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Introduction

The purpose of this short paper is to sketch the development of a few basic

topics in the history of Realizability. The number of topics is quite limited and

reects very much my own personal taste, prejudices and area of competence.

Realizability has, over the past 60 years, developed into a subject of such

dimensions that a comprehensive overview would require a fat book. Maybe

someone, some day ought to write such a book. But it will not be easy. Quite

apart from the huge amount of literature to cover, there is the task of creating

unity where there is none. For Realizability has many faces, each of them turned

towards di�erent areas of Logic, Mathematics and Computer Science, and this

proliferation shows no signs of diminishing in our days. Like a venomous carci-

noma, Realizability stretches out its tentacles to ever more remote �elds: Linear

Logic, Complexity Theory and Rewrite Theory have already been infected. The

theory of Subrecursive Hierarchies too. Everything connected to the �-calculus

is heavily engaged. Proof Theory is su�ering. Intuitionism is dead.

Just to name a few! Did you think, that at least the realm of classical logic

would be safe? Recently, Krivine came up with a Realizability interpretation

for ZF set theory!

Confronted with this mess, I have acted like the typical impostor who walked

into the hospital claiming to be a surgeon, and is now wielding the knives in the

operating theatre: I took the nearest scalpel at hand and cut out everything

that wouldn't �t into either one of my two major streams: metamathematics of

intuitionistic arithmetical theories, and topos-theoretic developments.

�
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Needless to say, there is no question of even starting to list what I omitted{

sometimes to my great regret, although I realize that such hollow apologies just

reverberate in the vast emptiness I have created

1

.

Therefore, let's get physical and say something concrete about what is in this

paper. According to me, there are three landmark publications in Realizability.

These are:

1) Kleene's original 1945 paper, On the Interpretation of Intuitionistic Num-

ber Theory ([51])

2) Troelstra's Metamathematical Investigations from 1973 ([93])

3) Hyland's The E�ective Topos from 1981 ([40])

Of these three, both 1) and 3) initiated a whole new strand of research. I have

therefore decided that the material I wished to present, naturally divides into

two periods, viz. 1940{1980 and 1980{2000. This is not to say that suddenly

there were, after 1980, no more purely syntactical presentations of Realizabilities

(quite on the contrary, thanks to Computer Science syntax is back!), but I do feel

that although many of these matters still need and deserve to be investigated

(and need all the elegance and expository skills we can muster), no radically

new vistas have emerged from this research. Therefore, in my account of the

second period I have concentrated on what I regard as more innovative research.

The second item in my list is of a di�erent kind. This monumental work

brought together all existing results, many of which were due to its author,

and ordered them in such a way that the diligent student could see at once

the similarities between them. It charted the territory, and in this way achieved

something of conceptual value: the notion that all these systems, interpretations

and axiomatizations were manifestations of a pattern that they had in common.

What exactly this pattern is, we still don't know. But it is my feeling that the

categorical analyses of later years owe a lot to this work.

It made, when it appeared, a `daunting' impression on some people. And it

certainly did so on me when I was Troelstra's student. But now I experience a

sensation of dry, austere beauty in its relentless pursuit of order. And let us not

forget it set new standards of presentation and notation. For although Kleene's

�rst paper is a gem of readability, regrettably Kleene later adopted a style of

writing which was so cluttered with notation that it takes a strong man to �ght

through it.

I have therefore decided to dedicate this paper to Anne Troelstra, my mentor

who has contributed so much to the subject matter, in gratitude.

Acknowledgements. I am grateful to Joan Moschovakis, who had a careful

look at a preliminary version and drew my attention to a few embarrassing

mistakes. I'd also like to thank Lars Birkedal, Martin Hyland, Pino Rosolini

and Dana Scott for discussions and for providing last-minute bibliographical

and background information.

1

Let the disappointed reader be solaced by the availability of an excellent proof-theoretical

survey on Realizability: [94]
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I am also very much indebted to a number of anonymous referees whose

careful reading of the �rst draft of this paper uncovered a number of inaccuracies,

and who did valuable suggestions for improvement of the text.

1 The �rst 40 years: 1940-1980

1.1 The origin of Realizability

In his overview paper: \Realizability: a retrospective survey" ([58]), Stephen

Cole Kleene recounts how his idea for numerical realizability developed. He

wished to give some precise meaning to the intuition that there should be a

connection between Intuitionism and the theory of recursive functions (both the-

ories stressing the importance of extracting information e�ectively). He started

to think about this in 1940

2

.

In order to appreciate the originality of his thinking, one should recall that

the formal system of intuitionistic arithmetic HA did not exist at the time

[Well, : : : there is a system closely resemblingHA in G�odel's paper [28]. Kleene

appears to have been at least initially unaware of this, for although his 1945

paper gives the reference, the retrospective survey stresses that \Heyting Arith-

metic [ : : : ] does not occur as a subsystem readily separated out from Heyting's

full system of intuitionistic mathematics", and quotes Kleene's own formalism,

which later appeared in [52], as the thing he had in mind].

As an example of a precise connection between Intuitionism and the theory

of recursive functions, Kleene starts by conjecturing a weak form of Church's

Rule: if a closed formula of the form 8x9y'(x; y) is provable in intuitionistic

number theory, then there must be a general recursive function F such that

for all n, the formula '(n; F (n)) is true. One arrives at this conjecture by

unravelling the meaning that such a statement must have for an intuitionist.

Conjecturing this, at a time when Intuitionismwas still clouded by Brouwer's

mysticism, the formal system in question hardly established, and the content of

the conjecture blatantly false for Peano Arithmetic, was imaginative indeed!

But, this was still far away from the actual development of Realizability.

Often, one encounters the opinion that Realizability was inspired by the so-

called \Brouwer-Heyting-Kolmogorov interpretation" (an attempt to clarify the

constructive meaning of the logical operations). This was not the case. Kleene

starts by quoting Hilbert and Bernays ([38]). They, in their \Grundlagen der

Mathematik", explain the \�nitist" position in Mathematics. The relevant pas-

sage is the one about \existential statements as incomplete communications",

which, since it is philosophy, can only be appropriately understood in the orig-

inal German:

Ein Existenzsatz �uber Zi�ern, also ein Satz von der Form \es gibt

eine Zi�er n von der Eigenschaft A(n)" ist �nit aufzufassen als ein

2

For some biographical details on Kleene and a personal appreciation, see the obituary by

his friend Saunders Mac Lane, [65]
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\Partialurteil", d.h. als eine unvollst�andige Mitteilung einer genauer

bestimmten Aussage, welche entweder in der direkten Angabe einer

Zi�er von der Eigenschaft A(n) oder der Angabe eines Verfahrens

zur Gewinnung einer solchen Zi�er besteht [ : : : ].

3

Kleene then asks: \Can we generalize this idea to think of all

4

(except, trivially,

the simplest) intuitionistic statements as incomplete communications?"

