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The notion of tripos (Hyland, Johnstone, and Pitts 1980; Pitts 1981) was motivated by the desire to

explain in what sense Higg’s description of sheaf toposes asH-valued sets and Hyland’s

realizability toposes are instances of the same construction. The construction itself can be seen as

the universal solution to the problem of realizing the predicates of a first order hyperdoctrine as

subobjects in a logos with effective equivalence relations. In this note it is shown that the resulting

logos is actually a topos if and only if the original hyperdoctrine satisfies a certain comprehension

property. Triposes satisfy this property, but there are examples of non-triposes satisfying this form

of comprehension.

1. Introduction

In 1979 I was fortunate enough to attend some lectures in which Martin Hyland described, for the

first time in public, how to use Kleene’s notion of recursive realizability (Kleene 1945) to build

what subsequently came to be known as the effective topos (Hyland 1982). Although motivated

by applications in constructive analysis, this topos turned out to have some intriguing proper-

ties (Hyland 1988; Rosolini 1990) of use to the related fields of type theory and programming

language semantics; see (Phoa 1990) and (Reus and Streicher 1999), for example. But back in

1979, the personal significance of Hyland’s lectures was that they led me to formulate the notion

of ‘tripos’ and were the catalyst for the research that formed my PhD thesis. The description Hy-

land gave of his topos was analogous to Higg’s version of the category of sheaves on a complete

Heyting algebra H , in terms of ‘H-valued sets’ (see Fourman and Scott 1979, Section 4). Yet

the properties of the effective topos are in many respects quite different from those of a category

of sheaves. For example, it is not a Grothendieck topos (see Hyland, Johnstone, and Pitts 1980,

p 222). Thus the following question naturally arose:

Question. Is there a common generalisation, with useful properties, of the constructions of H-

valued sets and of the effective topos?

Drawing upon Lawvere’s treatment of logic in terms of hyperdoctrines (Lawvere 1969; Lawvere

1970), I came up with an answer to this question based on a structure of indexed collections

of posets with certain properties. Peter Johnstone (my PhD supervisor) suggested naming these

structures with the acronym tripos—standing for Topos Representing Indexed Partially Ordered
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Sety— and the rest, as they say, is history. Well in any case, the three of us developed the initial

properties of set-based triposes in (Hyland, Johnstone, and Pitts 1980)z and I went on in my

thesis (Pitts 1981) to develop and apply the theory of triposes over an arbitrary base.

The purpose of this note is to point out that there is a slightly more general class of hyper-

doctrines than triposes answering the above Question. The generalisation hinges upon a careful

analysis of the comprehension properties that a hyperdoctrine may possess (different from the

ones in the classic paper by Lawvere (1970) to do with reflecting predicates into subobjects).

Thus there are hyperdoctrines that generate toposes in just the same way that triposes do, yet

whose ‘powerobject’ structure is weaker than that required of triposes. This is explained, and ex-

amples given, in Section 4. The scene is set by recalling material on hyperdoctrines in Section 2

and the category of partial equivalence relations of a hyperdoctrine (i.e. the ‘tripos to topos’

construction) in Section 3.

I have been aware of this generalisation of triposes since about 1982, but never found a good

excuse to air it in print. I’m grateful to the Tutorial Workshop on Realizability Semantics held

as part of FLoC’99 for providing the opportunity to do so. A preliminary version of this paper

appears in the proceedings of that workshop (Birkedal and Rosolini 1999).

2. First order hyperdoctrines

We will be concerned with categorical structures that are based on the notion of hyperdoc-

trine (Lawvere 1969) and that are tailored to modelling theories in first order intuitionistic pred-

icate logic with equality. Such a structure has a ‘base’ category C (with finite products) for

modelling the sorts and terms of a first order theory; and a C-indexed category (Johnstone and

Paré 1978)P for modelling its formulas. Since we will only be concerned with provability rather

than proofs, we restrict attention to indexed partially ordered sets rather than indexed categories.

The following definition recalls the properties of (C;P) needed to soundly model first order in-

tuitionistic predicate logic with equality. The fact that we are dealing with full first order logic,

rather than a fragment of it, masks some properties (‘Frobenius reciprocity’, stability of the

equality predicate under re-indexing, etc) which the definition would otherwise have to contain:

see (Pitts 2000, Section 5) for more details.

Definition 2.1. Let C be a category with finite products. A first order hyperdoctrine P over C

is specified by a contravariant functor P : C

op

�! Poset from C into the category Poset of

partially ordered sets and monotone functions, with the following properties.

