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1 Introduction

A formalized version of Kleene realizability for intuitionistic first-order arith-
metic HA was axiomatically characterized by Troelstra (see [2](3.2)) as fol-
lows: for an arbitrary HA-sentence ¢, HA F Jz(z realizes ¢) if and only if
HA + ECTy + ¢.

Many notions of realizability have been characterized in this fashion: see
[2] or [3] for details. For some notions, for example extensional realizabil-
ity, it is necessary to pass to an extension of HA.: realizability in HA is
characterized by deducibility from certain axioms in an extension of HA.

The present note is concerned with modified realizability, seen as inter-
pretation for HA. From semantical considerations (see [4]) it follows that
this interpretation can be constructed as a combination of three ingredients:

i) Kleene realizability;
ii) Kripke forcing over a 2-element linear order P;
iii) The Friedman translation ([1]).

This will be shown in section 2. The Friedman translation (in the way we use
it) introduces a new propositional constant V'; hence we move to an extension
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HA (V) of HA. We must then define Kleene realizability and forcing for the
extended language. Now let (¢)y be the result of the Friedman translation
applied to ¢. We obtain, in HA | that the sentence saying that ¢ is modified-
realizable, is equivalent to the sentence which says that the statement “(¢)y
is Kleene-realizable” is forced in P (see section 2).

Therefore, the following programme suggests itself: since we know how
to characterize Kleene realizability, if we can characterize also the forcing
interpretation, we might be able to put these characterizations together in
order to obtain our desired result.

However, in this paper we see that this straightforward approach runs
into an obstacle, in a way the author thinks is surprising. A more refined
analysis yields a partial result: instead of an equivalence, we only obtain
one implication. We formulate a conjecture under which the partial result
does give a complete characterization.

2 The theory HA(V), forcing and realizability

HA is the theory of first order intuitionistic arithmetic; we assume function
symbols present for each definition of a primitive recursive function, as well
as the axioms corresponding to the definitions. There are induction axioms
for the full language.

Notation. As in [2](1.3), the symbol T' denotes the standard Kleene com-
putation predicate, and U the result-extracting function. We write zy for
the result (if any) of the z-th partial recursive function applied to y, so
xy ~ U(pz.T(x,y,2)); xy| abbreviates 32T (x,y, z).

We assume primitive recursive coding of pairs (-, -) with decodings py, p1,
satisfying the axioms = = (pox, p1x), polx,y) = x, p1(z,y) = y.

Furthermore we assume that our coding of pairs and partial recursive
functions is done in such a way that 0 = (0,0) and for all z, 0z = 0.

We use the notation Az.t for a standard index of the partial recursive
function sending x to t.

We refer again to [2](1.3), for details concerning the formalization of
elementary recursion theory (including the recursion theorem) in HA.

We recall the definition of modified realizability for HA: for each HA-
formula ¢, new formulas x € D, and « mr ¢ (“z modified-realizes ¢”) are
defined, where x is a variable not occurring in ¢.

Type formulas. The basic type o is the type of natural numbers; if o and
T are types, then so are 0 — 7 and o x 7. For a type ¢ and a variable x, we



have a formula = € o, defined by induction on o, as follows.

reg = r=2
x€(c—71) = Yylyc€o—aylNzyer)
TEOCXT = ppr€ocApix €T

For any formula ¢, D, is the type of ¢, defined as follows:

Dp = o if P is atomic
Dypny = Dy x Dy
Doy = Dy — Dy
Dyypy = 0— Dy,
Dﬂmtp = o0X Dcp

Note that D, depends on the syntactic structure of ¢ only.

The formulas x mr ¢ are defined as follows:

xmr P = P for atomic P
rmr o AP = (por mr @) A (pre mr i)
zmro—1Y = x€ Doy AVy(y mr p — zy mr )
rmr Vyp = x € Dyy, AVy(zy mr ¢(y))
xmr Jyp = pix mr p(pox)

Note that  mr ¢ implies € D, for all .

Apart from modified realizability we shall also use Kleene realizability, de-
noted = r ¢. See [2](3.2), for details.

