Realizability and Independence of Premiss — a note by Jaap van Oosten,
June 15, 2004

Independence of premiss is the axiom scheme
Ve[(-A(z) = 3yB(z,y)) — Fy(-A(z) — B(z,y))]

The principle is underivable in HA, since it is inconsistent with ECT(. However,
HA is closed under the derived rule: if HA - -A — JyB(y), then HA - -A —
B(n), for some natural number n.

A variation is the principle IP:

Ve(Az V —Az) A (VzAx — JyBy) — Jy(VxAx — By)

Proposition 0.1 IPg is provable in HA + MP + ECT).

Proof. Reason in HA. Suppose Vz(Az V - Ax). Then by ECT there is a total
recursive function n such that Vo(Az < nz = 0).

Suppose (VeAx — JyBy), that is (Vz(nz = 0) — JyBy), then again by
ECTj there is m such that (Vaz(nz = 0) — m0 defined A B(m0)). Let k be an
index of a partial recursive function, such that for a pair {(a, b):

k(a,b) = px.Jax # 0V T(b,0,x)]

(T the Kleene T-predicate) Since n is total we have =—(Jz(nz # 0) V Va(nz =
0)), so ==(3z(nx # 0) V m0 defined); so == (k(n, m)defined), therefore k(n,m)
defined by MP. Now: if n(k(n,m)) # 0 we have =VzAz; and if T'(m, 0, k(n, m})
we have Ve Az — B(U(k{n,m))) (where U is the result extraction function). In
both cases, Jy(Vx Az — By), as desired. [|

Another variation is the propositional version of IP, IPy:
(rA—-BVvV(C)—= (A= B)V(—A— ()

IPy, is not derivable in the intuitionistic propositional calculus IPC, but HA is
closed under the corresponding derived rule (as follows immediately from the
rule for IP).

A formula ®(p1,...,p,) of IPC with propositional variables p1,...,p, is
called effectively realizable if there is a partial recursive function F' such that,
whenever Ay, ..., A, are sentences of arithmetic and Ny,..., N, are the Godel
numbers of Ay, ..., A,, then F(Ny,...,N,)is defined and realizes ®(Aq, ..., A,).
Not much is known about the set of effectively realizable propositional formulas:
examples by Rose and Ceitin show that it differs from the set of IPC-provable
formulas, even if one asks F' to be constant.

Proposition 0.2 1P\, is not effectively realizable.

Proof. It is convenient to assume that our coding of pairs and recursive func-
tions is such that (0,0) = 0 and 0-z = 0 for all = (a-b denotes the result of

applying the a-th partial recursive function to b); then 0 realizes every true neg-
ative sentence. Let A(f) be the sentence Va3yT (f, z,y) and let B(f) and C(f)
be negative sentences, expressing “there is an x on which f is undefined, and
the least such z is even” (respectively, odd). Suppose there is a total recursive
function F' such that for every f, F(f) realizes

(=A(f) = BV () — (FA) = B(f) vV (=A(f) — C(f)))

Choose, by the recursion theorem, an index f of a partial recursive function of
two variables, such that:

f-(g,x) = 0 if there is no w < x witnessing that F(1(f,9))-g is defined, or if
x is the least such witness, and either (F(S$(f,g))-9)o = 0 and z is even, or
(F(S1(f,9))-9)0 # 0 and x is odd;

f+(g,) is undefined in all other cases.

Then for every g we have:

1. F(S1(f,9))-g is defined. For otherwise, f-(g,z) = 0 for all x, hence
Si(f,g) is total, so g realizes

A(S1(f,9)) — B(Si(f.9)) v C(Si(f.9))

2. If (F(S1(f,9))-g)o = 0 then the first number on which S1(f, g) is undefined
is odd, so C(S1(f,g)) holds;
3. 16 (F(S}(f, 9))-9)0 # 0 then B(SL(/, 9)) holds.

Now let, again by the recursion theorem, g be chosen such that for all y:

y={ L9 HES N =0
0.0) i (F(S}(7.9)g)o #0

Then g is a realizer for ~A(S1(f,9)) — [B(Si(f,9)) Vv C(Si(f,9))].
However, it is easy to see that F(Si(f,g))-g makes the wrong choice.

Addendum (26-08-04).
Theorem 0.3 The formula

@(p) = ((—|—\p — p) —pV —|p) — —=p Vo op
is not effectively realizable for YX3-sentences.

Proof. Let p(e) be the formula Jx(e-x T). We show that there cannot be a
total recursive function F such that for all e, F' realizes ®(p(e)). First a few
easy preliminary observations:

a) Suppose p(e) is false. Then every number realizes =—p(e) — p(e) and
every number realizes —p(e), so a number k realizes

(==p(e) — ple)) — ple) V —p(e)

if and only if k codes a total recursive function such that (k-x)g = 1 for
all z.

b) Suppose p(e) is true. Then every number realizes ——p(e), and a number m
realizes —=—p(e) — p(e) if m codes a total function and for all z, e-(m-x)o
is undefined and (m-x); realizes this fact; hence k realizes

(==p(e) — p(e)) — ple) V —p(e)

if and only if for all such m, (k-m)o = 0 and (k-m)1 = {(a,b) where e-a is
undefined and b realizes this fact.

Now assume, for a contradiction, that F' is a total recursive function such that
for all e, F(e) realizes ®(p(e)).
We define by the recursion theorem, a code e of a partial recursive function of
2 variables as follows:
We reserve Y (e, k) for the least computation (if any) which witnesses that
F(Si(e, k))-k is defined and (F(S] (e, k))-k)o # 0.

Let e-(k,z) = 0 if not (Y(k,e) < z). If Y(e,k) < z, put 0 if for some
m < Y(e, k), z = (m-0)p; and undefined else.

One checks that this is a valid definition. Now with e as just defined, again
apply the recursion theorem to find a code k such that:

k-m = (1,0) if not (Y (k,e) < m). Otherwise, output (0, m-0).

First, I claim that Y (e, k) exists. For otherwise, e:(k,z) = 0 always and k-m =
(1,0) always, so =p(S7 (e, k)) holds and k realizes the premiss of ®(p(S] (e, k)))
by remark a); so we should have that F(Si(e,k))-k should realize =—p \V —p;
contradiction.

Since (F(S] (e, k))-k)o # 0, hence Y (e, k) exists, we see that e-(k,z) is only
defined for at most finitely many z > Y (e, k). So p(St(e, k)) is true, and we will
get a contradiction with the assumption on F' (since it clearly makes the wrong
choice), if we can show that k realizes the premiss of ®(p(S] (e, k))).

Suppose m realizes =—p(St(e,k)) — p(Si(e,k)). Then by b), certainly
(m-0)g is defined and St (e, k)-(m-0)o is undefined; it follows from the definition
of e that m cannot be a number < Y (e, k). But if m > Y (e, k), it follows from
the definition of k that k-m realizes p(S] (e, k))V —p(Si(e, k)). We conclude that
k does realize the required formula. [|

