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1 Introduction

1.1 Historical background

Early investigators of realizability were interested in metamathematical ques-

tions. In keeping with the traditions of the time they concentrated on interpre-

tations of one formal system in another. They considered an ad hoc collection of

increasingly ingenious interpretations mainly to establish consistency, indepen-

dence and conservativity results. van Oosten's contribution to the Workshop

(see van Oosten [56] and the extended account van Oosten [57]) gave inter alia

an account of these concerns from a modern perspective. (One should also draw

attention to realizability used to provide interpretations of Brouwer's theory of

Choice Sequences. An early approach is in Kleene Vesley [28]; for modern work

in the area consult Moschovakis [35], [36], [37].)

In the early days of categorical logic one considered realizability as providing

models for constructive mathematics; while the metamathematics could be re-

trieved by `coding' the models, that aspect took a back seat. In the �rst instance

realizability provided toposes, that is models for impredicative constructive type

theory; but it also can be used to model stronger systems of impredicative con-

structive set theory. In time it was recognized that the mathematical structures

arising from realizability provided models (not just for Choice Sequences but)

for a variety of exotic non-classical theories of interest. Work in the categorical

tradition then focused in particular on models for impredicative polymorphic

calculi such as System F (Girard [12]) and the Calculus of Constructions (Co-

quand and Huet [7]), and on Synthetic Domain Theory (Hyland [20] and Tay-

lor [50]). The use of realizability in this context has a quite di�erent character

from its earlier metamathematical use. For details of realizability models of

impredicative type theories the reader may consult Crole [8]. Domain theory

in a realizability context has been treated in the dissertations of Rosolini [46],

Phoa [39], Longley [32]; recent progress along one particular line is described

in van Oosten and Simpson [58]. For formal expositions of Synthetic Domain

Theory informed by the realizability experience see Reus [42] and Reus and

Streicher [43].
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The focus of this paper is on the axiom of choice

8x 2 X:9y 2 Y:�(x; y)! 9f 2 Y

X

:8x 2 X:�(x; f(x)) :

I shall call this the propositional axiom of choice to distinguish it from the axiom

of choice as it holds in Martin-L�of type theory (see Martin-L�of [34]), that is in

the propositions-as-types sense.

1

We write the instance of the axiom above as

AC(X ! Y ).

The models I consider are not new. Some are derived from old interpreta-

tions, while I lectured on others in the Netherlands in 1982.

2

My motivation for

rehearsing the ideas now is generally that the range of possibilities which, on the

one hand, may be used for establishing metamathematical results, and on the

other, model exotic non-classical mathematical or computational phenomena,

deserves to be better known. When I �rst thought about abstract approaches

to realizability I was sure that at the very least the old techniques would bene�t

from being put in more mathematically elegant form; except for Scott and his

students few took this view at the time. Now a new generation seems to take all

that for granted. Evidence of that was provided by the penetrating comments of

the referees of this paper. I am grateful for those improvements which they have

stimulated, and am acutely aware that I have not satis�ed them in everything.

1.2 Maietti's question

A more speci�c motivation for this paper is that I have been stimulated by a

question put to me by Maria-Emilia Maietti. Maietti's question arose naturally

from her work ( see in particular Maietti [33]) in type theory; but in categorical

form

3

her question is essentially this.

How close to the structure of a topos can one get with the propo-

sitional axiom of choice holding, but not the law of the excluded

middle?

One can make this question more precise by asking for a category T of types plus

a poset �bration P! T giving a notion of proposition satisfying the following.

� The category T of types is locally cartesian closed: so we interpret depen-

dent type theory with strong equality types.

� P ! T is the subobject �bration: propositions correspond exactly to

subobjects in T: so propositions are proof irrelevant types.

� There is a weak subobject classi�er 
 2 T: thus in the type theory,

impredicative higher types are expressed via a weakly generic Prop : Type.

1

Of course in Martin-L�of type theory we do not have an axiom but rather a theorem.

2

Robin Grayson also worked on clean forms of old interpretations around this time; and

shortly afterwards Jaap van Oosten studied more subtle interpretations from an abstract point

of view.

3

For accounts of Type Theories and the connection with categories and �brations, consult

the recent books Jacobs [25] and Taylor [51].
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� The propositional axiom of choice (as above) holds at all types of T.

� T has coequalizers of equivalence relations: so we have a form of quotient

types. To get the full force of quotients in dependent type theory these

should satisfy a stability condition.

� Finally we want all the above but with constructive or intuitionistic logic:

more precisely the subobject lattices P(X) for X 2 T should be Heyting

algebras but not generally Boolean algebras.

In this paper we get nowhere near satisfying these requirements; but before

explaining our more modest aims, it seems worth making some comments on

the original problem.

First if coequalizers of equivalence relations are e�ective then a quotient of

the weak subobject classi�er will be a subobject classi�er in the strong topos

theoretic sense. Thus we would have a topos. (Of course conversely coequalizers

are e�ective in any topos.) Now in a topos the axiom of choice implies the law

of excluded middle. (This was observed by Diaconescu. For arguments in the

internal logic of toposes see Scott [47] or in the constructive set theory tradition

Goodman and Myhill [14].)

Secondly the speci�c formulation given above may not be fair to Maietti: she

has certainly considered variations, some of which she may prefer from the point

of view of type theory. Note in particular that the assumption that the types

form a locally cartesian closed category gives an extensional type theory. In

the presence of extensionality, the constructive signi�cance of the propositional

axiom of choice becomes problematic. With extensionality we have the following

basic facts (see Troelstra [52]).

� AC(N

N

! N) (that is, AC

1;0

in Troelstra's notation) is already incompat-

ible with Church's Thesis. This is just basic recursion theory.

� AC(N

(N

N

)

! N) (that is, AC

2;0

in Troelstra's notation) is incompatible

with weak continuity principles.

These and related issues are discussed also in Troelstra and van Dalen [53] ; I

shall not go into the question of their signi�cance for any particular constructive

point of view. One should perhaps just note that Martin-L�of type theory,

4

at

least as explained in [34] makes sense conceptually only with intensional equal-

ity: the intensional equality is treated in Nordstr�om, Petersson and Smith [38].