5

He outlines in which sense every logical sentence is \incomplete" and what

would constitute its \completion". For the implication case, Kleene inter-

estingly says that �rst he tried an inductive clause inspired by \Heyting's

`proof-interpretation' ", but that it \didn't work" and so, \Heyting's proof-

interpretation failed to help me to my goal"

6

. Since Kleene doesn't reveal what

this �rst try was, we are free to conjecture. It is just conceivable that he tried:

a realizer for A ! B is a partial recursive function which sends proofs of A to

proofs of B.

Kleene's realizabilitywas, at least conceptually, a major advance. Its achieve-

ment is not so much a philosophical explanation of the intuitionistic connectives.

Troelstra ([93], p.188) says: \it cannot be said to make the intended meaning

of the logical operators more precise. As a \philosophical reduction" of the

interpretation of the logical operators it is also only moderately successful; e.g.

negative formulae are essentially interpreted by themselves." In fact, Kleene

admits this explicitly in his 1945 paper

7

. On the other hand, by providing an

interpretation which can be read and checked by the classical mathematician, he

did put forward an interpretation of the intuitionistic connectives in terms of the

classical ones (this, in contrast to the so-called BHK or \proof"-interpretation,

which interprets the intuitionistic connectives in terms of themselves)

8

.

More importantly, realizability, as it is designed to handle \information"

about formulas rather than proofs, already hints at the role Intuitionism would

come to play in theoretical Computer Science some 40 years later: it foreshadows

the view of intuitionistic formulas as datatypes, and intuitionistic logic as the

logic of information.

3

An existential statement about numbers, i.e. a statement of the form \there exists a

number n with property A(n)" is �nitistically taken as a \partial judgement", that is, as

an incomplete rendering of a more precisely determined proposition, which consists in either

giving directly a number n with the property A(n), or a procedure by which such a number

can be found [ : : : ]

4

my italics

5

It is, however, fair to say that Hilbert and Bernays did not limit their treatment of

the �nitist position to existential statements; they had a lot more to say, and also included

negations and 89-statements in their account

6

In the words of [95] vol. I,p.9, the Heyting proof interpretation clause for implication is:

\A proof of A ! B is a construction which transforms any hypothetical proof of A into a

proof of B"

7

\The analysis which leads to this truth de�nition is not to be regarded as more than a

partial analysis of the intuitionistic meaning of the statements [ : : : ]" (x2)

8

Again quoting [95] vol.I,p.9:\ : : : it is not hard to show that, on a very \classical" inter-

pretation of construction and mapping, [Heyting's clauses] justify the principles of two-valued

(classical) logic."
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But the scope of realizability is wider than just \interpreting the logic". Re-

alizability also provides models for theories which are classically inconsistent ,

models therefore whose internal logic is strictly non-classical (important exam-

ples are: Brouwer's theory of Choice Sequences; parts of (suitably formalized)

recursive analysis; set-theoretic interpretations of the polymorphic �-calculus;

Synthetic Domain Theory). It is in some of these models, that the statement

\Realizability is equivalent to truth" can be given a precise meaning. And for

the intuitionist, (an abstract form of) realizability does represent the intuition-

istic connectives faithfully, as follows from [97].

1.2 Realizability and Glued Realizability

In this and the next section, I introduce Realizability and some of its most

important variations, which I call \glued Realizability" (the term \gluing" has

its mathematical origin in Algebraic Geometry; here, I use it loosely to mean

\welding two interpretations together". There is a precise connection between

the two meanings of the word, provided by Topos Theory; see section 2.1).

My treatment will not be entirely faithful to history; as often in Mathematics,

the chronological order is not always the most systematic way of presenting

things. However I'll do my best to sketch the history as I go along.

As said, Realizability was introduced in [51]. The de�nition speci�es, in an

inductive way, what it means that a natural number n realizes a sentence � of

the language of arithmetic. The inductive clauses are:

1. n realizes F , where F is an atomic sentence, if and only if n = 0 and F is

true;

2. n realizes a conjunction �^ , if and only if n = hm; ki, and m realizes �

and k realizes  

(here, h�; �i denotes a primitive recursive bijection: IN

2

! IN);

3. n realizes a disjunction �_ if and only if either n = h0;mi andm realizes

�, or n = h1;mi and m realizes  ;

4. n realizes an implication �!  if and only if n is the G�odel number of a

partial recursive function F such that for each m which realizes �, F (m)

is de�ned and realizes  ;

5. n realizes an existential statement 9x�(x) if and only if n = hm; ki and k

realizes �(m)

(here and further on,m is the numeral i.e. a canonical term which denotes

m);

6. n realizes a universal statement 8x�(x) if and only if n is the G�odel number

of a total recursive function F such that for all numbers m, F (m) realizes

�(m).

5



The acronym HA stands for Heyting Arithmetic, the formal system of intu-

itionistic �rst-order arithmetic.

Suppose now, that P is a set of sentences of the language of HA, such that P

contains every theorem ofHA and moreover, if both � and �!  are elements

of P then so is  . Important examples of such P are: the set of all theorems

of HA (the minimal P), the set of all arithmetical sentences (the maximal P),

and the set of all sentences true in some modelM of HA.

The de�nition of \n realizes-P �" is similar in structure to that of \n realizes

�"; it has the same inductive clauses except for:

4

0

: n realizes-P (� !  ) if and only if (� !  ) is an element of P and n is

the G�odel number of a partial recursive function F such that for each m

which realizes-P �, F (m) is de�ned and realizes-P  ;

6

0

: n realizes-P a universal statement 8x�(x) if and only if 8x�(x) is an

element of P and n is the G�odel number of a total recursive function F

such that for all numbers m, F (m) realizes-P �(m).

I call the notion \realizes-P" glued realizability w.r.t. P. Note that ordinary re-

alizability is glued realizability w.r.t. the maximal choice of P (a trivial gluing),

so it su�ces to formulate results for the \realizes-P" notion.

The basic theorem is:

If HA ` � then there is a number n such that n realizes-P �.

Moreover, if there is a number n such that n realizes-P �, then

� 2 P.

An easy consequence of this theorem is, that there are formulas �(x) with one

free variable x, such that the sentence :8x(�(x)_:�(x)) is consistent withHA.

It also follows, that the rule of \double-negation shift":

8x::�(x)! ::8x�(x)

is not a derived rule of HA ([51]).

In [51] only two forms of gluing are considered: the minimal gluing (which is

called `-realizability) and the maximal one (ordinary realizability). From the

minimal gluing, Kleene obtained the Weak Church's Rule mentioned in 1.1: if

8x9y�(x; y) is a theorem of HA, then for some total recursive function G one

has that for all n, �(n;G(n)) is a theorem of HA, and hence true. This is in

[51]. Incidentally, this result might also have been obtained by gluing with the

set of all (classically) true arithmetical sentences.

