hf; fi. In other words: e = h�n:hn; ei;�n:hn; eii.

From [12], we know that if V

�

is uniform, then P (V

�

) is also uniform, and

isomorphic to (P!

V

�

;=), where [f = g] =

T

f[a = b] ! [f(a) $ g(b)] j a; b 2 V

�

g

and where [b�a] = [9b

0

2 V

�

: a(b

0

)^ b = b

0

] on V

�

�P (V

�

). But this means exactly

that V

�+1

�

=

P (V

�

). Moreover, if e 2

T

b2V

�

E

b

then given a 2 V

�+1

and n 2 a(b),

then hn; ei k�b�a. In other words:

h�n:hn; ei;�n:hn; eii 2 E

a

. But this means: e 2

T

a2V

�+1

E

a

.

Conclusion: e 2

T

a2V

�

E

a

.

b) Reexivity is realized by �x:e, and symmetry by s = �x:hx

1

; x

0

i. For tran-

sitivity, we �rst consider the following:

f(r;m; n; p) = h(m

0

:((n

0

:p)

0

))

0

; r:h(n

0

:p)

1

; (m

0

:(n

0

:p)

0

)

1

ii

g(r; s;m; n; p) = h(n

1

:((m

1

:p)

0

))

0

; s:hr:hs:((n

1

:((m

1

:p)

0

))

1

; s:((m

1

:p)

1

)iii

H(r) = �n�m:h�p:f(r;m; n; p);�p:g(r; s;m; n; p)i

Let r be a solution of r:n ' H(r):n

We need to perform the following induction on � � �:

8a 2 V

�

(8� � �8 � �8b 2 V

�

8c 2 V



: r k�(a = b) ^ (b = c)! (a = c))

� � = 0 is trivial because V

0

= ;

� suppose it holds at rank �, and a

1

2 V

�+1

, a

2

; a

3

2 V

�

and hn;mi k�(a

1

=

a

2

) ^ (a

2

= a

3

). Then, for b; p such that p 2 a

1

(b), we have:

b 2 V

�

n

0

:p k�b�a

2

(= 9c:a

2

(c) ^ (b = c))

hence m

0

:((n

0

:p)

0

) k�c�a

3

(= 9d:a

3

(d) ^ (c = d))

thus, by induction hypothesis for b:

h(m

0

:((n

0

:p)

0

))

0

; r:h(n

0

:p)

1

; (m

0

:((n

0

:p)

0

))

1

ii k�b�a

3
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In other words: f(r; n;m; p) k�b�a

3

.

On can show in almost the same way that for b; p such that p 2 a

3

(b), we have

g(r; s;m; n; p) k�b�a

1

.

Conclusion: the property holds for �+ 1.

� suppose the property holds 8� < �, (� = sup

�<�

�) and let a 2 V

�

. Then

there is a �

a

< � such that a 2 V

�

a

and the proposition holds already. Hence,

this step is trivial.

2

Remark 2.3 In his thesis [9], McCarty already proved some properties, like the

uniformity of the existence, in his model, by means of a \closure lemma" for � and

=. Unfortunately, we were not able to check this lemma, and, following the ideas

in his thesis, we checked the proofs that it is a model of IZF again. Basically,

when de�ning an element f(a) in the model, depending on another element a of

the model, one has to check that it is well-de�ned, i.e. that a = b! f(a) = f(b) is

valid.

2.2 Two isomorphic models of IZF

In this section we show that V

�

is in fact the initial ZF-algebra for the class of

small maps in Eff . Since it is already a model of IZF, the corollary of the preceding

section tells us that it is enough to show that it is S-complete and satis�es both

the smallness- and the �-induction conditions. However, for completeness, we start

with some de�nitions in order to describe the ZF-algebra structure.

De�nition 2.4

� \order" �

// //
V

�

� V

�

, given by L(a; b) = [8c (a(c)! c�b)]

� \successor"
V

�

//
�

V

�

, given by S(a; b) = [8c (c�b$ c = a)]

� \supremum along small maps", given the following diagram:

(X;=)

//
f

=[F ]

��

g

=[G]

V

�

(Y;=)

with g small, we de�ne the supremum of f along g,

(Y;=)

//

W

g

f

=[M

f

g

]

V

�

by

M

f

g

(y; a) = [E

y

^ 8b(b�a$ 9x; c : G(x; y) ^ F (x; c)^ b�c)].

We can now establish the following:

Proposition 2.5 (V

�

;�;

W

; �) satisi�es the conditions of section 1.

Proof: (easy details on realizers are omitted)

� (V

�

;�;

W

; �) is a ZF-algebra:

First, it is easy to see that L de�nes a subobject of V

�

� V

�

. Reexivity for

� is realized by �x:x

0

, antisymmetry by �x:x, and transitivity by t, where t

is a solution of t:hx; yi ' �p:f(r; x; y; p). Thus (V

�

;�) is a poset.