Hofmann [16] treats extensional type theory and gives an extensive treatment of

quotients in that context. Of course the axiom of choice is provable, and Maietti

[33] shows that even in the predicative setting of Martin-L�of Type Theory one

can apply Diaconesu's argument: e�ective quotients and uniqueness of equality

proofs yields the excluded middle.

4

One should stress the interest of this predicative approach; after all we can very naturally

formalize much of Bishop's Constructive Mathematics in it.
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1.3 Aims

I aim in this paper to describe some realizability models (arising from various

realizability toposes) in which some form of the propositional axiom of choice

holds. The kind of structure which arise easily satisfy the following.

� The category T of types forms a locally cartesian closed category.

� The propositional axiom of choice holds for a poset �bration P ! T of

propositions.

� The category T of types is closed under (stable) quotients of propositional

equivalence relations.

This falls so far short of Maietti's requirements as to be almost ridiculous.

Indeed if we did not require P ! T posetal, we would be satis�ed with the

standard �bration T

2

! T for a locally cartesian closed T with coequalizers.

We shall have here to put up with non-standard propositions and we certainly

�nd nothing like a weak classi�er for these propositions. Of course we can

extract some old style metamathematical information out of the models either

directly or in conjunction with standard proof theoretic technique. But I do not

do that and instead concentrate on conveying the basics.

This paper arose out of a talk at a Tutorial Workshop. Such events are always

more Workshop than Tutorial, but I hope to make redress here by giving some

sense of how one thinks about realizability models. Dana Scott �rst promoted

the idea of thinking of realizability in terms of non-standard truth-values. The

obvious analogy is with complete Boolean algebras and Boolean-valued models:

realizability toposes and the like are what you get when you take that analogy

seriously. As they are mathematical structures we can certainly argue about

them `from the outside'. But they can also be regarded as worlds of constructive

mathematics; and we get more insight when we can identify (analogues of)

standard mathematical arguments which are valid in the internal logic. Often

one does not use the full formalism of the internal language; the idea of the

internal argument is usually a su�cient guide. I hope to provide an instructive

example.

2 Realizability: Variations

2.1 Tripos extensions and geometric morphisms

A tripos is a notion of generalized proposition encapsulated in an indexed pre-

ordered set P over a category S which for the purposes of this paper we take to

be the category of sets. The basic notion is due to Pitts [40] and an account of

the basic theory is in [21]. The fundamental properties of interest are as follows.

� Each P(I) models propositional intuitionistic logic. And for u : J ! I in

S, reindexing along u gives a map u

�

: P(I) ! P(J) of preordered sets

preserving the propositional operations.
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� For u : J ! I in S we have adjoints 9

u

a u

�

a 8

u

satisfying the Beck-

Chevalley condition. (The so-called Frobenius reciprocity linking 9 and ^

is automatic.)

� There is a generic proposition 
 2 P(P ). Any generalised proposition

� 2 P(I) is a reindexing of 
 along some I ! P .

Given a tripos P over S one constructs a topos S[P ], which is obtained from

S by formally adding subobjects to sets I 2 S to represent the (equivalence

classes of) elements of P(I), and then adding quotients of equivalence relations.

The objects of the topos S[P ] are of the form (X; j = j) where j = j 2 P(X�X)

is a non-standard equality; elements x of X have a nonstandard extent or degree

of existence jx 2 X j = jx = xj 2 P(X).

Remarks

1. Details are in the original paper [21]. I hope that they are relatively familiar.

The �rst two conditions give the standard notion of a �rst-order hyperdoctrine.

Finer points as to what is needed of the generic object and indeed of the quan-

ti�cation are discussed in Pitts's contribution to the Workshop [41].

2. There other ways to construct realizability toposes. These involve rather

di�erent starting points. Generally the issue of quotients can be handled in

terms of the fundamental notion of the exact completion (see Carboni [6] and

Robinson and Rosolini [45]).

3. As observed independently at least by Scott and Prawitz (see Scott [47]) all

the basic operations of intuitionistic logic can be de�ned in second order logic

using just ! and 8.

5

Hence a tripos is determined up to equivalence of struc-

ture by the interpretation of!, 8 and the generic predicate. This is particularly

useful as realizability provides natural interpretations of just this structure.

As a consequence of this last remark the operations >, ! and 8 play a special

role in work on realizability toposes: one should think of them as the basic

operations and the others as derived operations. To bring this out I shall refer

to >, ! and 8 as the functional operations.

2.2 Geometric morphisms

The notion of geometric morphism of toposes has a natural counterpart for

triposes. Suppose that P and R are triposes. A geometric morphism f : R ! P

consists of an adjoint pair of indexed functors f

�

: R ! P and f

�

: P ! R,

f

�

a f

�

, with f

�

left exact. (For our preordered sets left exact amounts to

preserving > and ^.) A geometric morphism of triposes (f

�

a f

�

) : R ! P

induces a geometric morphism (f

�

a f

�

) : S[R] ! S[P ] of the corresponding

toposes.

5

This is also the basis of the construction of data types in 2nd order impredicative type

theory (System F). The corresponding idea for classical logic has little computational force

and was known to Russell.
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The category of sheaves over a locale is given up to equivalence as a tripos

extension

6

and tripos extensions share some properties with localic extensions.

In particular geometric morphisms between such extensions are localic.

Proposition 2.1 If (f

�

` f

�

) : R ! P is a geometric morphism of triposes,

then the induced geometric morphism (f

�

a f

�

) : S[R]! S[P ] is localic.

Proof. This is immediate as a geometric morphism of toposes (f

�

` f

�

) : F ! E

is localic if and only if every object F 2 F is covered by a subobject of a f

�

E

for some E 2 E .

7

When dealing with realizability triposes it is important to have a formulation

of the left exactness of the inverse image f

�

in terms of the functional operations

(>, ! and 8).

Proposition 2.2 Suppose we have f

�

: R ! P and f

�

: P ! R with f

�

a f

�

.