As a corollary of this proof, one obtains the Existence Property for HA: if

HA ` 9x�(x) then for some n, HA ` �(n). And similarly, the Disjunction

Property: if HA ` � _  then HA ` � or HA `  . These conclusions are not

explicitly in [51], contrary to what Kleene later said

9

.

9

The �rst proof of the Existence and Disjunction properties for HA was given by Harrop
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1.3 Formalized Realizability and q-realizability

The de�nition of Realizability involves only �rst-order properties of indices of

partial recursive functions.

The predicate T (e; x; y) (y codes a computation with program e on input

x) and the function U (y) (the output of the computation y codes) are prim-

itive recursive and hence representable in HA; I'll use T and U also for the

representing formulas, treating them as a relation symbol (function symbol) of

HA.

Therefore, as was immediately seen by Kleene, realizability can be formalized

in HA itself. This is already in [51]; the details are in [71].

I shall abbreviate 9zT (x; y; z) by xy#, and denote by xy also U (z), if T (x; y; z).

The following presentation of formalized (glued) realizability is based on Troel-

stra's [93].

Suppose that for each formulaA a formulaP (A) is speci�ed, such that P (A)

has at most the same free variables as A, and moreover:

P1) HA ` A)HA ` P (A), for sentences A;

P2) HA ` (P (A) ^ P (A! B)) ! P (B) for all A;B;

P3) HA ` F ! P (F ) for all atomic formulas F .

Then de�ne for each formula � a formula `x realizes-P �' which has one extra

free variable x, as follows:

1. x realizes-P F is x = x ^ F , if F is an atomic formula;

2. x realizes-P � ^ is ((x)

0

realizes-P �) ^ ((x)

1

realizes-P  )

where (�)

0

and (�)

1

are the projection functions corresponding to h�; �i;

3. x realizes-P (� !  ) is P (� !  ) ^ 8y(y realizes-P � ! xy# ^ xy

realizes-P  );

4. x realizes-P 9y�(y) is (x)

1

realizes-P �((x)

0

);

5. x realizes-P 8y�(y) is P (8y�(y)) ^ 8y(xy# ^ xy realizes-P �(y)).

As is well-known, disjunction is de�nable in arithmetic: �_ is provably equiv-

alent to 9x((x = 0 ! �) ^ (x 6= 0 !  )). Therefore, a realizability clause for

disjunction is not needed.

One has the theorem:

If HA ` � then HA ` 9x(x realizes-P �); moreover,

HA ` 9x(x realizes-P �)! P (�).

in [34]. In [55], Kleene says Harrop \rediscovered" these results, and in a footnote he details:

\[the Existence property] appears explicitly in [51] p. 115 lines 8-7 from below, or [52] p.

509 lines 15-11 from below, taking n = 0. [the Disjunction property] is included in [this]".

(Reference numbers changed) These references are also given in [95], vol. I,p.175-6. However,

it is simply not there. Kleene was not above drawing obvious inferences, so one can safely

assume that the existence property had not occurred to him at the time
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Important examples of P satisfying P1) � P3) above, are: P (A) � 0 = 0

(we have ordinary formalized realizability), P (A) � A (this formalized glued

realizability is called q-realizability), P (A) � Prov(A) or more generally, P

any interpretation of HA into itself. Note, that if P satis�es P1)� P3), then

P

0

(A) � 9x(x realizes-P A) does so, too.

q-Realizability gives Church's Rule for HA: if HA ` 8x9y�(x; y), then HA `

9z8x(zx# ^ �(x; zx)). In particular, the total recursive function from Weak

Church's Rule is actually provably recursive. But this version (and the even

stronger `Extended Church's Rule' appears �rst in Troelstra's [92] (also in [93]),

although there is a q-version for \analysis" in [57]. The reader will �nd that

q-realizability looks di�erent from the presentation above, in these sources; the

form presented here is equivalent, but has nicer proof-theoretic properties and

was �rst given by Grayson ([31]).

1.4 The Logic of Realizability

Kleene's original conjecture that realizability might mirror intuitionistic rea-

soning faithfully, was disproved: Rose ([79]) and later Ceitin, gave examples of

propositional formulas that are realizable (even \absolutely": there is a number

n which realizes every substitution instance of the formula, where one substi-

tutes HA-sentences for the propositional variables), but not provable in the

intuitionistic calculus

10

. The \predicate logic of realizability" is quite compli-

cated, and was investigated by the Russian Plisko in a series of papers. Of

course, there are several ways to de�ne what it means for a formula in predicate

logic to be \realizable". An interesting theorem ([74]) of his concerns what he

calls \absolutely realizable predicate formulas". Consider a purely relational

formula ' = '[P

1

; : : : ; P

k

] with all predicate symbols shown, P

i

being n

i

-ary.

Let F

i

: IN

n

i

! P(IN) be a k-tuple of functions. We can now de�ne the notion

n realizes ', relative to (F

1

; : : : ; F

k

), by letting the variables run over IN, and

putting

n realizes P

i

(m

1

; : : : ;m

n

i

) if and only if n 2 F

i

(m

1

; : : : ;m

n

i

)

Say that a sentence ' of purely relational predicate logic is absolutely realizable

if there is a number n such that for all k-tuples (F

1

; : : : ; F

k

), n realizes ' relative

to (F

1

; : : : ; F

k

). The theorem is that the logic of absolutely realizable predicate

formulas is �

1

1

-complete.

However, the logic of realizability can be viewed in a di�erent light. Making

use of formalized realizability, one can consider the collection of (say, proposi-

tional) formulas ' such that every arithmetical substitution instance (again, by

substituting HA-sentences for the propositional variables) is provably realized

in HA. This notion can be formalized in second-order intuitionistic arithmetic

HAS

11

. Gavrilenko ([27]) has the interesting theorem: suppose ' is a propo-

sitional formula with the property that HAS proves that every arithmetical

10

Ceitin's example is: [:(p

1

^ p

2

) ^ (:p

1

! q

1

_ q

2

) ^ (:p

2

! q

1

_ q

2

)] ! [(:p

1

!

q

1

) _ (:p

1

! q

2

)_ (:p

2

! q

1

)_ (:p

2

! q

2

)]

11

One needs second-order, since it involves a truth de�nition for G�odel numbers of formulas
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substitution instance of it is realizable. Then ' is a theorem of intuitionistic

propositional logic

12

. Anticipating further developments, I mention here the

following theorem of my own ([97]): let HA

+

be an expansion of HA by new

constants k and s, a partial binary function (or ternary relation which is single-

valued) and axioms saying that this structure is a partial combinatory algebra

(see section 1.6 for a de�nition). One can de�ne realizability with respect to

this. Suppose that ' is a purely relational predicate formula all of whose arith-

metical substitution instances are realizable in this abstract sense, provably in

HA

+

. Then ' is provable in the intuitionistic predicate calculus.

1.5 Axiomatization of Realizability

As we have seen, the logic of Realizability is too complicated to axiomatize.