Extend the language of HA by a propositional constant (0-ary relation
symbol) V. The theory HA (V) extends HA in the extended language; the
only extra axioms are induction axioms for the full extended language.

We consider the following translations between HA and HA(V):

1. The Friedman translation (-)y from HA to HA(V): for P atomic,
(P)y = PVV and (-)y commutes with all logical structure.

2. The “internal forcing” translations 0 |—¢ and 1 |~¢ from HA(V) to
HA.:
O|-P =1|-P = P if Pis an atomic HA-formula;
OV = L1 |-V =T,
1 | commutes with all logical operations;

0 |- commutes with all logical operations except —;
OFe—=9=0e = 0F)AQA e = 1[-v)



The reader should note that this is a formalized special case of Kripke forcing
(on a 2-element poset).
Furthermore, we extend Kleene realizability to HA (V) by the atomic
clause:
zrV =V

First, we remark that Troelstra’s characterization of Kleene realizability goes
through without problems. The class of almost negative HA(V)-formulas
is defined by: every quantifier-free HA (V')-formula is almost negative; if ¢
is a quantifier-free HA-formula, then dxy is almost negative; the almost
negative formulas are closed under A, —,V.

ECTYV is the axiom scheme:
Va(A(x) — JyB(z,y)) — J2Va(A(x) — zz| A B(zx, (22)))

where A(z) must be almost negative.

By a trivial adaptation of the methods of [2](3.2) we obtain the following
result.

Lemma 2.1 The following statements hold for an arbitrary HA(V')-formula
©:

HA(V)F¢ = HA(V)F Jz(zr @)
HA(V)+ ECTV F ¢ < Jx(z 1 ¢)
HA(V)F3z(zr¢) & HA(V)+ ECTV F o

Next, let us note some basic properties of the translations (-)y and |-,
which all follow by straighforward induction.

Lemma 2.2 The following properties hold for (-)y and |:
i) HAV)EV = (o)v

it) HAFp = HAV)E (p)v

iii) HA(V)F¢o = HAFO |-¢

w) HAF (0 [=¢) = (1 [-¢)

v) HAF @< (0[=(p)v)

vi) HAF (¢ < (0 [=9) Alp = (1 [-»))



where in i),11),v) and vi), ¢ is an HA-formula, and in iii) and iv), ¢ is an
HA (V)-formula.

Now we relate modified realizability for HA to Kleene realizability for
HA(V) via (-)y and |-, obtaining the equivalence mentioned in the In-
troduction:

Lemma 2.3 For every HA-formula o the following holds:
HA  3z(z mr ¢) < 3z(0 [~z r (¢)v)

Proof. For every HA-formula ¢ there are HA-terms s, and £, containing
at most the free variables of ¢, such that the following are provable in HA:

Va(z mr ¢ — tox] A0 [—tox t (9)v))
Va(x € Dy — tox] A(1 |—toz v (9)v))
Vo ((0 [z 1 (p)v) = Spx] A spx mr @)
Vo ((1 |-z v (¢)v) = sexl Asex € Dy)

The definition of the terms s, and ¢, is by recursion on ¢, and completely
routine. [ |

Our final result in this section is a characterization of the HA (V')-formulas
¢ for which HA + 0 |~¢. Consider the following axiom schemes of HA (V')-
formulas:

G V=9 =

Hp—=@VV)—=(p—9)VvV

K Vz(o(x) VV) — (Vep(z)) VV
where all formulas ¢, 1 and ¢(z) are supposed to be HA-formulas.
Lemma 2.4

i) For every instance ¢ of either G, H or K we have

HAF 0 |6

ii) For every HA(V)-formula ¢ we have

HA(V)+ G H K¢ < (0]=9)V((1[=-0)AV)



iii) For every HA(V)-formula ¢ we have

HAFO |-¢ < HA(V)+ G, HKF ¢

Proof. Statement i) is a straightforward verification.
Statement ii) is proved by induction on ¢. By way of example we do the
implication case ¢ — 1. By induction hypothesis, ¢ — 1 ie equivalent to