Then f

�

is left exact (that is, f

�

preserves > and ^ at each I 2 S) if and only

if the entailments

� > ` f

�

(>)

� f

�

(p! f

�

r) ` f

�

p! r

hold in each R(I).

2.3 Inclusions

By analogy with the notion for geometric morphisms, say that a geometric

morphism (f

�

` f

�

) : R ! P of triposes is an inclusion of triposes and that R

is a subtripos of S just when f

�

re
ects the order (equivalently when the counit

f

�

f

�

! 1

R

is an isomorphism). (As usual we shall adopt this terminology even

when we do not literally have R � S.) In the same vein, (f

�

` f

�

) : R ! P is

a surjection just when f

�

re
ects the order (equivalently the unit 1

P

! f

�

f

�

is

an isomorphism). Any geometric morphism factors as a surjection followed by

an inclusion.

If R ! P is an inclusion then it is easy to see that the basic functional

operators of R are the restriction of those in P ; and moreover that R is an

exponential ideal in P in the sense that whenever � 2 P and  2 R then

�!  2 R.

8

Let us say that a tripos R is a functional substructure of a tripos

P just when each R(I) � P(I) and when the basic functional operations of R

are the restrictions of those of P .

It is an elementary but important fact (important especially for realizability

triposes) that if R is a functional substructure of P and an exponential ideal in

6

This goes back to Higgs [15]: the tripos to topos construction mimics the H-valued sets

approach to sheaves.

7

The proof is given in detail in Awodey, Birkedal and Scott [1].

8

If (f

�

` f

�

) : R ! P is an inclusion then f

�

commutes with reindexing u

�

, so taking right

adjoints f

�

commutes with 8

u

. The exponential ideal property familiar from locale theory is

a special case of the corresponding property for sheaves.
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P then R is a subtripos of P . We explain this in some detail as it is an example

of a proof obtained by consideration of some internal mathematics.

The inclusion map i

�

: R ! P respects the basic tripos operations (>, !

and 8). We ask more signi�cantly whether it preserves limits. By this we mean

what is generally meant in the case of �bred categories: h : R ! P preserves

limits just when

� pointwise each h

I

: R(I)! P(I) preserves �nite limits; and

� h commutes with the right adjoints 8

u

.

There is no problem with the second of these, but the �rst is clear only in special

cases. However we can hope!

On this basis we try to construct a left adjoint i

�

: P ! R using the adjoint

functor theorem. In its poset or preordered set interpretation that suggests a

formula of the form

i

�

(p) =

^

fr 2 R j p � i

�

(r)g :

We transform this (as in the coding of algebraic or inductive data types in

second order �-calculus) into the formula

i

�

(p) = 8r 2 R:(p! r)! r

in the tripos logic. (One should read this in an indexed fashion: if p 2 P(I) then

the quanti�cation is over the set R(I).) Formally we calculate this expression

for i

�

(p) in P ; but as R forms an exponential ideal, the answer is in R. Now

we need to check things.

The adjunction i

�

(�) `  if and only if � ` i

�

( ).

This translates as

8r:(�! r)! r `  if and only if � `  

which follows easily by intuitionistic logic. Just for fun we use Paul Taylor's

old proof tree macro to present the proofs. First I give the tree showing that

8r:(�! r)! r `  implies � `  .

(8r:(�! r)! r)!  

[�! r]

1

[�]

2

(! E)

r

(! I)

1

(�! r)! r

(8I)

8r:(�! r)! r

(! E)

 

(! I)

2

�!  
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And now I give the tree showing that � `  implies 8r:(�! r)! r `  .

�!  

[8r:(�! r)! r]

1

(8E)

(�!  )!  

(! E)

 

(! I)

1

(8r:(�! r)! r)!  

The de�nition of a tripos says in e�ect that it is sound for intuitionistic logic;

so these proofs establish the adjunction.

Left exactness i

�

(>) = > and i

�

(�! i

�

 ) ` i

�

�!  .

This translates into the conditions

> ` 8r:(>! r)! r and 8r:((�!  )! r)! r ` (8r:(�! r)! r)!  :

The proof trees demonstrating these are easy and we omit them.

The above discussion proves the following.

Theorem 2.3 If a tripos R is a functional substructure of a tripos P and an

exponential ideal in P, then R is a subtripos of P.

2.4 Basic realizability triposes

We take the point of view of categorical logic: so we use realizability (or other

functional interpretations) to provide a tripos. We recall the basic set-up. Let

(A; �) be a partial combinatory algebra (PCA). We de�ne the indexed family

P(I) of preordered sets as follows. First we de�ne an internal implication on

the power set P (A) by setting

p! q = fc 2 A j 8a 2 p: (c � a) 2 qg 2 P(A)

for each p; q 2 P (A). Then we set P(I) = (P(I);`) = (P (A)

I

;`) where for

�;  2 P (A)

I

we de�ne

� `  if and only if

\

i2I

�(i)!  (i) 6= ; :

The crucial feature of this de�nition is that while the underlying set of P(I) is

given as the I-indexed power P (A)

I

, the preorder is not de�ned pointwise.

The easy properties of this realizability are as follows.

� Each P(I) models minimal logic with implication de�ned pointwise. And

for u : J ! I in S, reindexing along u gives a map u

�

: P(I) ! P(J) of

preordered sets preserving implication.

� For u : J ! I in S we have adjoints 9

u

a u

�

a 8

u

satisfying the Beck-

Chevalley condition. (These are essentially given by union and intersec-

tion; but partial combinatory algebras force us to be a bit more subtle.)

� There is a generic proposition 
 2 P(P (A)) given by 
(p) = p.

By Remark 3 in 2.1, this is enough to generate the full structure of a tripos.
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2.5 Some variations

One should regard realizability as just one kind of functional interpretation. So

one gets variations on the basic idea of the realizability tripos and topos either by

changing the nature of the sets of realizers or by changing the style of functional

interpretation. I list a few of these varieties of functional interpretation.

� Relative realizability. Typically this involves variations on how the pre-

order ` is de�ned.

� Restricted realizability. This involves allowing only a restricted set of

truth-values rather than all of P (A).

� Modi�ed realizability. This is a very natural functional interpretation with

a clear propositions as types 
avour.