Quite di�erent is the situation for formalized realizability. The formulas x re-

alizes A all have a syntactic property: they are (up to equivalence) almost

negative, that is: built from �

0

1

-formulas using only ^, ! and 8. Conversely, if

A is an almost negative formula, there is a \partial term" t

A

(an expression of

arithmetic expressing a {possibly non-terminating { computation; see [94] for

details), containing the same free variables as A, such that the equivalence

A$ t

A

# ^ t

A

realizes A

is provable in HA (\t

A

#" means that the computation represented by t

A

ter-

minates). This was observed by Kleene in [54].

Exploiting the idempotency of the formalized realizability translation, one

can then prove that formalized realizability is axiomatized by the scheme:

8x(A(x)! 9yB(x; y)) ! 9e8x(A(x)!

9y(T (e; x; y) ^B(x; U (y))))

where A(x) must be an almost negative formula. This scheme is called Extended

Church's Thesis (ECT

0

)

13

. The exact formulation of the axiomatization is:

i) HA +ECT

0

` '$ 9x(x realizes ')

ii) HA ` 9x(x realizes '),HA+ ECT

0

` '

The same axiomatization holds true if HA is augmented by Markov's Principle

MP: 8x(A(x)_:A(x))! (::9xA(x)! 9xA(x)). These axiomatization results

were obtained, independently, by Dragalin ([21]) and Troelstra ([92]; see also

[93] for a thorough exposition).

12

Regrettably, recently Albert Visser and the author discovered that Gavrilenko's proof

contains a gap. Nevertheless we remain convinced that his theorem is true, and that the proof

can be patched

13

A very debatable choice of name. It has nothing to do with Church's informal Thesis,

which says that every intuitively computable function is recursive. In the Metamathematics of

intuitionistic arithmetic, \Church's Thesis" stands for the formal statement which expresses

that all functions from numbers to numbers are recursive. However, from the perspective of

higher order arithmetic, the scheme ECT

0

not only strengthens this but it also incorporates

a choice principle

9



Let us look at a minor application. Obviously, Markov's Principle is an

example of a predicate logical scheme which is intuitionistically underivable.

But one can prove that the following scheme:

8x(A(x) _:A(x)) ^ (8xA(x)! 9yB) ! 9y(8xA(x) ! B)

is derivable in HA +MP + ECT

0

. So one sees that the introduction of realiz-

ability inuences the predicate logic, at least if MP is assumed

14

.

Another application is, that the scheme IP of Independence of Premisses:

(:A! 9yB) ! 9y(:A! B) (y not free in B) is not derivable in HA, since it

is easily shown to be inconsistent with ECT

0

([93]).

1.6 Extensions and Generalizations of Realizability

The �rst realizability de�nition based on a general notion of combinatory algebra

appears in [87]. Feferman, in [23], sets out to code what he calls \explicit

mathematics" in a language for partial combinatory algebras (the system was

later called APP by Troelstra and Van Dalen).

A partial combinatory algebra (or pca) A is a set A equipped with a partial

binary operation x; y 7! xy such that there are elements (combinators) k and s

satisfying the postulates:

k) kx and (kx)y are always de�ned, and (kx)y = x;

s) sx and (sx)y are always de�ned; and ((sx)y)z is de�ned if and only if all

of xz, yz and (xz)(yz) are de�ned; in which case ((sx)y)z = (xz)(yz).

The combinator axioms k) and s) mirror the two schemes which axiomatize

intuitionistic purely implicational logic: A! (B ! A) and (A! (B ! C))!

((A! B) ! (A! C)).

However, as observed by several people (e.g., [1]), the s)-axiom is slightly

stronger than needed. It is enough to assume that if (xz)(yz) is de�ned, then so

is ((sx)y)z, and ((sx)y)z = (xz)(yz) (this weakening also occurs in the �-pca's

of [99], and in recent work of John Longley).

The natural numbers with partial recursive application form a partial combi-

natory algebra. Another example is the set of functions IN! IN. Every function

� codes a partial continuous operation (with open domain): IN

IN

! IN

IN15

. This

partial combinatory algebra was at the basis of Kleene's function realizability

([56],[59],[57]). This was an interpretation of \intuitionistic analysis" (a theory

which treats numerical functions as well as natural numbers; the functions of-

ten being seen as reals). Function realizability vindicates Brouwer's opinion

16

that every well-de�ned function on the reals must be continuous. A q-variant

14

It is, to my knowledge, still an open problem whether the predicate logic of HA+ECT

0

properly extends intuitionistic predicate logic

15

for details see, e.g., [93]

16

he called it a \theorem"
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of function realizability establishes for this system the following rule: if an exis-

tential statement 9�A(�) can be proved (� a variable for reals), then A(r) can

be established for some recursive real r.

At this point it is worthwile to mention an older version of function realiz-

ability, which appeared in [50]. This version used relative computability with

total functions as oracles. The notion is formulated as \e realizes

�

'" where �

is a string of functions. Using a G�odel numbering for Turing machines with

oracles, let '

�

e

the partial function coded by e using oracles �. The clause for

8� reads: e realizes

�

8� i� for all functions �, '

�;�

e

realizes

�;�

 (�). So if

8�9� is realized (relative to oracles �), � is obtained recursively in �;�. One

says a closed formula is realizable, if some number realizes it w.r.t. all oracles.

Later, Kleene dismissed this version because the later notion is equivalent ([59]).

In Kleene's de�nition of function realizability, there is a twist: one has real-

izability clauses like for number realizability (using functions as realizers), but

at the end one says that a formula is `realizable', provided there is a recursive

function realizing the formula. This is a notion that later was called \relative

realizability" in a generalized setting (see 2.5).

A di�erent type of generalization is Kreisel'sModi�ed Realizability; originally

conceived for the system HA

!

. HA

!

is \G�odel's T with predicate logic". One

builds a type structure from one basic type o and type constructors � and );

one has variables of each type, typed combinators for pairing and projections,

k and s of each appropriate type, and combinators for primitive recursion.

For any formula A, a formula \x realizes A" can be de�ned in a completely

straightforward way: the type of the variable x is determined by the logical

form of A. So if the type of realizers of A is �, and the type of realizers of B

is � , the type of realizers of A ! B is (� ) � ). This \typed realizability",

de�ned by Kreisel in 1959 ([60])

17

, predates the slogan \formulae as types"

(Howard, [39]) by 10 years! Of course, it came to be used in the late seventies

to interpret versions of Martin-L�of's type theory (e.g.,[19] and the thesis [90]),

and analogous versions for systems based on PCF have been studied by John

Longley. Troelstra found an axiomatization for modi�ed realizability for HA

!

([93]).

But, it is the untyped \collapse" of this realizability, that most people know

as `modi�ed realizability'. The structure of Hereditary Recursive Operations

([93]) is a typed structure which models HA

!

and is itself de�nable in HA.

Using that HA is a subsystem of HA

!

