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Independence of premiss is the axiom scheme

∀x[(¬A(x) → ∃yB(x, y)) → ∃y(¬A(x) → B(x, y))]

The principle is underivable in HA, since it is inconsistent with ECT0. However,
HA is closed under the derived rule: if HA ⊢ ¬A → ∃yB(y), then HA ⊢ ¬A →
B(n), for some natural number n.

A variation is the principle IP0:

∀x(Ax ∨ ¬Ax) ∧ (∀xAx → ∃yBy) → ∃y(∀xAx → By)

Proposition 0.1 IP0 is provable in HA + MP + ECT0.

Proof. Reason in HA. Suppose ∀x(Ax∨¬Ax). Then by ECT0 there is a total
recursive function n such that ∀x(Ax ↔ nx = 0).

Suppose (∀xAx → ∃yBy), that is (∀x(nx = 0) → ∃yBy), then again by
ECT0 there is m such that (∀x(nx = 0) → m0 defined ∧ B(m0)). Let k be an
index of a partial recursive function, such that for a pair 〈a, b〉:

k〈a, b〉 = µx.[ax 6= 0 ∨ T (b, 0, x)]

(T the Kleene T -predicate) Since n is total we have ¬¬(∃x(nx 6= 0) ∨ ∀x(nx =
0)), so ¬¬(∃x(nx 6= 0) ∨ m0 defined); so ¬¬(k〈n, m〉defined), therefore k〈n, m〉
defined by MP. Now: if n(k〈n, m〉) 6= 0 we have ¬∀xAx; and if T (m, 0, k〈n, m〉)
we have ∀xAx → B(U(k〈n, m〉)) (where U is the result extraction function). In
both cases, ∃y(∀xAx → By), as desired.

Another variation is the propositional version of IP, IP∨:

(¬A → B ∨ C) → ((¬A → B) ∨ (¬A → C))

IP∨ is not derivable in the intuitionistic propositional calculus IPC, but HA is
closed under the corresponding derived rule (as follows immediately from the
rule for IP).

A formula Φ(p1, . . . , pn) of IPC with propositional variables p1, . . . , pn is
called effectively realizable if there is a partial recursive function F such that,
whenever A1, . . . , An are sentences of arithmetic and N1, . . . , Nn are the Gödel
numbers of A1, . . . , An, then F (N1, . . . , Nn) is defined and realizes Φ(A1, . . . , An).
Not much is known about the set of effectively realizable propositional formulas:
examples by Rose and Ceitin show that it differs from the set of IPC-provable
formulas, even if one asks F to be constant.

Proposition 0.2 IP∨ is not effectively realizable.

Proof. It is convenient to assume that our coding of pairs and recursive func-
tions is such that 〈0, 0〉 = 0 and 0·x = 0 for all x (a·b denotes the result of
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applying the a-th partial recursive function to b); then 0 realizes every true neg-
ative sentence. Let A(f) be the sentence ∀x∃yT (f, x, y) and let B(f) and C(f)
be negative sentences, expressing “there is an x on which f is undefined, and
the least such x is even” (respectively, odd). Suppose there is a total recursive
function F such that for every f , F (f) realizes

(¬A(f) → B(f) ∨ C(f)) → ((¬A(f) → B(f)) ∨ (¬A(f) → C(f)))

Choose, by the recursion theorem, an index f of a partial recursive function of
two variables, such that:

f ·(g, x) = 0 if there is no w ≤ x witnessing that F (S1

1
(f, g))·g is defined, or if

x is the least such witness, and either (F (S1

1
(f, g))·g)0 = 0 and x is even, or

(F (S1

1
(f, g))·g)0 6= 0 and x is odd;

f ·(g, x) is undefined in all other cases.