� Dialectica interpretations. These are further special forms of functional

interpretation.

� Extensional realizability. Here one enriches the collection of truth values.

� Realizabilities formed by iterations of triposes. (These are of all shapes

and sizes.)

This is certainly not a complete list. Other possibilities have recently been de-

veloped by van Oosten, and some were mentioned in his Workshop contribution

[56] and [57].

In this paper I shall concentrate on the use of restricted realizability and

extensional realizability for giving models for extensional type theory with the

propositional axiom of choice; but in the last section I make some brief comments

on others in the list.

3 Restricted Realizability

3.1 The subtripos

The idea of restricted realizability is to take some subcollection R(I) � P(I),

of the basic collection of truth-values, closed under suitable logical operations.

Such subcollections arise naturally when the PCA (A; �) has some additional

structure respected by application. For example if A is partially ordered and

application � preserves the order, then one could require that the truth-values

 2 R(I) be downwards or upwards closed. Of course the result may be pretty

trivial.

9

However the basic idea is a good one.

10

9

For example if A has a bottom element ? then all nonempty downclosed sets contain ?.

It follows that a proposition �(i) indexed over i 2 I is determined up to equivalence by the

i 2 I for which �(i) is empty/non-empty. So the tripos is equivalent to the standard power

set tripos on S.

10

Naturally it has occured to others: indeed van Oosten [54] contains a more sophisticated

version of the same idea.
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Here I concentrate on one particular kind of example. Suppose that (D; �) is

a Scott domain model of the lambda calculus which for simplicity I take to be a

complete lattice. Again for simplicity I consider only the restricted realizability

tripos

R(D) = f� 2 P (D) j� is closed under _g ;

consisting of the _-closed subsets of D.

11

The basic functional structure (>,

! and 8) is inherited from the standard realizability tripos P , and the generic

proposition is obvious. Much of the following is then true by de�nition.

Proposition 3.1 The restricted realizability tripos R is a functional substruc-

ture of the standard realizability tripos P. And R forms an exponential ideal in

P: if � 2 P and  2 R then �!  2 R.

Proof. The signi�cant point is that R is an exponential ideal. For that note

that we are dealing with Scott domains, so _ on a function space is given point-

wise. Thus if f; g : p! r with r itself _-closed, then f _ g : p! r.

We can now use Theorem 2.3 to deduce the following basic fact about re-

stricted realizability.

Proposition 3.2 The restricted realizability tripos R is a subtripos of the stan-

dard realizability tripos P.

WARNING The naive idea to take for i

�

(p) the closure of p under _ is hope-

lessly wrong. The correct formula

i

�

(p) = 8r 2 R:(p! r)! r

comes from the proof of the theorem.

3.2 Assemblies and modest sets

We recall some special full subcategories of the standard realizability models.

First there are the assemblies. Concretely these are objects (X; j = j) of the

topos S[P ] such that

jx = x

0

j =

(

jx 2 X j = jx

0

2 X j if x = x

0

,

; otherwise.

So assemblies are obtained by just adding subobjects but no quotients. Ab-

stractly the category of assemblies is equivalent to that of the separated objects

for the double negation topology. So they form a re
ective subcategory in the

indexed sense. The de�nition of assemblies still makes sense for restricted re-

alizability: again they form a re
ective subcategory equivalent to that of the

separated objects.

11

It might be computationally more natural to add a density condition.
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Next there are the modest sets.

12

Concretely these are assemblies (X; j = j)

such that

jx = x

0

j =

(

jx 2 X j = jx

0

2 X j if jx 2 X j \ jx

0

2 X j 6= ;,

; otherwise.

Thus modest sets are assemblies where distinct elements have disjoint realizing

sets. Abstractly they are separated objects orthogonal to the codiscrete object

�2. For details see Hyland, Robinson and Rosolini [24] where there is an account

of the internal and indexed category of such orthogonality classes of objects,

the `discrete objects' in any standard realizability topos. Again the de�nition

of modest sets, their identi�cation with the separated objects orthogonal to �2,

and their representation as an internal category carry over without di�culty for

restricted realizability.

13

3.3 Flat sets

The motivation for the objects we now consider comes from experience with

the continuous functionals (Kreisel [29]) or countable functionals (Kleene [27]).

These were �rst proposed in the 1950s in connection on the one hand with

the foundations of analysis

14

, and on the other with generalized recursion the-

ory. Kleene's recursion theoretic interests were taken up in the 1970s; and it

was also recognized around that time that the continuous functionals are the

(global sections of the) higher types in various realizability and sheaf models.

Recently the subject has come back into play in connection with Equilogical

Spaces (Scott [48]) and related categories (see in particular Birkedal, Carboni,

Rosolini and Scott [4]).

For us the main point will be the old but unpublished fact that choice prin-

ciples hold for �nite types in appropriate realizability models based on domains

with continuous functions. Here we will give one considerable generalization.

Recall that the continuous functionals can be represented as quotients of

subspaces of domains as described for example in Hyland [17].

15

In that trea-

ment the domains vary with the types; however using just one universal domain

gives exactly the representation as a modest set in the realizability topos. Now

the equivalence classes in these representations have a particularly simple form:

� if � � D is the equivalence class corresponding to a continuous functional

x, then X � � implies

W

X 2 � and a; b 2 � implies a ^ b 2 �.

12

This is Scott's term. I originally called them e�ective objects as generalizing the e�ective

operations (see Hyland [18]). Most published work on realizability interpretations is concerned

with such obects.

13

Thomas Streicher has observed that the representation as an internal category needs

attention: he has a de�nite negative result for modi�ed realizability. There is a natural notion

of modest set which is not representable as a small internal category.

14

Remarkably Kreisel's paper also gives the �rst account of his modi�ed realizability.

15

The basic phenomenon was �rst observed by Ershov. For a succinct account of his original

perspective see [11].
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Furthermore the equivalence classes are incomparable:

� if �; � � D are the equivalence classes for x 6= y, then a 2 � and b 2 �

imply a and b are incomparable.