, one can construct out of Kreisel's

de�nition a new notion of realizability for HA. Each formula gets two sets of

realizers, the actual realizers being a subset of the potential ones

18

. One gets

two, intertwined, inductive de�nitions for both types of realizers: see [93] for

the formal de�nition. Here I just give the most distinctive clause:

n is an actual realizer of an implication � !  if n is the G�odel number

of a partial recursive function which sends every actual realizer of � to an

17

in a footnote!

18

This modi�ed realizability is also reminiscent of Kolmogorov's interpretation of intuition-

ism by \problems"; see, e.g.,[66]

11



actual realizer of  , and every potential realizer of � to a potential realizer

of  .

Features of HRO-modi�ed realizability for HA are that it validates the scheme

IP (see the last paragraph of 1.5) and refutes Markov's Principle. By a q-version

of this realizability one can obtain an IP-rule forHA (I believe this was �rst no-

ticed in [96]). Beeson ([4]) applies modi�ed realizability to show that although,

in formalizations of elementary recursion theory, the Myhill-Shepherdson and

Kreisel-Lacombe-Shoen�eld theorems seem to require Markov's Principle, they

don't conversely imply it, for these theorems hold under modi�ed realizability.

The idea of actual and potential realizers can of course be applied to dif-

ferent partial combinatory algebras, and was so, by Kleene (\special realiz-

ability" in [59]) and Joan Moschovakis ([70]). Moschovakis shows the con-

sistency of Kleene and Vesley's \Basic System" of intuitionistic analysis to-

gether with the scheme (:A ! 9�B(�)) ! 9�(:A ! B(�)) and the scheme

9�A(�)! 9�(GR(�)^A(�)) for closed 9�A(�) (the formula GR(�) expresses

that � is recursive. That this is a nontrivial result, is apparent from the fact that

the \Basic System" contains the axiom scheme of so-called \Bar Induction"{a

principle of induction over de�nable well-founded trees{, which fails badly for

the recursive universe). She uses the partial combinatory algebra of functions

together with its subalgebra of recursive functions; recent work of Birkedal et

al ([3]; see also section 2.5) is closely related to hers (the relationship is made

precise in [11]). In general, as shown e.g. in [100], modi�ed realizability inter-

pretations are also intimately connected with what the author of these lines has

called \Kripke models of realizability" ([96]); see next section.

Recently, modi�ed realizability has enjoyed renewed interest, mainly by the

e�orts of Thomas Streicher, Martin Hyland and Luke Ong ([88],[45]; see also

[100] and [11]).

For an extension of formalized Kleene-realizability to second-order arith-

metic HAS, see [93]. Troelstra shows that the following principle of second-

order arithmetic is valid under his extension:

UP 8X9nA(X;n)! 9n8XA(X;n)

The initials UP stand for Uniformity Principle. This principle received much

attention in connection with the E�ective Topos: see sections 2.1 and 2.2. Saying

that every function from sets of numbers to numbers must be constant, it is very

non-classical; however, it can be shown that HAS + UP has no non-classical

�rst-order consequences ([96]).

1.7 Kripke Models of Realizability

This is really a prelude to a general topos-theoretic account of realizability. But

topos theory was slow to catch up with realizability, and long after the logical

signi�cance of toposes had been grasped, it was not yet clear what toposes could

do for realizability.

12



A Kripke model of realizability is a Kripke model of the theory APP, that

is: a system of partial combinatory algebras (A

p

)

p2P

indexed by some partially

ordered set P , together with maps A

p

! A

q

for p � q, satisfying the usual

conditions. As a simple example, take the partial order f0 < 1g, let A

1

the pca

of function realizability and A

0

its sub-pca of recursive functions. One can also

take: A

1

the graph model P(!) and A

0

its subalgebra on the r.e. subsets of IN.

See section 2.5 for more about this.

In general, if (A

p

)

p2P

is a Kripke model of realizability, to any formula ' a

P -indexed system ([[' ]]

p

)

p2P

of sets of realizers is assigned (which is a subset

of (A

p

)

p2P

in the sense of Kripke models).

The �rst example I know of such a Kripke model of realizability, is the unpub-

lished paper [18]. De Jongh wished to establish the theorem that a formulaA is

provable in intuitionistic predicate calculus if and only if each of its arithmetical

substitutions is provable in HA. He succeeded partially: the full theorem was

�rst proved by Leivant in his thesis (and Leivant used proof theory). In [97]

I was able to revive De Jongh's original realizability method to prove the full

theorem.

Another example occurs in Goodman's [29]. The models of De Jongh and

Goodman are strikingly similar: in both cases, A

p

is the set of indices of func-

tions partial recursive in some set X

p

� IN, with X

p

� X

q

for p � q. However,

Goodman, whose aim was to interpret a version ofHA

!

with decidable equality

at all types, also brings the ::-translation into the picture, so strictly speaking

his model transcends the de�nition of a Kripke model of realizability, and might

rather be called a (generalized) Beth model of realizability.

Much work on combinations of realizability with Kripke forcing was done by

Jim Lipton ([62],[63]).

1.8 Extensional Realizability

\Extensional realizability" de�nes not just realizers, but simultaneously an

equivalence relation on them; the idea is that a realizer for an implication

A ! B should send equivalent realizers for A to equivalent realizers for B.

The origin is, of course, again Kreisel's modi�ed realizability; just as HRO is a

model for HA

!

which is de�nable in HA, we have the models HEO of `hered-

itarily e�ective operations' and HRO

E

, the extensional collapse of HRO (see

[93]). HEO in combination with modi�ed realizability is already considered in

Troelstra ([93]), but the �rst extensional realizability for HA

!

, in combina-

tion with Kripke forcing, was used by Beeson ([5]), who extended Goodman's

theorem to the statement that E�HA

!

+AC is conservative over HA.

The �rst time a de�nition for extensional realizability appeared in print that

was suitable for �rst-order arithmetic, was in Pitts' thesis ([73])

19

.

Extensional realizability was used by Beeson ([6] and [7]) in connection with

Martin-L�of's Type Theory, and by Diller, Troelstra and Renardel ([20],[75]).

Martin Hyland studied extensional realizability from a topos-theoretic point of

19

According to Pitts, the idea came from Robin Gandy
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view, and noted its salient higher-order logical properties in [47] (see also the

next chapter).

In [99], two versions of extensional realizability for HA, analogous to HEO

and HRO

E

, are compared and found non-equivalent. It is shown that the HEO-

version is not idempotent, but nevertheless an axiomatization for this realizabil-

ity is obtained over a conservative extension of HA. The usual Troelstra-type

results are obtained: a q-version is de�ned, and an \Extensional Church's Rule"

for HA is derived.