(i) For each C-object X , the partially ordered set P(X) is a Heyting algebra, i.e. has a greatest

element (>), binary meets (^), a least element (?), binary joins (_), and relative pseudo-

complements (!).

(ii) For each C-morphism f : X �! Y , the monotone function P(f) : P(Y ) �! P(X) is a

homomorphism of Heyting algebras.

y It was partly a joke: the Tripos is the name Cambridge University gives to its examinations; for example, Martin’s

lectures were a graduate-level course on Constructive Analysis for Part III of that year’s Mathematical Tripos. Maybe

Peter was not making a serious suggestion, but being an obedient pupil, I adopted it.
z How appropriate that the first paper on triposes should have three authors.
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(iii) For each diagonal morphism �

X

: X �! X�X in C, the left adjoint to P(�
X

) at the top

element > 2 P(X) exists. In other words there is an element =
X

of P(X �X) satisfying

for all A 2 P(X �X) that

> � P(�

X

)(A) if and only if =

X

� A:

(iv) For each product projection � : ��X �! � in C, the monotone functionP(�) : P(�) �!

P(��X) has both a left adjoint (9X)

�

and a right adjoint (8X)

�

:

A � P(�)(A

0

) if and only if (9X)

�

(A) � A

0

P(�)(A

0

) � A if and only if A

0

� (8X)

�

(A):

Moreover, these adjoints are natural in �, i.e. given s : � �! �

0 in C, we have

P(�

0

�X)

P(s�id

X

)

(9X)

�

0

P(��X)

(9X)

�

P(�

0

)

P(s)

P(�)

P(�

0

�X)

P(s�id

X

)

(8X)

�

0

P(��X)

(8X)

�

P(�

0

)

P(s)

P(�):

The elements of P(X), as X ranges over C-objects, will be referred to as P-predicates.

Here are two examples of first order hyperdoctrines that are relevant to the development of

tripos theory.

Example 2.2 (Hyperdoctrine of a complete Heyting algebra). Let H be a complete Heyting

algebra. It determines a first order hyperdoctrine over the category Set of sets and functions

as follows. For each set X we take P(X) = H

X , the X-fold product of H in the category of

Heyting algebras; so theP-predicates are indexed families of elements ofH , ordered componen-

twise. Given f : X �! Y , P(f) : HY

�! H

X is the Heyting algebra homomorphism given

by re-indexing along f . Equality predicates =
X

in HX�X are given by

=

X

(x; x

0

)

def

=

(

> if x = x

0

? if x 6= x

0

where of course > and ? are respectively the greatest and least elements of H . The quantifiers

use set-indexed joins (
W

) and meets (
V

), which H possesses because it is complete: given A 2

H

��X one has

(9X)

�

(A)

def

= �i 2 � :

W

x2X

A(i; x) (8X)

�

(A)

def

= �i 2 � :

V

x2X

A(i; x)

in H�.

Example 2.3 (Realizability hyperdoctrines). A partial combinatory algebra (PCA) is specified

by a set A together with a partial binary operation (�) � (�) : A � A * A for which there exist

elements k; s 2 A satisfying for all a; a0; a00 2 A that

k � a # and (k � a) � a

0

� a

s � a # ; (s � a) � a

0

# ; and ((s � a) � a

0

) � a

00

� (a � a

00

) � (a

0

� a

00

)
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where in general e # means ‘e is defined’ and e � e

0 is Kleene equivalence, i.e. ‘e is defined

if and only e

0 is, and in that case they are equal’. For example the set of natural numbers N

is a partial combinatory algebra if we define m � n to be the value at n (if any) of the mth

partial recursive function, for some suitable enumeration. Another important example, in which

the application function (�) � (�) is total, is given by the untyped lambda terms modulo ��-

conversion.

Given a PCA A , we can form a first order hyperdoctrine P over Set. For each set X , the

partially ordered set P(X) is defined as follows. Let P (A )X denote the set of functions from

X to the powerset of A . Let � denote the binary relation on this set defined by: � � �

0 if and

only if there is some a0 2 A such that for all x 2 X and a 2 �(x), a0 � a is defined and in

�

0

(x). Standard properties of PCAs imply that this relation is reflexive and transitive, i.e. is a

preorder. Then define P(X) to be the quotient of P (A )X by the equivalence relation generated

by �; the partial order between equivalence classes [�℄ is that induced by �. Given a function

f : X �! Y , the function P(f) : P(Y ) �! P(X) sends [�℄ to [� Æ f ℄; it is easily seen to be

well-defined, monotone and functorial.

