A Coinductive Definition of Repletion

Jaap van Oosten Dept. of Mathematics Utrecht University The Netherlands jvoosten@math.uu.nl

We work in an arbitrary topos \mathcal{E} , where a subobject Σ of the subobject classifier Ω is given, which contains the truth value *true*. A subobject $A \subseteq B$ is called a Σ -subobject if its classifying map factors through Σ ; clearly, the factorization $t: 1 \to \Sigma$ of the generic subobject, classifies Σ -subobjects.

One calls a map $f: X \to Y \Sigma$ -equable if $\Sigma^f: \Sigma^Y \to \Sigma^X$ is an isomorphism. A map $f: X \to Y$ is called Σ -replete if it is internally orthogonal to all Σ -equable maps, that is internally, given

with g $\Sigma\text{-equable},$ there is a unique fill-in $W\to X$ making both triangles commute.

An object X is called replete if $X \to 1$ is replete. Since any map between replete objects is automatically replete, there is the full subcategory \mathcal{R} of \mathcal{E} of replete objects and replete maps. \mathcal{R} is a reflective subcategory of \mathcal{E} , and the reflection functor r has been given by Martin Hyland as: r(X) is the largest subobject A of Σ^{Σ^X} such that $\eta: X \to \Sigma^{\Sigma^X}$ factors through A, and $X \to A$ is Σ -equable.

The following gives a rewrite of this definition in slightly more explicit terms. Note: I confuse between (Σ) -subsets and their classifying functions, writing $x \in f$ for $x \in X$, $f \in \Sigma^X$ e.g. I denote the image of $\eta : X \to \Sigma^{\Sigma^X}$ by \overline{X} .

Theorem 0.1 Define the operator $\Phi_X : \mathcal{P}(\Sigma^{\Sigma^X}) \to \mathcal{P}(\Sigma^{\Sigma^X})$ by:

$$\Phi_X(A) = \begin{cases} \varphi \in \Sigma^{\Sigma^X} \mid \forall A' \, (\bar{X} \cup A \subseteq A' \subseteq \Sigma^{\Sigma^X} \to \forall \mathcal{U} \in \Sigma^{A'} \\ \varphi \in \mathcal{U} \leftrightarrow \{x \in X \mid \eta(x) \in \mathcal{U}\} \in \varphi) \end{cases}$$

and let E(X) be the largest fixed point of Φ_X , i.e. $E(X) = \bigcup \{A \mid A \subseteq \Phi_X(A)\}$. Then E(X) is the repletion of X. **Proof.** Φ_X is clearly a monotone operator, so E(X) is well-defined. First, a lemma:

Lemma 0.2 Suppose $\bar{X} \subseteq A' \subseteq \Sigma^{\Sigma^X}$. Then $X \to A'$ is Σ -equable if and only if for all $\varphi \in A'$ and $\mathcal{U} \in \Sigma^{A'}$:

$$\varphi \in \mathcal{U} \leftrightarrow \{ x \in X \mid \eta(x) \in \mathcal{U} \} \in \varphi$$

Proof. We have the operations $G: \Sigma^X \to \Sigma^{A'}$ and $H: \Sigma^{A'} \to \Sigma^X$ given by $G(U) = \{\varphi \in A' | U \in \varphi\}$ and $H(\mathcal{U}) = \{x \in X | \eta(x) \in \mathcal{U}\}$. Since $\overline{X} \subseteq A'$, HG(U) = U always holds, so $X \to A'$ is Σ -equable iff always $GH(\mathcal{U}) = \mathcal{U}$, i.e. the equivalence in the statement of the lemma holds.

To conclude the proof the theorem, first note that for $\overline{X} \subseteq A' \subseteq \Sigma^{\Sigma^X}$, $\mathcal{U} \in \Sigma^{A'}$ and $y \in X$, always $\eta(y) \in \mathcal{U}$ iff $y \in \{x \in X \mid \eta(x) \in \mathcal{U}\}$ iff $\{x \in X \mid \eta(x) \in \mathcal{U}\} \in \eta(y)$; hence $\overline{X} \subseteq \Phi_X(\emptyset) \subseteq E(X)$. Thus, using the fixed point property of E(X), for $\varphi \in E(X)$ and $\mathcal{U} \in \Sigma^{E(X)}$, we have that $\varphi \in \mathcal{U}$ iff $\{x \in X \mid \eta(x) \in \mathcal{U}\} \in \varphi$; hence by the lemma, $X \to E(X)$ is Σ -equable.