[0 [=0) V(A [=o) AVI] = [0 [=9) V(1 [=¢) A V)]

By propositional logic and the valid implication 0 |¢ — 1 |¢, this is
equivalent to

(0 [=¢) = (1 =¥DANO [=¢) = (0 [FL)VIDAA =¢) = (V = (1 =)

Applying H and G to the second and third conjunct, we get
(0 J=¢) = (1 l=¢) A0 [=¢) = (0 [=9) VV) AL [=¢) — (1 [=¢))

which is easily seen to be equivalent to

Ol=¢ =) v(A[-¢—9)AV)

In a similar way, the scheme K is applied in the induction step for V.

Finally, statement iii) follows from i) and ii): suppose HA F 0 |[—¢. It is
then immediate from ii) that HA(V) + G, H, K + ¢. The converse follows
from 1). ||

3 Failure of a direct approach

Lemmas 2.3, 2.4 and 2.1 suggest that one could axiomatize mr-realizability
as follows:
Suppose ¢ is mr-realizable. Then by 2.3,

HAFO |32 (2 1 (o))
By 2.4,
HA(V)+ G, H, K+ 3z (zr (¢)y)

so by 2.1,
HA(V)+G,H,K + ECTV I (¢)v

Suppose F' is a conjunction of instances of ECTV such that HA(V) +
G,H K+ F F (¢)y. Then HA(V) + G,H, K + F — (¢)v. By 24,



HA F 0 |-(F — (¢)y). Since 1 |—(¢)y is always true and 0 ||—(¢)y is
(in HA) equivalent to ¢, HA + (0 |[—F) F ¢. So we obtain

HA + (0 |-ECTV)F ¢
The converse could be proved, if one knew that the implication
HAFO|-¢ = HAFO |-3z(zr o)

was true.

The following result shows that this is not the case, and that the rea-
soning above is, actually, completely uninformative.

Proposition 3.1
i) HA(V)+GF3zaxr G

ii) HA(V)+G+H+ ECTV FV,
hence HA + (0 |- ECTYV) is inconsistent;

iti) The implication:

HAFO|F¢ = HAFO |[-3z(zr ¢)
does not hold;

iv) There is an instance F' of the scheme H such that

HA(V)+ G, H,K t/ 3z(x r F)

Proof. i): If yr (V — ¢) with ¢ V-free, then V — (y0] A 40 r ¢), since
V — 0r V. An application of G yields y0| A y0 r ¢. Hence Ax.z0 realizes
every instance of G.

ii): We reason in HA(V')+G, H+ ECTV. The following sentence is (equiv-
alent to) an instance of H:

(1) Ve[(Fz(ex =0) = V) — ((—Fz(ex = 0)) V V)]
Now Jz(ex = 0) — V is almost negative; hence ECTV yields

(2) JzVel[(Fz(ex =0) = V) — ze|A
(ze =0 — —Jx(ex = 0))A
(ze #0— V)]

Take a z satisfying (2). By the recursion theorem, let e be such that

(3) Vy(ey =~ ze)



Now assume V. Then Jz(ex = 0) — V, so (2) gives
(4) zel N(ze=0— —Fz(ex =0)) A (22 #0— V)
Clearly, ze = 0 gives a contradiction with (3), hence ze # 0.
We have proved: V — ze # 0. By G, ze # 0. Now (3) gives =3Iz (ex = 0),
so e satisfies the hypothesis of (2). By the conclusion of (2),
() V

as claimed.

The inconsistency of HA + (0 |—-ECTV) now follows easily.
iii): Let F' be the instance of H, chosen in the proof of ii). Clearly HA +
0 |-F. Also, we have

HA(V)+ ECTV+GFF -V
By i), the theory HA (V) + ECTV + G is sound for r-realizability, hence
HAV)+GF Jz(xr (F—V))
Whence HA F 0 |~ (3z(xz v (F — V))), so
HAF[0|-3z(xr F)] - [0 |-3z.zr V]
Therefore, HA + =(0 ||-3z.z r F).
iv) is clear from iii). |

Remark. Just to avoid any confusion: the system HA(V) + ECTV +
G,H, K is as consistent as HA is; the translation 1 |—(—) turns G, H, K
into tautologies and FCTV into the scheme ECTy of [2].