As is well known, PCAs are functionally complete. In particular, from k and s one can con-

struct elements p; p
1

; p

2

so that (a; a0) 7! (p � a) � a

0 is an injection of A � A into A with left

inverse a 7! (p

1

� a; p

2

� a). From this it follows that each P(X) is a Heyting algebra with the

Heyting operations given as follows.

>

def

= [�x 2 X : A ℄

[�℄ ^ [�

0

℄

def

= [�x 2 X : f(p � a) � a

0

j a 2 �(x) & a

0

2 �

0

(x)g℄

?

def

= [�x 2 X : ;℄

[�℄ _ [�

0

℄

def

= [�x 2 X : f(p � p

1

) � a j a 2 �(x)g [ f(p � p

2

) � a

0

j a

0

2 �

0

(x)g℄

[�℄! [�

0

℄

def

= [�x 2 X : fa

0

j 8a 2 �(x) : a

0

� a is defined and in �

0

(x)g℄:

The equality P-predicate for X is given by

=

X

def

= [�(x; x

0

) 2 X �X : if x = x

0 then A else ;℄

and the quantifier operations on any [�℄ 2 P(� � X) are given by set-theoretic union and

intersection:

(9X)

�

([�℄)

def

= [�i 2 � :

S

x2X

�(i; x)℄

(8X)

�

([�℄)

def

= [�i 2 � :

T

x2X

�(i; x)℄:

We will call this first order hyperdoctrine the realizability hyperdoctrine determined by the partial

combinatory algebra A .

Let us recall briefly the connection between first order hyperdoctrines and first order logic

(see Makkai 1993; or Pitts 2000, Section 5 for an overview). Given a first order signature of sorts

X , function symbols f : X

1

; : : : ; X

n

! X , and relation symbols R � X

1

; : : : ; X

n

, a structure

[[�℄℄ for the signature in a first order hyperdoctrine (C;P) assigns a C-object [[X ℄℄ to each sort,

a C-morphism [[f ℄℄ : [[X

1

℄℄ � � � � � [[X

n

℄℄ �! [[X ℄℄ to each function symbol, and a P-predicate
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[[R℄℄ 2 P([[X

1

℄℄� � � � � [[X

n

℄℄) to each relation symbol. Then each term t over the signature, with

variables in � = [x

1

: X

1

; : : : ; x

n

: X

n

℄ and of sort X say, can be interpreted as a C-morphism

[[t℄℄ : [[�℄℄ �! [[X ℄℄, where [[�℄℄ = [[X

1

℄℄ � � � � � [[X

n

℄℄; and each first order formula A, with

free variables in � say, can be interpreted as a P-predicate [[A℄℄ 2 P([[�℄℄). The definitions of [[t℄℄

and [[A℄℄ proceed by induction on the structure of those expressions, using the various properties

given in Definition 2.1 to interpret the logical symbols. For example, the atomic formula t =
X

t

0

asserting the equality of two terms of sort X is mapped to the P-predicateP(h[[t℄℄; [[t0℄℄i)(=
[[X℄℄

);

and a universally quantified formula 8x : X :A is mapped to (8[[X ℄℄)

[[�℄℄

([[A℄℄). Note in particular

that a first order sentence (i.e. a formula with no free variables) gets interpreted as an element of

P(1), where 1 is the terminal object inC. We say that the structure satisfies a sentenceA if [[A℄℄ is

the top element of P(1). This notion of satisfaction is sound for first order intuitionistic logic, in

the sense that all provable sentences are satisfied. It is also complete, in the sense that a sentence

is provable if it is satisfied by all structures in first order hyperdoctrines. This completeness result

is not very informative because the collection of such structures includes one (in a ‘Lindenbaum-

Tarski’ hyperdoctrine constructed from syntax) in which satisfaction coincides with provability.

A more usefulx consequence of this connection between first order logic and first order hyper-

doctrines is the ability to use the familiar language of first order logic to give constructions in a

hyperdoctrine that would otherwise involve complicated, order-enriched commutative diagrams.

To do this one uses the following language.

Definition 2.4 (Internal language of a hyperdoctrine). One can associate to each first order

hyperdoctrine (C;P) a signature having a sort for each C-object, an n-ary function symbol for

each C-morphism of the form X

1

� � � � � X

n

�! X and an n-ary relation symbol for each

P-predicate in P(X
1

� � � � �X

n

) (for each list X
1

; : : : ; X

n

of objects and each object X). The

terms and first order formulas over this signature form the internal language of the hyperdoctrine.