Then for every g we have:

1. F (S1

1
(f, g))·g is defined. For otherwise, f ·(g, x) = 0 for all x, hence

S1

1
(f, g) is total, so g realizes

¬A(S1

1
(f, g)) → B(S1

1
(f, g)) ∨ C(S1

1
(f, g))

2. If (F (S1

1
(f, g))·g)0 = 0 then the first number on which S1

1
(f, g) is undefined

is odd, so C(S1

1
(f, g)) holds;

3. If (F (S1

1
(f, g))·g)0 6= 0 then B(S1

1
(f, g)) holds.

Now let, again by the recursion theorem, g be chosen such that for all y:

g·y =

{

〈1, 0〉 if (F (S1

1
(f, g))·g)0 = 0

〈0, 0〉 if (F (S1

1
(f, g))·g)0 6= 0

Then g is a realizer for ¬A(S1

1
(f, g)) → [B(S1

1
(f, g)) ∨ C(S1

1
(f, g))].

However, it is easy to see that F (S1

1
(f, g))·g makes the wrong choice.

Addendum (26-08-04).

Theorem 0.3 The formula

Φ(p) ≡ ((¬¬p → p) → p ∨ ¬p) → ¬¬p ∨ ¬p

is not effectively realizable for Σ0

2
-sentences.

Proof. Let p(e) be the formula ∃x(e·x ↑). We show that there cannot be a
total recursive function F such that for all e, F realizes Φ(p(e)). First a few
easy preliminary observations:

a) Suppose p(e) is false. Then every number realizes ¬¬p(e) → p(e) and
every number realizes ¬p(e), so a number k realizes

(¬¬p(e) → p(e)) → p(e) ∨ ¬p(e)

if and only if k codes a total recursive function such that (k·x)0 = 1 for
all x.
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b) Suppose p(e) is true. Then every number realizes ¬¬p(e), and a number m

realizes ¬¬p(e) → p(e) if m codes a total function and for all x, e·(m·x)0
is undefined and (m·x)1 realizes this fact; hence k realizes

(¬¬p(e) → p(e)) → p(e) ∨ ¬p(e)

if and only if for all such m, (k·m)0 = 0 and (k·m)1 = 〈a, b〉 where e·a is
undefined and b realizes this fact.

Now assume, for a contradiction, that F is a total recursive function such that
for all e, F (e) realizes Φ(p(e)).
We define by the recursion theorem, a code e of a partial recursive function of
2 variables as follows:
We reserve Y (e, k) for the least computation (if any) which witnesses that
F (S1

1
(e, k))·k is defined and (F (S1

1
(e, k))·k)0 6= 0.

Let e·(k, x) = 0 if not (Y (k, e) < x). If Y (e, k) < x, put 0 if for some
m ≤ Y (e, k), x = (m·0)0; and undefined else.

One checks that this is a valid definition. Now with e as just defined, again
apply the recursion theorem to find a code k such that:

k·m = 〈1, 0〉 if not (Y (k, e) < m). Otherwise, output 〈0, m·0〉.

First, I claim that Y (e, k) exists. For otherwise, e·(k, x) = 0 always and k·m =
〈1, 0〉 always, so ¬p(S1

1
(e, k)) holds and k realizes the premiss of Φ(p(S1

1
(e, k)))

by remark a); so we should have that F (S1

1
(e, k))·k should realize ¬¬p ∨ ¬p;

contradiction.
Since (F (S1

1
(e, k))·k)0 6= 0, hence Y (e, k) exists, we see that e·(k, x) is only

defined for at most finitely many x ≥ Y (e, k). So p(S1

1
(e, k)) is true, and we will

get a contradiction with the assumption on F (since it clearly makes the wrong
choice), if we can show that k realizes the premiss of Φ(p(S1

1
(e, k))).

Suppose m realizes ¬¬p(S1

1
(e, k)) → p(S1

1
(e, k)). Then by b), certainly

(m·0)0 is defined and S1

1
(e, k)·(m·0)0 is undefined; it follows from the definition

of e that m cannot be a number ≤ Y (e, k). But if m > Y (e, k), it follows from
the definition of k that k·m realizes p(S1

1
(e, k))∨¬p(S1

1
(e, k)). We conclude that

k does realize the required formula.
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