There are two sides to this: the equivalence classes are extremely well behaved

(one can relate this to various notions of �lter or limit space); and the induced

topology on the object is something like `Hausdor�'.

We do not need conditions quite as speci�c as these; but consideration of how

the properties of the equivalence classes can be used to prove choice principles

for higher types suggests a number of abstract possibilities. We could consider

objects X (necessarily modest sets) which are any of the following.

� 2-replete, that is orthogonal to all 2-equable maps in the sense of [20];

in the internal logic this means that whenever P ! Q induces an iso-

morphism 2

Q

! 2

P

of decidable subsets, then it induces an isomorphism

X

Q

! X

P

of maps into X .

� 2-separated, that is the canonical map X ! 2

2

X

is monic; in the internal

logic this means that the decidable subsets of X su�ce to distinguish

elements of X .

� Orthogonal (stably) to � the natural open subobject classi�er;

16

in the

internal logic this means that maps from � to X are constant.

Of these possibilities the �rst two are pretty restrictive. The �rst is the most

restrictive: it de�nes what we might reasonably think of as the pro�nite objects,

that is, the closure under (co)�ltered inverse (or projective) limits of the �nite

objects. (Here `�nite' means `decidable �nite'.) The second easily contains the

�rst; but while it is (presumably) less restrictive it still retains some aspects

of total disconnectedness: no reasonable representation of the real numbers can

have enough maps into 2 in a constructive universe such as ours. We concentrate

on the third which is considerably less restrictive: it e�ectively requires just that

the order obtained from the intrinsic � `topology' be discrete.

For the moment let us de�ne an object X to be 
at just when X is a modest

set stably orthogonal to �. (We intend this in an internal or indexed sense.

A discussion of orthogonality from the indexed point of view is in Hyland and

Moggi [22].) The crucial property of 
at objects is as the following.

Proposition 3.3 Let X be 
at. Suppose that a realizing x 2 X and a

0

realizing

x

0

2 X are such that a � a

0

. Then x = x

0

Proof. To represent � we take some non-trivial Scott open subset U � D: and

we let � be the modest set with underlying set f>;?g and with

j> 2 �j = U and j? 2 �j = D � U :

16

Up to isomorphism there is a unique choice of � classifying open subsets of the internali-

sation of D.
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If a � a

0

then there is a unique map �! X tracked by the continuous function

mapping U to a

0

and D�U to a; this map takes ? to x and > to x

0

. But if X

is 
at then this map must be constant. So x = x

0

.

Finally in this section we record some closure properties of our classes of objects.

Recall that as explained in detail in Hyland, Robinson and Rosolini [24], the

modest sets form a small internal (and so indexed) category in the realizability

topos internally complete and cocomplete for separable diagrams.

17

Proposition 3.4 The indexed categories of 2-replete, of 2-separated, and of 
at

modest sets all give re
ective (internal or indexed) subcategories of the (internal

or indexed) category of modest sets. These categories are locally cartesian closed

categories and complete and cocomplete for separable diagrams.

Proof. This proposition is essentially obvious by internal category theory. As

indicated above each of the conditions can be described internally in the sepa-

rated part of the topos. Intuitively the objects satisfying any of the conditions

are closed under limits; so one can use an internal or indexed adjoint functor

theorem to show that the inclusion of the full subcategory has a left adjoint.

One rather crude way of making this precise avoiding internal aspects is ex-

plained in Hyland and Moggi [22]. The local cartesian closedness is also (not

very obviously I am afraid) in [22]. By general category theory, the internal

completeness and cocompleteness follow from the corresponding properties for

modest sets.

3.4 Realizing the axiom of choice

Recall that we are considering the restricted realizability subtripos R of a suit-

able realizability tripos P . We regard S[R] as a subtopos of S[P ], taking objects

from the former but using the logic of the latter. Our basic result is the follow-

ing.

Proposition 3.5 Suppose that X 2 S[R] is separable and Y 2 S[R] is 
at.

Then

8x 2 X:9y 2 Y:�(x; y)! 9f 2 Y

X

:8x 2 X:�(x; f(x))

holds in the logic of S[P ].

Proof. The terminology we use is from [19]. First we consider the general

issue. Typical realizability models fail to satisfy axioms of choice for all but

the simplest modest sets. Suppose that X and Y are modest (or X seprable

and Y modest) and that c realizes 8x 2 X:9y 2 Y:�(x; y). If a realizes x 2 X ,

then c � a represents a pair (c

1

� a; c

2

� a) say with c

1

� a realizing y 2 Y for some

y, and then c

2

� a realizing �(x; y). However if a and a

0

are di�erent codes for

x 2 X , then c

1

� a and c

1

� a

0

may be codes for y 2 Y and y

0

2 Y for distinct

y and y

0

. Thus no function from X to Y need be tracked. However if X is

17

There is a good and more accessible account of the issues in Robinson [44].
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seperable in the subtopos S[R] then we have a _ a

0

also a code for x 2 X . So

we have c

1

� a; c

1

� a

0

� c

1

� (a _ a

0

) all codes for some y 2 Y . Thus there is a

function f : X ! Y tracked and so realized by c

1

; and then c

2

gives a realizer

for �(x; f(x)). This completes the proof.

It is as well to stress the importance of sticking with the logic of S[P ]: it

seems very di�cult to calculate in the logic of S[R]. Note that as a consequence

we do not have a subobject �bration as in the formulation of Maietti's question.

We can consider our model of 
at objects from two points of view. First we

can take the point of view of the topos S[P ].

Theorem 3.6 The collection of 
at objects of S[R] forms an internal locally

cartesian closed category in S[P ] complete and cocomplete for separable dia-

grams; and the propositional axiom of choice holds in S[P ] for all such objects.

Secondly we can relate the 
at objects to Maietti's question.

Theorem 3.7 The collection of 
at objects of S[R] forms a locally cartesian

closed category T. Equipping each A 2 T with its lattice of subobjects in S[P ]

gives a non-standard poset �bration P! T.

� The propositional axiom of choice holds in the poset �bration.

� T has quotients for P-equivalence relations.

18

Proof. For the last point take the quotient in S[P ] and then re
ect.