There is an obvious structure in (C;P) for this signature and this enables one to use the

internal language to name various C-objects, C-morphisms and P-predicates; and satisfaction

by this structure of sentences in the internal language can be used to express conditions on the

hyperdoctrine. We make extensive use of this in the rest of the paper.

3. The category of partial equivalence relations of a hyperdoctrine

Higg’s version of the topos of sheaves on a complete Heyting algebra and Hyland’s realizability

topos on a partial combinatory algebra can be obtained by applying the same construction to the

indexed partially ordered sets in Examples 2.2 and 2.3 respectively. The construction only relies

upon the fact that these indexed posets are first order hyperdoctrines in the sense of Definition 2.1.

(In fact it only relies upon the =&9 part of first order logic/hyperdoctrines, but the considerations

in the next section need full first order logic.) Here is the construction.

Definition 3.1 (The categoryC[P ℄). LetC be a category with finite products andP a first order

hyperdoctrine over C. Define a category C[P ℄ as follows.

x More useful, of course, only for those people who prefer the ‘element-centric’ language of predicate logic; others

prefer to stick with the ‘arrow-centric’ language of category theory.
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(i) An object is a pair (X;E) with X a C-object and E 2 P(X �X) a P-predicate satisfying

the following sentences of the internal language of (C;P) expressing that it is a partial

equivalence relation (i.e. symmetric and transitive, but not necessarily reflexive).

8x; x

0

: X : E(x; x

0

) ) E(x

0

; x) (1)

8x; x

0

; x

00

: X : E(x; x

0

) &E(x

0

; x

00

) ) E(x; x

00

): (2)

(ii) A morphism from (X

1

; E

1

) to (X

2

; E

2

) is given by a P-predicate F 2 P(X

1

�X

2

) satisfy-

ing the following sentences of the internal language of (C;P) expressing that it respects the

partial equivalence relations E
1

and E
2

, and is single-valued and total with respect to them.

8x

1

: X

1

; x

2

: X

2

: F (x

1

; x

2

) ) E

1

(x

1

; x

1

) &E

2

(x

2

; x

2

) (3)

8x

1

; x

0

1

: X

1

; x

2

; x

0

2

: X

2

: E

1

(x

1

; x

0

1

) &E

2

(x

2

; x

0

2

) & F (x

1

; x

2

) ) F (x

0

1

; x

0

2

) (4)

8x

1

: X

1

; x

2

; x

0

2

: X

2

: F (x

1

; x

2

) & F (x

1

; x

0

2

) ) E

2

(x

2

; x

0

2

) (5)

8x

1

: X

1

: E

1

(x

1

; x

1

) ) 9x

2

: X

2

: F (x

1

; x

2

): (6)

(iii) The identity morphism on (X;E) is given by E itself.

(iv) Composition of F : (X

1

; E

1

) �! (X

2

; E

2

) and G : (X

2

; E

2

) �! (X

3

; E

3

) is the P-

predicate in P(X
1

�X

3

) determined by the formula 9x
2

: X

2

: F (x

1

; x

2

) & G(x

2

; x

3

) in

the internal language of (C;P).

That composition in C[P ℄ is well defined, associative and has the indicated morphisms as

identities all follows from the soundness of first order hyperdoctrines for first order intuitionistic

logic. The same is true for the following characterisation of finite products and subobjects in

C[P ℄.

Lemma 3.2 (Finite products in C[P ℄).

(i) C[P ℄ has a terminal object: it is (1;=
1

), where 1 is terminal in C.

(ii) The product of C[P ℄-objects (X
1

; E

1

) and (X

2

; E

2

) is

(X

1

; E

1

) (X

1

�X

2

; E

1

�E

2

)

P

1

P

2

(X

2

; E

2

)

where
X

1

X

1

�X

2

�

1

�

2

X

2

is the product in C, and E
1

�E

2

2 P((X

1

�X

2

)�

(X

1

�X

2

)) and P
i

2 P((X

1

�X

2

)�X

i

) are defined by:

(E

1

�E

2

)(y; y

0

)

def

, E

1

(�

1

(y); �

1

(y

0

)) &E

2

(�

2

(y); �

2

(y

0

))

P

i

(y; x

i

)

def

, E

i

(�

i

(y); x

i

):

Lemma 3.3 (Subobjects in C[P ℄).