2 The period 1980-2000

Around 1970, Lawvere and Tierney had generalized Grothendieck's notion of

\topos" to the de�nition of elementary topos; in subsequent work they (and

also others, like Michael Barr and Peter Freyd) had shown that very many

results in the theory of Grothendieck topoi can in fact be derived from the

axioms for an elementary topos. An impressive account of elementary topos

theory (I mean `theory of elementary toposes'; the theory itself is at places far

from `elementary') of the seventies, which has served as a standard reference to

this day, is Johnstone's [48].

Logicians discovered that toposes generalized semantical ideas that had de-

veloped in the sixties: Cohen forcing for ZF set theory (later, by Solovay

20

re-

formulated in terms of Boolean-valued models

21

), Kripke and Beth models for

intuitionistic predicate logic, and topological models. All these semantics fall,

from the point of view of a topos theorist, under the header \localic toposes",

or to use a more familiar term for logicians: Heyting-valued semantics.

Denis Higgs ([36],[37]) had proved in 1973 that the category of `H-valued

sets' is equivalent to the topos of sheaves over H, for a complete Heyting algebra

H. So Kripke semantics, topological semantics etc. have a natural extension to

higher-order languages

22

. This is important for the development of intuitionistic

elementary mathematics: the real numbers are constructed by Dedekind cuts

which needs second-order arithmetic (logicians had been describing models for

analysis, completely independent of second-order arithmetic).

It seems that no one in the traditional logicians' world of the seventies was

more inuential in pushing topos semantics than Dana Scott. Martin Hyland has

testi�ed

23

that Scott's coming to Oxford in the mid-seventies meant a \change

in ways of doing logic". Much of this can probably be attributed to a di�erent

cultural background: most of all, the model theorist Scott advocated the view of

realizability (and other `interpretations') as models, to be treated as syntax-free

as possible.

20

and, independently, by Scott and Vop�enka; see Scott's Foreword to [8]

21

It was Scott who �rst observed that Cohen's forcing over a poset was Kripke forcing

combined with the ::-translation

22

This point is emphasized in Scott's Foreword to [8], where the failure by logicians to spot

this fact, is attributed to \the �rst-order disease"

23

in his lecture at the Realizability workshop in Trento
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Anyway, the reader who wishes to see a representative sample of work

from the seventies on sheaf models, is referred to the \Durham Proceedings"

([24]). All this work concerns Grothendieck topoi however, and realizability was

markedly absent. In fact, what did one know about non-Grothendieck topoi?

Finite sets (not very entertaining); and yes; the Lawvere/Tierney axioms are

su�ciently algebraic to ensure that a free topos exists; but what did one know

about it? Finally, there were the toposes arising by the so-called �lter-quotient

construction which had been used to give topos-theoretic proofs of Cohen's in-

dependence results.

2.1 The e�ective topos

A completely new type of topoi was discovered around 1979 (apparently follow-

ing some ideas of Scott; independently, there had been work of W.Powell along

similar lines) by Martin Hyland, Peter Johnstone and Andy Pitts. The relevant

publications are [44], [73] and [40].

It was well-known, and amply demonstrated in Fourman and Scott's paper

[25] that Boolean-valued sets generalize to Heyting-valued sets for a complete

Heyting algebra. The completeness of the algebra is used for interpretation of

the quanti�ers. Now in [25], Fourman and Scott had dissected the construction

of the topos ofH-sets into two, logicallymeaningful steps. First, one has a model

of many-sorted intuitionistic predicate logic without equality. The predicates of

sort X (where X is a set) are functions from X into the set of propositions H.

Since H itself exists as a sort, one has in fact second-order propositional logic

too. The next step is adding equality as a general H-valued symmetric and

transitive (but not necessarily reexive!) relation, and considering all possible

such. One obtains a topos, and the validity of a formula ' in the internal logic

of this topos is connected to the validity in the underlying model of many-sorted

predicate logic of a translation of ' into the \logic of identity and existence"

([84]).

Hyland, Johnstone and Pitts discovered a useful generalization of the �rst

step in this construction, calling it `tripos' for `topos-representing indexed pre-

ordered set'

24

. The `Theory of triposes' is the subject matter of Andy Pitts'

thesis [73], but a major application of the idea is the `e�ective topos', discovered

by Martin Hyland and described in the classic paper [40]. Let the `domain of

propositions' be the powerset of IN. For any set X, the set of predicates on

X i.e. the set P(IN)

X

is preordered by: ' �  if and only if there is a partial

recursive function F such that for each x 2 X and each n 2 '(x), F (n) is de�ned

and F (n) 2  (x). Then P(IN)

X

is a Heyting (pre)algebra, and although it is

not complete, adjoints to the map P(IN)

f

: P(IN)

Y

! P(IN)

X

(for functions

f : X ! Y ) exist. One can mimick the the construction of the topos ofH-valued

sets completely, and one gets the E�ective topos Eff .

In Eff , the standard truth de�nition for �rst-order arithmetic (based on

the natural numbers object) is equivalent to Kleene's 1945-realizability. But

24

`Tripos' is also the name of the major Mathematics exam at the University of Cambridge.

A typical Cambridge pun, in more than one way
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much more is true: standard second-order arithmetic in Eff is captured by an

informal reading of Troelstra's realizability for HAS (as shown in [96]), and

standard analysis in Eff (using the Dedekind reals) turns out to be equivalent

to Bishop-style recursive analysis. The �nite type structure over the natural

numbers is the structure HEO. All these di�erent, hitherto unrelated bits of

research fell into their right place.

Even more strikingly, also the proof-theoretic results obtained by realizability

received a wider signi�cance in the e�ective topos. The role of the almost

negative formulas is explained by the fact that the category of Sets in contained

in Eff as \::-sheaves" (see the section \Basic facts from the logic of sheaves"

in [40]).

In a little series of never-published, hand-written notes, Robin Grayson

([31],[33],[32]) gave accounts of results obtained, independently, by Hyland and

himself. He described the construction of toposes for modi�ed and extensional

realizability. He explained the topos-theoretic counterpart of q-realizability. By

gluing the toposes Sets and Eff along the embedding (see [102] for this construc-

tion) one gets a topos corresponding to a sort of q-realizability. Replacing Sets

by the free topos (with natural numbers object) F and constructing Eff over

F , one obtains versions of existence properties for higher-order intuitionistic

arithmetic HAH and Church's Rule for HAH

25

. Let us sketch the argument

for Church's Rule. So F is the free topos, Eff(F) the e�ective topos constructed

over it, and E the gluing of F to Eff(F). The satisfaction relation E j= ' can

be expressed in F . Now suppose HAH ` 8x : N9y : N (x; y), so E j= 8x9y .

By the realizability construction, we have

F j= 9f : N8x : N9y : N (T (f; x; y) ^ E j=  (x; U (y)))

Now there is a logical functor E ! F (a general feature of the gluing construc-

tion), whence

F j= 9f : N8x : N9y : N (T (f; x; y) ^  (x; U (y)))

so HAH proves this formula, and we are done.