Now take $A \subseteq \Sigma^{\Sigma^X}$ with $\bar{X} \subseteq A$ and suppose $X \to A$ is Σ -equable. Let $\varphi \in A$, and $\bar{X} \cup A \subseteq A' \subseteq \Sigma^{\Sigma^X}$, $\mathcal{U} \in \Sigma^{A'}$ arbitrary. Then, since $\bar{X} \subseteq A$ and $\mathcal{U} \cap A \in \Sigma^A$, $\varphi \in \mathcal{U}$ iff $\varphi \in \mathcal{U} \cap A$ iff $\{x \in X \mid \eta(x) \in X \mid y \in X\}$.

Then, since $\overline{X} \subseteq A$ and $\mathcal{U} \cap A \in \Sigma^A$, $\varphi \in \mathcal{U}$ iff $\varphi \in \mathcal{U} \cap A$ iff $\{x \in X \mid \eta(x) \in \mathcal{U} \cap A\} \in \varphi$ iff $\{x \in X \mid \eta(x) \in \mathcal{U}\} \in \varphi$. So $\varphi \in \Phi_X(A)$. We conclude that $A \subseteq \Phi_X(A)$; by definition of E(X) then, $A \subseteq E(X)$.

We conclude that E(X) is the largest subobject of Σ^{Σ^X} with $X \subseteq E(X)$ and $X \to E(X)$ Σ -equable, i.e. E(X) is the repletion of X, as desired.

Note that in fact, for $\bar{X} \subseteq A \subseteq \Sigma^{\Sigma^X}$:

$$A \subseteq \Phi_X(A) \Leftrightarrow X \to A \text{ is } \Sigma\text{-equable} \tag{1}$$

Another remark is, that since $X \subseteq \Phi_X(\emptyset)$ we may put

$$E(X) = \bigcup \{ A \, | \, \bar{X} \subseteq A \subseteq \Phi_X(A) \}$$
⁽²⁾

Pino Rosolini has given the following characterization of replete objects: an object X is replete if and only if $X \to \Sigma^{\Sigma^X}$ is monic, and

$$\forall B \subseteq \Sigma^{\Sigma^X} (\bar{X} \subseteq B \land \forall \mathcal{U}, \mathcal{V} \in \Sigma^B (\mathcal{U} \cap \bar{X} = \mathcal{V} \cap \bar{X} \to \mathcal{U} = \mathcal{V}) \to B \subseteq \bar{X}) \quad (3)$$

This characterization is an easy consequence of theorem 0.1. In fact, suppose X satisfies (3) and let $\bar{X} \subseteq A \subseteq \Phi_X(A)$. Then clearly

$$\forall \varphi \in A \forall \mathcal{U} \in \Sigma^A (\varphi \in \mathcal{U} \leftrightarrow \{x \in X | \eta(x) \in \mathcal{U}\} \in \varphi)$$

whence

$$\forall \mathcal{U}, \mathcal{V} \in \Sigma^A (\mathcal{U} \cap \bar{X} = \mathcal{V} \cap \bar{X} \to \mathcal{U} = \mathcal{V})$$

so $A \subseteq \overline{X}$; by (2), $E(X) = \overline{X}$.

For the converse assume $E(X)=\bar{X}$ and let $\bar{X}\subseteq B$ such that

$$\forall \mathcal{U}, \mathcal{V} \in \Sigma^B(\mathcal{U} \cap \bar{X} = \mathcal{V} \cap \bar{X} \to \mathcal{U} = \mathcal{V})$$

Then

$$\forall \mathcal{U} \in \Sigma^B (\mathcal{U} = \{ \varphi \in B \mid \{ x \in X \mid \eta(x) \in \mathcal{U} \} \in \varphi \})$$

so by lemma 0.2, $X \to B$ is Σ -equable, hence by (1), $B \subseteq \Phi_X(B)$ so $B \subseteq E(X) = X$. So X satisfies (3).