This example is poor from the point of view of Maietti's question. It seems

that our quotients do not have good stability properties. So while we do model

a weak form of quotient type, we do not model quotient types in the strong

sense of dependent type theory (see Hofmann [16] for details).

4 Extensional Realizability

4.1 The local localic extension

The idea of extensional realizability is old, but should be well known as it

provides about the simplest case of Lawvere's `unity and identity of opposites'

(see for example Lawvere [30]) in the context of realizability toposes. Suppose

that (A; �) is a partial applicative structure. Then we have the standard tripos

P of ordinary realizability:

P(I) = (P (A)

I

;`) :

But we can also consider another tripos:

PER(I) = (PER(A)

I

;`)

18

The treatment of quotients in Jacobs [25] should make clear what is intended.
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whose elements are I-indexed families of the PERs or modest sets of ordinary re-

alizability, and whose preorder is the preorder re
ection of the indexed category

of `I-indexed PERs'.

Let f : PER ! P be de�ned by f(�) = j�j, the �eld of de�nition of the

partial equivalence relation �; and for a subset � of the PCA let d(�) be � with

the discrete equivalence relation, and c(�) be � with the codiscrete or chaotic

equivalence relation.

Proposition 4.1 We have the adjunctions d a f a c and d is left exact. So we

have geometric morphisms of triposes

(d a f) : PER ! P and (f a c) : P ! PER;

and hence we have geometric morphisms of toposes

(d a f) : S[PER]! S[P ] and (f a c) : S[P ]! S[PER]:

Proof. This is more or less obvious.

In fact we can say a bit more about these geometric morphisms.

Proposition 4.2 The geometric morphism (d a f) : PER ! P is connected,

(f a c) : P ! PER is an inclusion and so PER is a local extension of P.

Hence (d a f) : S[PER]! S[P ] is a connected, (f a c) : S[P ]! S[PER] is an

inclusion and so S[PER] is a local (localic) topos over S[P ].

We call the objects of S[PER] in the essential image of d : P ! PER discrete

19

and objects in the essential image of c : P ! PER chaotic. Note that the

chaotic objects form an indexed re
ective subcategory of S[PER].

4.2 Extensional assemblies and modest sets

An extensional assembly is an object (X; j = j) of the topos S[PER] such that

jx = x

0

j =

(

jx 2 X j = jx

0

2 X j if x = x

0

,

; otherwise.

So extensional assemblies are obtained by just adding subobjects correspond-

ing to PER but no quotients. Again abstractly the category of assemblies is

equivalent to that of the separated objects for the double negation topology.

So they form a re
ective subcategory in the indexed sense. With ones bare

hands one can show that the functors c : P ! PER, f : PER ! P and

d : P ! PER preserve assemblies; but it is more instructive to see this as an

abstract consequence of the easy identi�cation of assemblies with separated ob-

jects for the double negation topology. The standard functors �

P

: S ! S[P ]

and � � PER : S ! S[PER] include S in S[P ] and S[PER] respectively as

19

Let us not worry about the clash of terminology.
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sheaves for the double negation topology. And � commutes with our functors

d a f a c in the obvious sense: we have

c:�

P

= �

PER

; f:�

PER

= �

P

; d:�

P

= �

PER

:

Now separated objects are subobjects of sheaves. So as c, f and d are all left

exact, it follows that they map separated objects to separated objects.

An extensional modest set is an extensional assembly (X; j = j) such that

jx = x

0

j =

(

jx 2 X j = jx

0

2 X j if f(jx 2 X j) \ f(jx

0

2 X j) 6= ;,

; otherwise.

In other words, extensional modest sets are extensional assemblies where the

realizing PERs of distinct elements have disjoint �elds of de�nition. Abstractly

they are again separated objects orthogonal to the object �2 2 S[PER]. Let

Mod be the category of modest sets in S[P ] and EMod the category of exten-

sional modest sets in S[PER]. One can see either concretely or by abstract

orthogonality considerations that we have

c : Mod! EMod; f : EMod! Mod d : Mod! EMod :

In particular c : Mod ! EMod embeds the category of modest sets as a re
ec-

tive subcategory of the category of extensional modest sets. Its essential image

are the chaotic modest sets.

Let us conclude this section by recording some closure properties of the

chaotic modest sets.

Proposition 4.3 The indexed category of chaotic modest sets is a re
ective

(internal or indexed) subcategory of the (internal or indexed) category of ex-

tensional modest sets. The category is locally cartesian closed categories and

internally complete and cocomplete for separable diagrams.

Proof. Along the same lines as 3.4.

4.3 Realizing the axiom of choice

Extensional realizability is more familiar than restricted realizability and easy

to calculate with.

Proposition 4.4 Suppose that X is separable chaotic and Y is modest. Then

8x 2 X:9y 2 Y:�(x; y)! 9f 2 Y

X

:8x 2 X:�(x; f(x))

holds in the extensional realizability logic of S[PER].

Proof. Let c realize 8x 2 X:9y 2 Y:�(x; y). So if a realises x 2 X then c � a

represents a pair (c

1

�a; c

2

�a) say with c

1

�a realizing y 2 Y for some y, and then
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c

2

� a realizing �(x; y). But as X is chaotic any two a, a

0

realizing x are related;

so c

1

� a and c

1

� a

0

are related; so as Y is modest y is uniquely determined by x.

Thus there is a function f : X ! Y tracked and so realized by c

1

; then c

2

gives

a realizer for �(x; f(x)). This completes the proof.

Note again that as we use the logic of S[PER], we do not have a subobject

�bration.

While extensional realizability gives us more structure (in the form of the

left adjoint d) than we had for restricted realizability, we do not exploit that to

any great extent. Again we can consider our model of chaotic modest sets from

two points of view. First we can take the point of view of the topos S[PER].

Theorem 4.5 The collection of chaotic modest sets forms an internal locally

cartesian closed category in S[PER] complete and cocomplete for separable di-

agrams; and the propositional axiom of choice holds in S[PER] for all such

objects.

Secondly we can relate the chaotic modest sets to Maietti's question.