4 A Partial Characterization

In section 3 we considered the scheme ECTV which characterizes all realiz-
able HA (V')-formulas; actually, we are more interested in realizable formulas
of the form (¢)y. We shall work with the theory HA (V) + G which is sound

for realizability. Moreover,
HA(V)+GF3z(zr (¢)v) = HAF Jz(z mr ¢)

Hence, if we can characterize over HA(V') 4+ G the realizable formulas of
form (¢)y we have a partial result on the modified-realizable formulas.

First, we simplify = r (p)y somewhat. Define, for HA-formulas ¢, the
formula x 1" ¢ by: z1/ P = PV V, for atomic P; and 1’ has the same
clauses as Kleene realizability.



Lemma 4.1 For all HA-formulas ¢,
HA(V)+GF3z(z v ()v) < Jz(z 1 »)
Proof. Trivial. [ |

Definition 4.2 The class of V-Harrop formulas is defined as follows: PV V
is V-Harrop, if P is an atomic HA-formula; the V-Harrop formulas are
closed under A and V; and if ¢ is V-Harrop and 1 is an arbitrary HA (V)-
formula, then ¢ — ¢ is V-Harrop.

Note at once, that HA(V) =V — ¢, for each V-Harrop formula ¢.

Lemma 4.3 For each HA-formula @, there is an almost negative V -Harrop
formula A(z, ) such that the equivalence

(x) Vo(zt' ¢ <z € Dy, ANA(z,p))
is provable in HA(V) + G.

Proof. By induction on ¢. If ¢ is an atomic formula P, let A(x,¢) be
PV V. (%) is clear.

For ¢ A, let A(z, o A 9) be A(pox, ) N A(piz, ). (%) is clear from
induction hypothesis.

For ¢ — 1 let A(z, o — ) be

Vyz(y € Dy AN Ay, o) NTayz — A(Uz,v))
To prove (x), suppose x 1’ (¢ — ). By induction hypothesis
Vy(y € Dy A Aly, ) — zyl Nwy € Dy A Alzy, 1))
Since V' — A(y, ¢) we have
Vy(y € Dy — (V = 2yl Ny € Dy))

so applying G we find € Dy_.y; A(x, — ) also follows. The converse
is just as straightforward.

For Jyp(y) let A(z, Jye(y)) be A(p1z, ¢(pox)). For Vyp(y) let A(z, Vyp(y))
be Vyz(Tzyz — A(Uz,¢(y))). The proof of (x) in these cases is left to the

reader. [ |

Definition 4.4 The following principle will be called CST for “Choice for
Subtypes”:



Vae(x € o NA(z) — Jy(y € 7 A B(y)))
CST -
J2(z € (0 — 7) AVa(z € o A A(z) — B(z1)))

where o and 7 are types, and A(z) and B(y) must be almost negative V-
Harrop formulas.

Theorem 4.5

i) HA(V)+GF3Izx(zr F)
for every instance F of the principle CST.

i) HAV)+ G+ CSTF (p)y < Jz(z1 ¢)
for every HA -formula .

iwi) HA(V)+GF 3z(zr ¢) © HAV)+G+CSTF (p)v
for HA -formulas ¢.

Proof. i) Consider an instance of CST. Write W(z) for the formula z €
(0 = 7) AVz(x € 0 N A(x) — B(zx)).

Since the formulas x € o, A(x) and ¥(z) are almost negative, there are,
by the standard treatment of realizability in [2](3.2), terms ¢, s, u such that

r€o —tr]A(trrzxeEo)
A(x) — sz] A (sz v A(x))
U(z) = uzl A (uz v ¥(2))

In particular, since A(x) is V-Harrop, we have V — sx].

Suppose a 1 Vz(x € 0 AN A(x) — Jy(y € 7 A B(y))).

Let ¢ = Az.po(az(yz, sx)).