26

In the beautiful recent paper [43], Martin Hyland sketches various ideas for

applications of the topos-theoretic point of view to di�erent interpretations, in

particular Martin-L�of's Type Theory, and the Dialectica Interpretation.

2.2 Modest Sets and Internal Completeness

In his paper [40], Hyland had singled out an interesting subcategory of Eff :

the subcategory on what he called `e�ective objects'. This category generalizes

25

The existence property forHAH was �rst proved by Lambek and Ph.Scott in 1978, using

Friedman-style q-realizability. That this was essentially a gluing construction, was realized

by Peter Freyd, who appears to have been surprised by the fact that in F the terminal object

is indecomposable and projective, but nevertheless gave an algebraic proof of it. For good or

ill, Freyd's proof was again syntacticized by Lambek and Ph.Scott in [61]

26

By the way, existenceproperties forHAS had �rst been obtainedby Friedman in [26] using

q-realizability. Note, that Friedman's \set existence property for HAS" is not automatically

subsumed by the existence property for full HAH
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Er�sov's \Numerierungen" ([22]): it is equivalent to the category whose objects

are pairs (X;�) with X a set and � : A! X a surjective function from a subset

of IN to X; morphisms (X;�) ! (Y; �) are functions f : X ! Y such that

for some partial recursive function F , F (n) is de�ned for all n 2 dom(�) and

F (n) 2 dom(�) and f(�(n)) = �(F (n)). Abstractly the e�ective objects are (in

Eff) ::-separated quotients of subobjects of N . The concrete representation

just given, was later called the category of modest sets by Dana Scott ([85]).

Hyland noticed that the e�ective objects allow an interesting generalization

of Troelstra's Uniformity Principle (see section 1.6). Recall that Sets is included

in Eff as ::-sheaves. Now any function from a quotient of a set to an e�ective

object is necessarily constant in Eff ; in fact, for an e�ective object A and a

quotient B of a set, the diagonal embedding A! A

B

is an isomorphism.

Around 1985, Moggi and Hyland made an important discovery. This `Uni-

formity Principle' meant that a speci�c internal category in Eff (basically, the

internal full subcategory of separated subquotients of N ) was complete in a

sense, without being a preorder

27

.

This meant several things. For example, Scott used it in [85] to show that

intuitionistically it may happen that a set A is in bijective correspondence with

2

2

A

28

. It could also be used to obtain a set-theoretic interpretation of Girard's

second-order �-calculus F

29

.

The precise meaning of `complete' (this is not expressible in the internal

language of the topos) took a while to sort out. A basic observation came

from Freyd: take the property that A ! A

B

is an isomorphism for each set

B (in fact, just the set 2 will su�ce; but note the set 2, not the object 2

in Eff !) as a de�ning property A can have; call A `discrete' if it has this

property. Eventually, Hyland, Robinson and Rosolini showed that the discrete

objects, as a �bration over Eff , are complete, and weakly equivalent to the

�bration obtained by `externalizing' the aforementioned internal category in

Eff ; from this, it follows that the internal category is `weakly complete'

30

. This

is explained in [46] and [41].

Of course this does not mean that the category of modest sets is complete,

as [77] and [82] hastened to point out. But it may serve very well for interpreta-

tions of theories in, say, system F and related programming languages such as

Quest. Such `PER' models were constructed by Abadi, Cardelli, Longo, Freyd,

Hyland, Robinson, Rosolini and many, many others; by now, PER models form

a standard tool in the semantics of programming languages.

For historical reasons, quotients of sets are called `uniform objects'. The

notions `uniform' and `discrete' can be applied to maps as well and give rise to

27

Contradicting a classical theorem of Peter Freyd

28

Contradicting Cantor's theorem

29

Contradicting a well-known result of Reynolds

30

Basically, the problem resides in the absence of choice in Eff . Call the internal category

C. For an arbitrary other, say D, we have the object C

D

of diagrams in C of type D, and an

object E of pairs (d; c) where d is a diagram, and c a limit for this diagram. The projection:

E ! C

D

is an epimorphism in Eff , but there need not be a section of it, which would assign

a limit to each diagram
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a factorization system on Eff very much in analogy with the `monotone-light'

factorization system on the category of T

0

-topological spaces (see [14]).

Important applications of the completeness of `pers' come from Synthetic

Domain Theory (see section 2.6)

2.3 Realizability as a universal construction

The e�ective topos has intriguing, not to say mystifying aspects. One way of

attacking its mystery is to look for universal properties it may enjoy. Around

1990, two papers appeared with rather similar-looking constructions of Eff : [13]

and [78]. The key word here is completion.

We have seen that the e�ective topos is a two-step construction. But there

are many ways in which to cover a distance by two steps : : :

Let us consider two completion processes: given a �nite-limit category C

one can add coproducts to it; or one can add stable quotients of equivalence

relations to it, making it exact. The �rst construction belongs to folklore and

results in Fam(C): objects are families (C

i

)

i2I

of objects of C indexed by a set

I; a morphism (C

i

)

i2I

! (D

j

)

j2J

consists of a function f : I ! J and an I-

indexed collection of arrows (f

i

: C

i

! D

f(i)

)

i2I

of C. The second construction

is detailed in [15] and results in the category (C)

ex=lex

.

Performing the two in succession gives (Fam(C))

ex=lex

which is a topos, the

topos Sets

C

op

31

.

Now suppose one does not add all coproducts, just the recursive ones. That

is, take Fam

R

(C): objects are now families indexed by a subset I of IN, and

morphisms (C

i

)

i2I

! (D

j

)

j2J

need a partial recursive function I ! J . The

main result of [78] is: (Fam

R

(Sets))

ex=lex

is a topos, the e�ective topos. Note

the mirroring in the two cases: for a Grothendieck topos, at least for presheaf

toposes, one completes a small category with all coproducts indexed by Sets;

for Eff , one completes Sets by coproducts indexed by a small category R!

It follows from the general theory of ex/lex completions that the category

Fam

R

(Sets) (into which Sets embeds) is equivalent to the full subcategory of

projective objects of Eff ; and moreover, that every object of Eff is a quotient of

a projective object.

On the other hand, the construction of [13] presents Eff as (Asm)

ex=reg

;

that is, make Asm exact but preserve the regular structure, where Asm is the

category of assemblies, the ::-separated objects of the e�ective topos

32

. In a

completely analogous way, the topos of sheaves over H (H a complete Heyting

algebra) is (Fam(H))

ex=reg

.

It is amusing to note that (Asm)

ex=lex

also yields a topos; now not the

e�ective topos, but a topos for extensional realizability (see [99])

33

.

An interesting result in this area is due to John Longley ([64]). We can con-

struct Eff over any partial combinatory algebraA; call it Eff

A

. How \functorial"

31

For a recent explanation of when (if) (C)

ex=lex

is a topos, see [67]

32

The constructions ex/lex and ex/reg are well explained in [17] and [12]

33

[67] has an independent, abstract argument that Asm

ex=lex

is a topos. He obtains a whole

hierarchy of toposes, starting with Eff and Asm

ex=lex

. See also [68]
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is Eff

A

in A? Longley de�nes a 2-category Pca of partial combinatory algebras,

such that the category Pca(A;B) is equivalent to the category of exact functors

Eff

A

! Eff

B

which commute with the inclusions from Sets into these toposes.

