Realizability and Independence of Premiss – a note by Jaap van Oosten, June 15, 2004

Independence of premiss is the axiom scheme

$$\forall x [(\neg A(x) \to \exists y B(x, y)) \to \exists y (\neg A(x) \to B(x, y))]$$

The principle is underivable in **HA**, since it is inconsistent with ECT₀. However, **HA** is closed under the derived rule: if $\mathbf{HA} \vdash \neg A \rightarrow \exists y B(y)$, then $\mathbf{HA} \vdash \neg A \rightarrow B(n)$, for some natural number n.

A variation is the principle IP_0 :

$$\forall x (Ax \lor \neg Ax) \land (\forall x Ax \to \exists y By) \to \exists y (\forall x Ax \to By)$$

Proposition 0.1 IP₀ is provable in $HA + MP + ECT_0$.

Proof. Reason in **HA**. Suppose $\forall x(Ax \lor \neg Ax)$. Then by ECT₀ there is a total recursive function n such that $\forall x(Ax \leftrightarrow nx = 0)$.

Suppose $(\forall xAx \to \exists yBy)$, that is $(\forall x(nx = 0) \to \exists yBy)$, then again by ECT₀ there is *m* such that $(\forall x(nx = 0) \to m0 \text{ defined } \land B(m0))$. Let *k* be an index of a partial recursive function, such that for a pair $\langle a, b \rangle$:

$$k\langle a,b\rangle = \mu x [ax \neq 0 \lor T(b,0,x)]$$

(*T* the Kleene *T*-predicate) Since *n* is total we have $\neg\neg(\exists x(nx \neq 0) \lor \forall x(nx = 0))$, so $\neg\neg(\exists x(nx \neq 0) \lor m0$ defined); so $\neg\neg(k\langle n, m\rangle defined)$, therefore $k\langle n, m\rangle$ defined by MP. Now: if $n(k\langle n, m\rangle) \neq 0$ we have $\neg\forall xAx$; and if $T(m, 0, k\langle n, m\rangle)$ we have $\forall xAx \to B(U(k\langle n, m\rangle))$ (where *U* is the result extraction function). In both cases, $\exists y(\forall xAx \to By)$, as desired.

Another variation is the propositional version of IP, IP_{\vee} :

$$(\neg A \to B \lor C) \to ((\neg A \to B) \lor (\neg A \to C))$$

 IP_{\vee} is not derivable in the intuitionistic propositional calculus IPC, but **HA** is closed under the corresponding derived rule (as follows immediately from the rule for IP).

A formula $\Phi(p_1, \ldots, p_n)$ of IPC with propositional variables p_1, \ldots, p_n is called *effectively realizable* if there is a partial recursive function F such that, whenever A_1, \ldots, A_n are sentences of arithmetic and N_1, \ldots, N_n are the Gödel numbers of A_1, \ldots, A_n , then $F(N_1, \ldots, N_n)$ is defined and realizes $\Phi(A_1, \ldots, A_n)$. Not much is known about the set of effectively realizable propositional formulas: examples by Rose and Ceitin show that it differs from the set of IPC-provable formulas, even if one asks F to be constant.

Proposition 0.2 IP_{\vee} is not effectively realizable.

Proof. It is convenient to assume that our coding of pairs and recursive functions is such that $\langle 0, 0 \rangle = 0$ and $0 \cdot x = 0$ for all x ($a \cdot b$ denotes the result of applying the *a*-th partial recursive function to *b*); then 0 realizes every true negative sentence. Let A(f) be the sentence $\forall x \exists y T(f, x, y)$ and let B(f) and C(f)be negative sentences, expressing "there is an *x* on which *f* is undefined, and the least such *x* is even" (respectively, odd). Suppose there is a total recursive function *F* such that for every *f*, F(f) realizes

$$(\neg A(f) \to B(f) \lor C(f)) \to ((\neg A(f) \to B(f)) \lor (\neg A(f) \to C(f)))$$

Choose, by the recursion theorem, an index f of a partial recursive function of two variables, such that:

 $f \cdot (g, x) = 0$ if there is no $w \leq x$ witnessing that $F(S_1^1(f, g)) \cdot g$ is defined, or if x is the least such witness, and either $(F(S_1^1(f, g)) \cdot g)_0 = 0$ and x is even, or $(F(S_1^1(f, g)) \cdot g)_0 \neq 0$ and x is odd;

 $f \cdot (g, x)$ is undefined in all other cases.