I claim ¢ € (¢ — 7). For suppose (z € o) AV. Then we have tzxr x € o
and sz r A(x), so ax(tz, sx)|, and

p1(ax(tz, sx)) v [Cx € T A B((x)]

Since this realized formula is almost negative, it holds. In particular we
have: x € 0 — (V — (x| ACx € 7). Using G we conclude that ¢ € (o — 7).
Now suppose x € o A A(z). Again we see B((z). Hence ¥(({) and
therefore u¢ r ¥(().
We conclude that Aa.u realizes the considered instance of CST.
ii) This is proved by induction on ¢. CST comes in at the implication step
(also at the universal quantification step), where we also use Lemma 4.3.
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By induction hypothesis, (¢ — )y, which is (¢)y — (¥)y, is equivalent
to Vo (x 1’ ¢ — Jy(y v’ ¢)). By 4.3 this is equivalent to

Va(x € Dy AN Az, ) — Jy(y € Dy A Ay, 1))
Applying CST we find 2z such that
2 € Dy ANVx(x € Dy N A, ) — A(z2,7))

So 21’ (p — 9). Hence (¢ — 9)y implies 3z(2 r’ (¢ — )); the converse is

easy.

iii) If HA(V) + G+ Jz(xz v’ ¢) then HA(V) + G + CST  (p)y by ii).
Conversely, if HA(V) + G + CST + (¢)y then by i), HA(V) + G F

Jz(z v (¢)y). By Lemma 4.1, HA(V) + G Jz(x 1’ ¢). ||

Corollary 4.6 For all HA-sentences ¢ the following implication holds:
HA(V)+ G+ CSTE (¢)v = HAF Jz(z mr ¢)

Proof. Assume HA(V) + G + CST F (¢)v. By 4.51), HA(V) + G +
dz(x v (¢)v). By 2.4iii), HA F 0 ||-3z(z r (¢)y so by 2.3, HA F Jz(zr mr ¢).
||

Let A(z, ) again be the formula defined in 4.3.

Conjecture For any number n and any HA-sentence ¢, ift HA -7 € Dy
and HA + G, H,K - A(m, ¢), then HA + G - A(7m, ¢).

Proposition 4.7 Under the Conjecture, the implication of Corollary 4.6 is
an equivalence.

Proof. Using 2.4iii), it is easy to see that HA(V) + G, H, K has the nu-
merical existence property.

Assume HA F Jz(x mr ¢). We get, using 2.3,2.4,4.1 and 4.3, HA(V) +
G,H,K F 3x(x € Dy NA(z, ¢)). Applying the numerical existence property
we find a number n such that HA(V) + G, H, K F (7 € Dy AN A(7, ¢))

Since HA(V')+ G, H, K is conservative over HA we have HA 7 € Dy.
So we can apply the Conjecture which gives HA(v) + G + A(m, ¢), from
which, by 4.5, we get HA(v) + G+ CST + (¢)y. ||

Remarks 1. The characterization over HA (V)+G cannot be easily replaced
by a characterization over HA using 0 |-(—): the principle 0 [-CST is
inconsistent, by the argument of proposition 3.1: the formulas used in that
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proof are almost negative V-Harrop formulas, so one can use CST in the
same way as ECTV, to obtain the contradiction.

2. One might be tempted to formulate the Conjecture in a simpler way,
saying that HA (V) +G, H, K is conservative over HA (V) 4+ G w.r.t. almost
negative V-Harrop sentences. But this is probably false: HA (V) + G, H, K
proves the almost negative V-Harrop sentence Va[(——3yTzxaxy AVy(Tzry —
V)) — V]. But I don’t see how this sentence can be proved in HA(V') 4+ G.
3. In HA(V) + G + CST one can prove the following principle Pr(V)
which states that V is a “prime element” in the Lindenbaum algebra of
HA(V)+ G+ CST:

Pr(V) (A—V)— 3zBz) — Jz((A — V) — Bx)

which extends the V-translation of the “Independence of Premiss” principle
of [2](1.11.6).
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