Theorem 4.6 The collection of chaotic modest sets forms a locally cartesian

closed category T. Equipping each A 2 T with its lattice of subobjects in S[PER]

gives a non-standard poset �bration P! T.

� The propositional axiom of choice holds in the poset �bration.

� T has stable quotients for P-equivalence relations.

Proof. For the last point take the quotient in S[PER] and then re
ect. As f is

left exact (it has a left adjoint) the stability properties of quotients are inherited

from the extensional modest sets.

5 A Panorama of Functional Interpretation

5.1 Other variations

Relative realizability This idea goes back to Kleene-Vesley [28]. Suppose

that (B; �) is a subPCA of (A; �) that is a subapplicative structure of (A; �)

containing k and s. Then one can de�ne a new preorder ` on P (A)

I

by

� `

(B)

 if and only if

\

i2I

(�(i)!  (i)) \B 6= ; :

The point is that while members of A contribute to the meaning of a proposi-

tion, that proposition is valid just when it has members in B. In the original

Kleene-Vesley case, A is N

N

under Kleene application, and B is the subalgebra

of recursive functions. The general idea is however being exploited for quite

new purposes by Scott's group at Carnegie-Mellon (see Awodey, Birkedal and
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Scott [1]). One should note in particular their extended modal language and

their analysis of the local localic extensions in the Workshop contribution.

Relative realizability provides another exercise in calculations based on in-

tuitions about the internal logic. Let R(I) = (P (B)

I

;`) be the standard real-

izability tripos derived from the PCA (B; �), and Q(I) = (P (A)

I

;`

(B)

) be the

relative realizability tripos derived as above from (B; �) � (A; �). We have an ob-

vious adjoint pair � : R ! Q and � : Q ! R with � a �, where �( ) =  and

�(�) = � \B. This clearly a geometric morphism. What is more, intuitively, �

preserves colimits: 9

u

is essentially given by union and � \ B distributes over

union; preservation of ? is obvious and as _ can be de�ned ad hoc using k and

s to construct codings we could (perhaps not quite convincingly) deal with that

too. So we would expect to be able to de�ne a right adjoint r via the adjoint

functor theorem. This suggests a formula of the form

r =

_

fq j�q �  g :

We transform this (in the style of the coding of coinductive data types) into

r = 9q:q ^ (�q !  ) :

This looks as if it needs interpretation: what is that implication? It could either

be �(�q !

R

 ) where !

R

is the implication in R; or it could be ��q !  

where ! is the implication in Q. These are not the same, but in the context of

the formula it does not matter.

Recall from section 2.3 that a geometric morphism (f

�

a f

�

) : R ! P of

triposes is surjective or a surjection just when f

�

re
ects the preorder: that is,

f

�

(�) ` f

�

( ) implies � a  .

Proposition 5.1 Suppose that (� a �) : Q ! R is a surjective geometric

morphism of triposes such that � preserves existential quanti�cation. Then �

has a right adjoint r.

Proof. Set �� = ] for consistency with [1]. Then ] is left exact and so gives

a monoidal comonad which preserves existential quanti�cation. Arguing in the

second order modal logic we show that ]� `  if and only if � ` [ (the notation

again that of [1]) where we can de�ne

either [ = 9q:q _ ](]q !  ) or [ = 9q:q _ (]q !  ) :

Now for � 2 R, set r� = [��. Restricting above to  = �� and using the

faithfulness of � we deduce �� ` � if and only if � ` r�.

Finally one should note that the global sections of subobject classi�ers in relative

realizability toposes provide all sorts of curious (incomplete) Heyting algebras.

In particular from the Kleene-Vesley set-up one obtains the opposite of the old

lattice of Medvedev degrees of mass problems (see [26]). Hartley Rogers gives

Medvedev's result that the opposite of his lattice is a Heyting algebra. Here is

the reason.
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Modi�ed realizability Kreisel [29] introduced typed modi�ed realizability

quite explicitly as a functional interpretation. The most obvious feature is that

modi�ed realizability refutes Markov's principle (see Troelstra [52] for example).

The untyped form of modi�ed realiability leading to toposes comes originally

from Troelstra [52]. (In the context of this paper a warning is perhaps in order.

Troelstra explains that in the intensional (non-extensional) context (cf HRO and

ICF below) modi�ed realizability validates the propositional axiom of choice;

but that does not hold for the extensional hierarchy.

20

)

An extremely general setting for modi�ed realizability employing a weak-

ening of the notion of a PCA was developed by Hyland and Ong [23]. And

recently Thomas Streicher and Jaap van Oosten have made calculations in this

area (see van Oosten [55] for example). Both van Oosten [56] and [57] and Lon-

gley [31] at the Workshop addressed aspects of the interplay between typed and

untyped realizability. One result which is signi�cant in this contex is a theorem

of Bezem [3] which we brie
y explain. In any standard realizability topos there

is a weakly cartesian closed category whose objects are closed subobjects of the

natural modest set of realizers. Take either the e�ective topos or the topos based

on Kleene's function application. The natural numbers object is an object of

this weakly cartesian closed subcategory so we can take the higher types over it:

we get in a natural way the hereditarily recursive operations HRO in one case

and the intensional continuous functionals ICF in the other. Now we can take

the subquotients HRO

E

and ICF

E

respectively given by hereditarily requiring

extensionality. The standard extensional higher types on the other hand are the

hereditarily e�ective operations HEO and the standard (extensional) continuous

functionals ECF respectively. Then we have the following.

Theorem 5.2 (Bezem) HRO

E

�

=

HEO and ICF

E

�

=

ECF.

Now HRO

E

and ICF

E

correspond to higher types in modi�ed realizability

toposes, while HEO and ECF correspond to higher types in realizability topses.

One would not generally expect these to coincide, so it would be good to un-

derstand better how continuity is used in Bezem's argument.

Dialectica style interpretations I believe that the (idea of the) Dialectica

interpretation also gives rise to a range of realizability-like triposes. One idea

already in Girard [12] is that of giving a Dialectica interpretation to higher order

logic using the impredicative theory of functions F

!

; there is a brief conceptual

analysis in Troelstra [52].