At �rst sight, his de�nition looks like a hack, but: a 1-cell from A to B in Pca

is nothing but an internal partial combinatory algebra in Asm(B) (assemblies

over B; that is: a ::-separated internal pca in Eff

B

for which the domain of

the application map is ::-closed) with global sections A; a 2-cell between such

is an internal `ordinary' pca-morphism. Viewed in this way, and combined with

Pitts' iteration results ([73]), the construction becomes a lot more transparent,

and its connection to the exact completions business should be obvious.

Recently, a lot of work was devoted to the question of when an exact comple-

tion is (locally) cartesian closed: see [80], [16] and [10]. Much of this work was

prompted by the appearance of Scott's \New Category" ([86])

34

. This category

is `almost' an exact completion of the category of T

0

-topological spaces; in fact,

it is the \regular completion" of T

0

-spaces ([83]).

The relationships between these various completions, and when they have

nice properties (being locally cartesian closed or toposes) have been systemat-

ically studied by Mat��as Menni in his thesis ([68]); obtaining a synthesis of all

previous work in this area.

2.4 Axiomatization Revisited

In his seminal paper [40], Hyland had �nished with the comment:

What we lack, above all [ : : : ] is any real information analogous to

the results obtained in Troelstra ([93]) axiomatizing realizability [

: : : ] we have no good information in this area. We can not properly

be said to understand realizability until we do.

Wasn't it about time, after 1990 and all these further results on Eff has ap-

peared, to use them in order to obtain more \information in this area"?

In [98], the construction of a series of theories of higher order arithmetic

(2nd,3rd, : : : order) is given, which are true in Eff , and realizabilities for these

theories which are also true in Eff , and which can be axiomatized over the

theories. This is based on the fact that in Eff , realizability can be de�ned in such

a way that in Eff , a sentence is equivalent to its own realizability. The details

are worked out for 2nd and 3rd order arithmetic; the axioms characterizing the

2nd order realizability are Uniformity Principle, Extended Church's Thesis and

Shanin's Principle which says that for any subset X of N there is a ::-closed

subset A of N such that

X = fx j 9yhx; yi 2 Ag

For Shanin's Principle consult [30].

34

I like \New Category" as a name, better than this category's o�cial name, Equ, pro-

nounced `Eek'. \New Category" is reminiscent of \New Foundations", \New Age" and \New

Economy", making it a cool object of study
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The construction of these theories is motivated by the fact that the relevant

arithmetical objects are covered by de�nable projective objects; e.g., 


N

is

covered by (


::

)

N

; that this is a cover is the content of Shanin's Principle.

A corollary of the treatment for 3rd order arithmetic is, that from the axioms

which characterize its realizability, one can prove a completeness property of the

category of modest sets.

Yet, we are a long way from understanding realizability axiomatically. We

may ask the following question. For an arbitrary topos E with natural numbers

object, let Eff(E) be the e�ective topos constructed over it. The construction

E 7! Eff(E) is not idempotent up to equivalence, although Pitts ([73]) shows it

gives rise to a monad (\the e�ective monad") on a certain category of toposes

and geometric morphisms. Is there any way of characterizing the algebras for

this monad? Is there any reasonable system of meaningful conditions on E

ensuring that E ! Eff(E) is an equivalence?

What does Eff(F) look like

35

? Is it an exact completion?

36

2.5 Relative Realizability

From around 1997, a group of people around Dana Scott at CMU in Pitts-

burgh has been working on Realizability: Steve Awodey, Andrej Bauer and

Lars Birkedal. In the recent papers [3], [2], and [9]) they study what they call

`relative realizability'.

Suppose a pca A has a subset A

]

which is closed under the application and

contains a choice for k and s for A; in other words, a sub-pca. One can de�ne a

tripos on Sets in the following way: predicates on X are functions X ! P(A),

but the order between two such functions has to be realized by an element of

A

]

. Call the resulting topos Eff

A

]

;A

.

Usually, A

]

consists of `recursive' or `recursively enumerable' elements of A;

see the examples cited in section 1.7. Part of the motivation for studying this

situation is the \study of computable operations and maps on data that is not

necessarily computable, such as the space of all real numbers".

Eff

A

]

;A

compares nicely to the toposes Eff

A

]

and Eff

A

: there is a geomet-

ric morphism Eff

A

]

! Eff

A

]

;A

which is local, and there is a logical functor

Eff

A

]

;A

! Eff

A

.

The reader sees that the notion of relative realizability is very old: in fact,

Kleene's function realizability from [59] (see section 1.6) is of this form. How-

ever, the analysis is quite nice. The relative situation can also be studied in

connection with modi�ed realizability, leading to a more complete understand-

ing of Moschovakis' work. In [11], these relationships are made precise. We see,

that the `logical functor' Eff

A

]

;A

! Eff

A

is a �lter quotient situation, and we

arrive at a very general de�nition of `modi�ed realizability' w.r.t. an internal

pca in a topos E , and an open subtopos of E .

35

Recall that F denotes the free topos with natural numbers object

36

F is embedded as a full reective subcategory in Eff(F), and the inclusion preserves

epimorphisms; hence the reection preserves projectives. Therefore, if Eff(F) is an exact

completion then F has enough projectives; I don't know whether this is true
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Also the work of Thomas Streicher ([89]) deserves mention. He exploits

relative realizability in order to obtain a topos for computable analysis.

Finally, note that the motivation of letting computable things act on non-

computable data, is reminiscent of Kleene's setup for higher-type recursive func-

tionals ([53] and later papers).

2.6 Non-classical Theories

A useful feature of Eff and related topoi is that in them one often �nds models

for inherently non-classical theories, theories which have no classical models

(sometimes not even models in Grothendieck topoi).

Here I just point at a few interesting topics that deserve further research.

Synthetic Domain Theory aims for a suitable category of objects which carry a

natural domain structure, such that between these objects any map is automat-

ically continuous. It was suggested by Dana Scott. Rosolini ([81]), at the time

Scott's student, was the �rst who made real progress in setting up the theory;

later work was done by, among others, Hyland ([42]), Phoa ([72]), Taylor ([91]),

and Streicher/Reus ([76]). In [101], the force of a truly axiomatic and rigorously

internal approach is advocated.

Algebraic Set Theory. In their elegant little book ([49]), Joyal and Moerdijk

present a novel way of looking at set theory. They point to a model in Eff ,

which needs to be further investigated.

Intuitionistic Nonstandard Arithmetic. Also for this, there are interesting mod-

els in Eff , as pointed out in ([69]). This must also de�nitely be studied more

closely.
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