6



Secondly, S is a functional relation. For totality, we de�ne �(a)(b) = [b = a]

and show that

T

a2V

�

S(a; �(a)) 6= ;.

Third, M

f

g

is a functional relation. For totality, we de�ne:

a

y

(b) = [9x; c : G(x; c) ^F (x; c) ^ b�c] and show that:

T

y2Y

[E

y

!M

f

g

(y; a

y

)] 6= ;. Here we have to show that there is indeed some

ordinal � lower than � sucht that a

y

can be de�ned in V

�

. This needs some

care: we will show in fact that V is S

0

-complete, where S � S

0

and S

0

= ff j�f

is small in Setsg. As a consequence, M

f

g

de�nes a supremum.

� (V

�

is S

0

-complete) Let f and g be as follows, with �g is small in Sets:

X

//
f

��

g

V

�

Y

Moreover, we assume Sets j= AC hence the quotient map
V

�

// //
�(V

�

)

has a section s : �(V

�

)! V

�

. Let

�

f := s � �f . We obtain:

�X

//
�

f

��

�g

V

�

�Y

We will now de�ne a map h : �Y ! V

�

. Its transpose

Y

//
rV

�

followed

by the quotient map
rV

�

// //
V

�

in Eff will give us the supremum map

Y ! V

�

. Let thus [y] be in �Y . Since �g is small, the set A = f[x] j (�g)[x] =

[y]g has cardinality less than �. In other words, there is a � � � such that for

all [x] 2 A,

�

f [x] 2 V

�

. The map we want can now be de�ned as:

h[y] := fhn; zi j 9[x] 2 (�g)

�1

[y] : n k�z�

�

f [x]g as an element of V

�

.

Hence (V

�

;�;

W

; �) is a ZF-algebra.

� (smallness) it is easy to show that for all � < �, V

�

is small in Sets. Hence

for all � < �, V

�

is small in Eff (because r preserves small objects and using

the quotient axiom). Then, if a 2 V

�+1

, consider the following map in Eff :

fb j b�ag

//
f

=[F ]

V

�

de�ned by: F (b; c) = [b�a ^ b = c]

It is a well-de�ned (i.e. F is a functorial relation) and it is clearly monic. We

are done because the axiom of separation (every monic is small) holds in Eff .

� �-induction: in [5], it is shown that � preserves and reects well-founded

objects. Since V

�

is built out of Ord

�

in Sets, the set of ordinals � �, and �

is well-founded on Ord

�

, we can deduce �-induction.

2

Corollary 2.6 McCarty's model V

�

is isomorphic to the model V proposed by

Joyal and Moerdijk in Eff . 2

Remark 2.7 We worked with a classical metatheory (we used the character dis-

tinction of our ordinals in the construction and in the proofs). However, the results

would still hold if we would start with a model of IZF (but we would not have

anymore that, at every step, inside Eff , V

�+1

= P(V

�

)). Indeed, Grayson proved
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that de�ning ordinals as transitive sets of transitive sets (like Powell) still allow in-

duction. It su�ces then to de�ne V

�

=

S

�<�

P(! � V

�

). McCarty already noticed

this fact, and that it can be extended for any pca A (replacing ! by jAj). In other

words: if IZF ` (A j= APP ) then IZF ` (V(A) j= IZF ). But if we want to use

the class of small maps given by Joyal and Moerdijk we have to assume Sets j= AC

and since IZF +AC = ZF , this is not relevant for this paper. Hence the existence

of the model is weaker that that of the class of small maps.

Further research and open problems

We are mainly interested in realizability. Some natural questions are: can we ax-

iomatize IZF for realizability (as has been done for HA by Troelstra ([15]) and HAH

by the second author ([12])? Can we develop some algebraic set theory for other

realizability toposes (other than the ones coming from a pca, for which it works

exactly the same way). So far we were not able to �nd a class of small maps for

general toposes coming from triposes. For toposes arising as a glueing construction

{ note that in their articles dealing with algebraic set theory for CZF ([10] and

[11]), Moerdijk and Palmgren hope that their axioms will be stable under glueing

{ we believe that Simpson's approach [14], with topos universes, is the correct one.