Then for every g we have:

1. $F(S_1^1(f,g)) \cdot g$ is defined. For otherwise, $f \cdot (g,x) = 0$ for all x, hence $S_1^1(f,g)$ is total, so g realizes

 $\neg A(S_1^1(f,g)) \to B(S_1^1(f,g)) \lor C(S_1^1(f,g))$

- 2. If $(F(S_1^1(f,g)) \cdot g)_0 = 0$ then the first number on which $S_1^1(f,g)$ is undefined is odd, so $C(S_1^1(f,g))$ holds;
- 3. If $(F(S_1^1(f,g)) \cdot g)_0 \neq 0$ then $B(S_1^1(f,g))$ holds.

Now let, again by the recursion theorem, g be chosen such that for all y:

$$g \cdot y = \begin{cases} \langle 1, 0 \rangle & \text{if } (F(S_1^1(f, g)) \cdot g)_0 = 0\\ \langle 0, 0 \rangle & \text{if } (F(S_1^1(f, g)) \cdot g)_0 \neq 0 \end{cases}$$

Then g is a realizer for $\neg A(S_1^1(f,g)) \rightarrow [B(S_1^1(f,g)) \lor C(S_1^1(f,g))].$

However, it is easy to see that $F(S_1^1(f,g)) \cdot g$ makes the wrong choice.

Addendum (26-08-04).

Theorem 0.3 The formula

$$\Phi(p) \equiv ((\neg \neg p \to p) \to p \lor \neg p) \to \neg \neg p \lor \neg p$$

is not effectively realizable for Σ_2^0 -sentences.

Proof. Let p(e) be the formula $\exists x(e \cdot x \uparrow)$. We show that there cannot be a total recursive function F such that for all e, F realizes $\Phi(p(e))$. First a few easy preliminary observations:

a) Suppose p(e) is false. Then every number realizes $\neg \neg p(e) \rightarrow p(e)$ and every number realizes $\neg p(e)$, so a number k realizes

$$(\neg \neg p(e) \to p(e)) \to p(e) \lor \neg p(e)$$

if and only if k codes a total recursive function such that $(k \cdot x)_0 = 1$ for all x.

b) Suppose p(e) is true. Then every number realizes $\neg \neg p(e)$, and a number m realizes $\neg \neg p(e) \rightarrow p(e)$ if m codes a total function and for all x, $e \cdot (m \cdot x)_0$ is undefined and $(m \cdot x)_1$ realizes this fact; hence k realizes

$$(\neg \neg p(e) \to p(e)) \to p(e) \lor \neg p(e)$$

if and only if for all such m, $(k \cdot m)_0 = 0$ and $(k \cdot m)_1 = \langle a, b \rangle$ where $e \cdot a$ is undefined and b realizes this fact.

Now assume, for a contradiction, that F is a total recursive function such that for all e, F(e) realizes $\Phi(p(e))$.

We define by the recursion theorem, a code e of a partial recursive function of 2 variables as follows:

We reserve Y(e, k) for the least computation (if any) which witnesses that $F(S_1^1(e, k)) \cdot k$ is defined and $(F(S_1^1(e, k)) \cdot k)_0 \neq 0$.

Let $e \cdot (k, x) = 0$ if not (Y(k, e) < x). If Y(e, k) < x, put 0 if for some $m \leq Y(e, k), x = (m \cdot 0)_0$; and undefined else.

One checks that this is a valid definition. Now with e as just defined, again apply the recursion theorem to find a code k such that:

 $k \cdot m = \langle 1, 0 \rangle$ if not (Y(k, e) < m). Otherwise, output $\langle 0, m \cdot 0 \rangle$.

First, I claim that Y(e, k) exists. For otherwise, $e \cdot (k, x) = 0$ always and $k \cdot m = \langle 1, 0 \rangle$ always, so $\neg p(S_1^1(e, k))$ holds and k realizes the premises of $\Phi(p(S_1^1(e, k)))$ by remark a); so we should have that $F(S_1^1(e, k)) \cdot k$ should realize $\neg \neg p \lor \neg p$; contradiction.

Since $(F(S_1^1(e,k))\cdot k)_0 \neq 0$, hence Y(e,k) exists, we see that $e \cdot (k,x)$ is only defined for at most finitely many $x \geq Y(e,k)$. So $p(S_1^1(e,k))$ is true, and we will get a contradiction with the assumption on F (since it clearly makes the wrong choice), if we can show that k realizes the premises of $\Phi(p(S_1^1(e,k)))$.

Suppose *m* realizes $\neg \neg p(S_1^1(e,k)) \rightarrow p(S_1^1(e,k))$. Then by b), certainly $(m \cdot 0)_0$ is defined and $S_1^1(e,k) \cdot (m \cdot 0)_0$ is undefined; it follows from the definition of *e* that *m* cannot be a number $\leq Y(e,k)$. But if m > Y(e,k), it follows from the definition of *k* that $k \cdot m$ realizes $p(S_1^1(e,k)) \vee \neg p(S_1^1(e,k))$. We conclude that *k* does realize the required formula.