Re
ection on Troelstra's discussion of the various functional interpretations

suggests a simple interpretation of which I give a brief outline. Assume (N; �) is

the standard Kleene applicative system in the convenient form used by Troel-

stra [52] for his version of modi�ed realizability for the theory of species (i.e.

second order constructive sets). So certainly 0 � n = 0 all n, and we may as well

20

On the other hand, one can get some mileage out of the original typed modi�ed

realizability.
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also assume a pairing h ; i in which h0; 0i = 0. Then we consider propositions of

the form

A � U �X

where U;X � N each contain 0. We let D(I) be the collection of I-indexed

families of such structures; and we set

(A(i) � U(i)�X(i)) ` (B(i) � V (i)� Y (i))

just when there exists f; F 2 N where in the usual realizability sense

f : U(i)! V (i) and F : U(i)� Y (i)! X(i) ;

and where for u 2 U(i) and y 2 Y (i),

(u; F � (u; y)) 2 A(i) implies (f � u; y) 2 B(i) :

Jaap van Oosten suggested to me forcibly that I explain the de�nition of the

Heyting implication. It is not quite obvious, and I have the uncomfortable

feeling that when I lectured on this in the Netherlands in 1982, I may not have

had the right de�nition. (I do not have the relevant notes.) So it may be that the

correct de�nition was only given recently by Lars Birkedal and Pino Rosolini!

Anyway here is how to think about it. First we use some standard realizability

notation. For subsets U; V � N we set

U ^ V = fhu; vi ju 2 U; v 2 V g

U _ V = f0g ^ U [ f1g ^ V

U ! V = ff j for all u 2 U; f � u 2 V g:

(In this context the fact that _ is asymmetric as regards 0 is of no import.)

Suggestively let us write > = f0g. Now it is easy to describe a conjunction (or

categorical product) in our preordered set. We can let

(A � U �X) ^ (B � V � Y ) = (A:B � (U ^ V )� (X _ Y ))

where (hu; vi; h0; xi) 2 A:B if and only if (u; x) 2 A while (hu; vi; h1; yi) 2 A:B

if and only if (v; y) 2 B. Heyting implication must provide an adjoint. We set

(B � V � Y )! (C �W � Z) = (

^

C �M � (V ^ Z))

where M consists of those hf; F i with f 2 V ! W , F 2 V ^ Z ! > _ Y

and such that if F � hv; zi = h1; yi (for v 2 V and z 2 Z, and so y 2 Y ) then

(v; y) 2 B implies (f � v; z) 2 C; and where (hf; F i; hv; zi) 2

^

C just if whenever

F � hv; zi = 0 then (f � v; z) 2 C. I leave the reader to work through the details.

The rest of the tripos structure is straightforward. The 8 quanti�cation of

an indexed family (B(i) � V (i) � Y (i)) along the projection I ! 1 can be

described easily. We take

�

B �

_

i

V (i)�

^

i

Y (i) ;
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where

�

B(v; y) if and only if B(i)(v; y) for all i with y 2 Y (i) .

and

W

=

T

and

V

are the inf and sup in the lattice of subsets containing 0.

Finally the generic proposition is the natural indexed family of all truth values.

The beautiful and mathematically natural Diller-Nahm [10] variant of the

Dialectica interpretation and its variants (for which see Diller [9] and Stein [49])

can also be treated as above, and thus give rise to toposes. Generally the inves-

tigations of the M�unster school deserve to be better known and understood: for

example there has been some very interesting work on interpreting constructive

set theory by Burr [5] using an extension of the ideas of Diller-Nahm. We do not

have an explanation of this interpretation in terms of categorical proof theory

and so it presents an interesting challenge to the abstract point of view.

Unfortunately the possibility sketched above is really not faithful to the

original Dialectica interpretation: we have lost the decidability of the basic

predicates. And my memory is that when I looked at this model in the early

1980s I found its properties disappointing, presumably in the sense that one

got little of what one expected to get from a Dialectica interpretation.

21

As

I mentioned earlier there are other possibilities more closely following Girard's

use of typed impredicative functions; these might do better, but I do not know

that they have ever been investigated.

Iterations of triposes These can be used in many ways. Most obviously

they give an elegant account of old proof theoretically motivated variants of

realizability such as q-realizability and mq-realizability (see Troelstra [52]). The

resulting toposes can also be obtained by glueing. Perhaps the most telling use

of iteration is in the proof of Goodman's Theorem (see [13]). Goodman shows

that the propositional axiom of choice is conservative over Heyting Arithmetic

with intensional higher types. Beeson [2] gives an analysis of a proof using

a realizability extension of a sheaf model: the sheaf model is used to create

a generic function N ! N, and then we use Kleene application for functions

recursive in the generic function as oracle. By varying the realizability, Beeson

was able to extend the result to extensional higher types.

Theorem 5.3 (Beeson) Take Heyting arithmetic extended with higher func-

tion types. The propositional axiom of choice together with extensionality at

these higher types is conservative over Heyting arithmetic.

This may relate to Maietti's question: there is a way to force the axiom of choice

over extensional types leaving �rst order properties untouched. It seems possible

that if we understood Beeson's technique from a topos theoretic perspective that

might shed light on the problem.

21

Since I may not have had the right de�nition, this memory may not be very signi�cant!
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5.2 Final thoughts

Perhaps the most natural computational perspective on realizability is that

insight is obtained by varying the underlying PCA. The idea is that distinct

PCAs correspond to distinct computational paradigms and these show up in

the logic of the corresponding topos. Compelling support for this point of

view was provided by Longley's analysis of exact functors between standard

realizability toposes. He gives a convincing computational counterpart in his

notion of applicative morphism (see Longley [32]).

By contrast what I have tried to do here is to give some impression of the

rich panorama of models which can be obtained from the general notion of a

functional interpretation by varying the style and 
avour of the interpretation.

Perhaps it is not clear exactly how to think of this from a computational point

of view; but if we look carefully at examples, something may emerge. At least

the existence of this range of possibilities challenges any simplistic view of the

primacy of the standard realizability models. Anyway there is plenty of work

to do. My �nal hope is to have shown that it will help to treat the models from

an abstract point of view.
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