As for realizability, recall that glueing Sets and Eff gives q-realizability and might

gives us derived rules for IZF. More generally, we feel that some assumptions of

weak choice principles might be needed to get representable classes of small maps

(collection and representability pose problems). Besides, if we manage to under-

stand how the internal logic of Eff relates to the logic of V, as weak set theories

(some results have already been found in this direction by Awodey, Butz, Streicher

and Simpson, see [1]), we might also get results on choice principles for realizability.
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A Appendix

A.1 small maps, ZF-algebras and models of IZF

small maps

Let E be a Heyting pretopos with n.n.o and S a class of morphisms in E . Consider

the following axioms:

(S1) every isomorphism is in S and composition (if de�ned) of S-maps gives a

S-map

(S2) every pullback of a S-map along any other map is again a S-map

(S3) (descent) Consider the following pullback:

X

0

��

f

//
p

❴

✤

X

��

g

Y

0 // //
q

Y

if f 2 S and q is epi then g 2 S

(S4) 0! 1 and 1 + 1! 1 are in S

(S5) if X ! Z and Y ! Z are in S then so is X + Y ! Z

(S6) quotients Consider the following diagram:

X

// //
p

  
f

❅

❅

❅

❅

❅

❅

❅

Z

��

g

Y

if f 2 S and p is epi then g 2 S.

(S7) (collection) if

X

//
f

Y

2 S and

Z

// //
g

X

is epi then there is a S-map

P

//
h

Q such that the following diagram is a quasi-pullback:

P

//

��

h

Z

// //
g

X

��

f

Q

// //
Y

(S8) (exponentiability) every map is S is exponentiable

(S9) (representability) there is a map � : E ! U which is universal in S, that

is, for every S-map f : X ! Y we have the following diagram, where both

squares are pullbacks:

X

��

f

X

0
oo //

��

f

0

✤

❴ ❴

✤

E

��

�

Y

Y

0
oooo //

U

9



De�nition A.1

� A class of maps satisfying axioms (S1) to (S8) is called a class of small maps

� An object of E is small if X ! 1 is a small map.

Proposition A.2 (Stability under slicing) Let X be an object of a Heyting pre-

topos E equipped with a class S of small maps. Then the class S

X

= ff map

of E=Xj �

X

(f) 2 Sg is a class of small maps in E=X. Besides, the functor X

�

preserves small maps and the universal small map.

Proposition A.3 (Representable small subobjects) For every object X 2 E , there

is an object P

s

(X) representing the \families of small subobjects" of X, i.e. there

is a 1-1 correspondence between:

S

// //
I �X

//
�

1

I

small

(a family of small subobjects of X with parameter I),

and

I ! P

s

(X).

IZF-small maps

Consider now the following axioms:

(S'1) composition (if de�ned) of S-maps gives a S-map

(S9) (power-set) if f : X ! Y 2 S then P

s

(f : X ! Y ) 2 S

Y

; in E=Y

(S10) (separation) every mono is in S

(S11) (in�nity) the natural number object is in S.

De�nition A.4

A class of maps satisfying axioms (S'1), (S2) to (S11) is called a class of IZF-small

maps.

Proposition A.5 Both propositions above, stability under slicing and representable

small subobjects, are still true for IZF-small maps.

ZF-algebras

Given a Heyting pretopos E with a class of smallmaps S, we can de�ne ZF-algebras

(\ZF" stands for Zermelo-Fraenkel):

De�nition A.6 A ZF-algebra is an S-complete sup-lattice L in E together with a

\successor" map s : L! L. A homomorphism between two such algebras (L; s) and

(M; t) is a map f : L ! M commuting with successors and preserving supremas

along small maps. We also de�ne a membership relation on (generalized elements

of) L � L by: x�y i� s(x) � y.

We write (V; s) for the free ZF-algebra (if it exists). We will also call it the \initial"

ZF-algebra. Joyal and Moerdijk proved that the existence of a subobject classi�er

implies the existence of V (via bisimulations and well-founded forests, see chapter

3 of [8]).
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A model of IZF

First, let us recall the axioms of IZF as in [8]:

(Extensionality) x = y $ 8z(z�x$ z�y)

(Pairing) 9z(x�z ^ y�z)

(Union) 9y8z[z�y $ 9w(w�x ^ z�w)]

(�-Induction) 8x(8y�x�(y) ! �(x))! 8x�(x)

(Power-Set) 9y8z[z�y $ 8w�z(w�x)]

(Separation) 9y8z(z�y $ z�x ^ �)

(Collection) 8y�x9w�! 9z8y�x9w�z�

(In�nity) 9x[9y(y�x) ^ 8y�x(y [ fyg�x)]

We can now recall the major result from [[8], p.65]:

Theorem A.7 Let E be a Heyting pretopos with a natural number object and S a

class of IZF-small maps. Then the initial algebra V (if it exists) is a model of IZF.

