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We work in an arbitrary topos £, where a subobject ¥ of the subobject
classifier € is given, which contains the truth value ¢rue. A subobject A C B
is called a X-subobject if its classifying map factors through X; clearly, the
factorization ¢ : 1 — X of the generic subobject, classifies ¥-subobjects.

Onecallsamap f : X — Y S-equable if ©f : ¥ — 32X is an isomorphism. A
map f: X — Y is called X-replete if it is internally orthogonal to all ¥-equable

maps, that is internally, given
Z W
X Y

with g ¥-equable, there is a unique fill-in W — X making both triangles com-
mute.

An object X is called replete if X — 1 is replete. Since any map between
replete objects is automatically replete, there is the full subcategory R of £ of
replete objects and replete maps. R is a reflective subcategory of £, and the
reflection functor r has been given by Martin Hyland as: r(X) is the largest
subobject A of =% such that n:X — 2= factors through A, and X — A is
Y-equable.

The following gives a rewrite of this definition in slightly more explicit terms.
Note: I confuse between (X)-subsets and their classifying functions, writing « € f
for x € X, f € ¥X e.g. I denote the image of : X — n=* by X.
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Theorem 0.1 Define the operator ®x : P(S5" ) — P(E=7) by:

_ {pes™ VA (XuACcA Y mwuest

Px(A) pelU —{zeX|nx) cl}ecyp)l

and let E(X) be the largest fived point of ®x, i.e. E(X)=J{A|AC Px(A4)}.
Then E(X) is the repletion of X.



Proof. ®x is clearly a monotone operator, so E(X) is well-defined. First, a
lemma:

Lemma 0.2 Suppose X C A’ C Y=Y Then X — A’ is Y-equable if and only
if for all p € A" and U € 24 :

peU—{zeX]|nlx)eU}teyp

Proof. We have the operations G : X — £4" and H : 24" — %X given by
GU) ={pec AU € ¢} and HU) = {z € X|n(z) € U}. Since X C A,
HG(U) = U always holds, so X — A’ is Y-equable iff always GH(U) = U, i.e.
the equivalence in the statement of the lemma holds. [ |

To conclude the proof the theorem, first note that for X C A’ C ZZX, Ues?
andy € X, always n(y) eU if y € {x € X |n(z) e U} iff {z € X |n(z) eU} €
n(y); hence X C ®x () € E(X). Thus, using the fixed point property of F(X),
for ¢ € B(X) and U € £FX) | we have that p € U iff {z € X |n(z) € U} € ¢;
hence by the lemma, X — FE(X) is Y-equable.

Now take A C »=° with X C A and suppose X — A is Y-equable. Let
o€ A and XUAC A C ZEX, U € 4 arbitrary.

Then, since X CAandUNAeXA peclUUif peUNAiff {z € X|n(x) €
UNA} e piff {z € X|n(z) € U} € 9. So p € Px(A). We conclude that
A C Dx(A); by definition of E(X) then, A C F(X).

We conclude that F(X) is the largest subobject of Y= with X C E(X) and
X — E(X) X-equable, i.e. F(X) is the repletion of X, as desired. | |

Note that in fact, for X C A C o,
AC Px(A) & X — Ais Y-equable (1)
Another remark is, that since X C ®x (@) we may put
E(X)=J{AIX cAcex(A) (2)

Pino Rosolini has given the following characterization of replete objects: an
object X is replete if and only if X — %" is monic, and

VBC Y™ (X CBAVUVeXBUNX =VNX —>U=V)—>BCX) (3)

This characterization is an easy consequence of theorem 0.1. In fact, suppose X
satisfies (3) and let X C A C ®x(A). Then clearly

Vo e AVU € X4 (p eU — {x € X|n(x) U} € p)

whence

YUYV eSAUNX =VNX -U=Y)
so AC X; by (2), E(X) = X.



For the converse assume F(X) = X and let X C B such that
YUV eXBUNX =VNX -U=Y)

Then
YU € 2B (U ={p € B|{z € X|n(z) €U} € p})

so by lemma 0.2, X — B is X-equable, hence by (1), B C ®x(B) so B C
E(X)=X. So X satisfies (3).