A.2 Realizability

the E�ective topos: Eff

First, we recall some notations from recursion theory. h:; :i is a primitive recursive

coding of pairs of natural numbers, with uncoding functions (:)

0

and (:)

1

. We will

write partial recursive function application as : and use the �-notation: �e:t means

a standard code for the partial recursive function which gives t at input e. Finally

e:n ' f:n means that e and f code the same partial function, that is, that the

terms e:n and f:n are both de�ned or unde�ned, and if de�ned, then there are

equal. Then, we introduce the e�ective topos:

De�nition A.8 An object in the e�ective topos is a pair (X;=), where X is a

set and = a function from X � X into P (N), that is, a relation on X � X for

the realizability, which is symmetric and transitive (i.e., there exist realizers for the

symmetry and the transitivity of =, or, in other words, symmetry and transitivity

are valid).

An arrow f : (X;=) ! (Y;�) in Eff is an equivalence class of functional

relations, that is, f = [F ], where F is a function from X � Y into P (N), which is

total, strict, relational and single-valued for the realizability. Two such F and G

are equivalent i� F (x; y)$ G(x; y) is valid.

There is a geometric inclusion of Sets into Eff , generally written as � a r, where:

For a set X, r(X) := (X;=

r

), where [x =

r

x

0

] = N if x = x

0

, and [x =

r

x

0

] = ;

otherwise.

For an object (X;=) in Eff , �(X;=) := f[x] j [x = x] 6= ;g= �, where [x] � [x

0

]

i� [x = x

0

] 6= ;.

Finally, we recall some particular objects:

� separated object/cover: an object (X;=) is canonically separated if [x =

x

0

] 6= ; implies x = x

0

for all x; x

0

2 X. For every object X = (X;=) in

Eff we can de�ne its canonically separated cover by X

s

= (X;=

0

) where

[x =

0

x] = [x = x] and X

s

is canonically separated. We write:

X

s

✤ //
X

X is separated i� X is isomorphic to a canonically separated object.
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� projective object/cover: an object P is projective if given P ! X and a cover

Y

✤ //
X

, there is an arrow P ! Y making the diagram commute. In

Eff , we call P = (P;=) canonically projective if P is canonically separated

and [x = x

0

] is a singleton for each x 2 P . Then, projective objects are

exactly those which are isomorphic to a canonically projective object. For

every object X = (X;=) in Eff we can de�ne its canonically projective cover

by:

X

p

= (X � N;=

0

) where [(x; n) =

0

(x

0

; n

0

)] = fng if x = x

0

and n = n

0

and

n 2 [x = x], and is ; otherwise.

� uniform object: an object is uniform if it satis�es the uniformity principle as

in [6]. We recall here results from [12], characterizing uniform objects:

Proposition A.9 The following are equivalent for an object (X;=) of Eff :

(i) (X;=) is uniform

(ii) X is covered by a sheaf

(iii) For some a; b 2 N:

b 2

T

x2X

[[x = x]!

S

f[x = x

0

]ja 2 [x

0

= x

0

]g]

(iv) (X;=) is isomorphic to a (Y;=) such that

T

y2Y

[y = y] is nonempty.

Small maps in Eff and re�nements

In [8], Joyal and Moerdijk proved that the following class of maps satis�es all the

axioms for IZF-small maps. We give now some re�nements about this class, for

further research, even if we will not really use them in this paper.

De�nition A.10

� A map f : X ! Y is (�-)small in Eff if there are projectives P , Q such that

the following diagram is a quasi-pullback, and �(g) is (�-)small in Sets:

P

// //

��

g

X

��

f

Q

// //
Y

� An object X is (�-)small in Eff if there is a projective cover P of X such

that �(P ) is small in Sets.

Remark A.11 Given a small map f : X ! Y and a projective cover S of Y ,

we can �nd a projective R to complete such a diagram as in the de�nition above.

Indeed, take the pullback Q�

Y

S. Since S is projective there is an arrow from S to

Q�

Y

S. The pullback R = S �

Q

P satis�es the conditions of the diagram.

Proposition A.12 Let K be a set of cardinality �. Using the internal logic of Eff ,

a map f : X ! Y is small i� 8y 2 Y; 9P 2 P (rK) such that:

1. there is an epi P ! f

�1

(y)

2. there is no epi ::P !rK.
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Proposition A.13 A universal map can be given:

E

//�

U

, � being the obvious

projection, by:

U = f(S;R)j S 2 P (rK); R equivalence relation on S and

there is no epi ::S !rKg

E =

P

(S;R)2U

S=R = f(u; v)ju = (S;R) 2 U; v 2 S=Rg.

Proposition A.14

(i) f small in Sets i� rf small in Eff

(ii) if f small in Eff then �f small in Sets

(iii) if X separated then (X small in Eff i� �X small in Sets)

(iv) 8X(X small in Eff , �X small in Sets) i� 8X (�

X

is small).
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