(i) Every subobject of aC[P ℄-object (X;E) can be represented by a monomorphism of the form

EjA : (X;EjA) �! (X;E) where A 2 P(X) satisfies

8x : X : A(x) ) E(x; x) (7)

8x; x; : X : A(x) &E(x; x

0

) ) A(x

0

) (8)
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and where EjA 2 P(X �X) is defined from E and A by

(EjA)(x; x

0

)

def

, E(x; x

0

) &A(x):

This sets up an isomorphism between the sub-poset of P(X) consisting of those A satisfying

(7) and (8) and the usual poset of subobjects of (X;E) in C[P ℄.

(ii) C[P ℄ has pullbacks of subobjects. The pullback of EjA : (X;EjA) �! (X;E) along a

morphism F : (X

0

; E

0

) �! (X;E) is the subobject of (X 0

; E

0

) determined, as in (i), by the

element A0 2 P(X 0

) given by

A

0

(x

0

)

def

, 9x : X :F (x

0

; x) &A(x):

Recall that a categoryE is a logos if it has finite limits, pullback-stable images and dual images

of subobjects along morphisms, and pullback-stable finite joins of subobjects (Makkai and Reyes

1977). Any categoryE with finite limits determines anE-indexed poset Sub
E

: E

op

�! Poset

mapping E-objects to their posets of subobjects and mapping E-morphisms to pullback func-

tions. (Well of course the posets involved may actually be poclasses unless one assumes E is

well-powered, but size is not an issue here.) Then we can give an alternative characterisation

of logoses in terms of hyperdoctrines: they are precisely the finitely complete categories E for

which Sub

E

is a first order hyperdoctrine over E. Using this fact combined with Lemmas 3.2

and 3.3, we can deduce some exactness properties of C[P ℄.

Theorem 3.4. The category C[P ℄ of partial equivalence relations of a first order hyperdoctrine

is a logos. Moreover, all equivalence relations in C[P ℄ have a quotient, i.e. have a coequalizer

whose kernel-pair is the equivalence relation (see Makkai and Reyes 1977, Definition 3.3.7); one

says that a logos has effective equivalence relations in this case.

Proof. Since C[P ℄ has finite products (Lemma 3.2) and pullbacks of all monomorphisms

(Lemma 3.3), it also has equalizers and hence all finite limits. Using the soundness of first order

logic for the internal language of (C;P) and the characterisation of subobjects in Lemma 3.3,

it is straightforward to deduce that Sub
C[P℄

is a first order hyperdoctrine over C[P ℄ and hence

that the latter is a logos. As for quotients of equivalence relations, if a monomorphism (X �

X; (E � E)jR) �! (X � X;E � E) determines an equivalence relation on (X;E) in C[P ℄,

then it follows that (X;R) is also a C[P ℄-object, and that R determines a morphism from (X;E)

to (X;R) which is the quotient of the equivalence relation.

Definition 3.5 (Constant objects in C[P ℄). We can define a functor �
P

: C �! C[P ℄ as

follows. On objects, �
P

maps X to (X;=

X

); and on morphisms, �
P

maps f : X

1

�! X

2

to

the morphism from (X

1

;=

X

1

) to (X

2

;=

X

2

) given by the formula f(x
1

) =

X

2

x

2

in the internal

language of (C;P). From Lemma 3.2 we have that �
P

preserves finite products; and from

Lemma 3.3 it follows that Sub
C[P℄

(�

P

(X)) is isomorphic to P(X), naturally in X . Objects of

the form �

P

(X) in C[P ℄ are called constant objects in (Pitts 1981).
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It is not hard to see that anyC[P ℄-object (X;E) can be presented as a quotient of the subobject

of �
P

(X) determined by theP-predicateE(x; x), with the quotient morphism given byE itself:

[[E(x; x)℄℄

E

(X;E)

�

P

(X):

From this observation it is but a short step to the following (folklore?) characterisation of the

category of partial equivalence relations of a first order hyperdoctrine.

Theorem 3.6 (Universal property of �
P

: C �! C[P ℄). Let C be a category with finite prod-

ucts and let P be a first order hyperdoctrine over C. Then �

P

: C �! C[P ℄ gives the universal

way of realizing P-predicates as subobjects in a logos with effective equivalence relations. For if

E is such a logos and I : C �! E is a functor preserving finite products, then there is a natural

equivalence

poset of first order hyperdoctrine morphisms: P(�) Sub

E

(I(�))

category of logos morphisms over C: C[P ℄

E:

�

=

C

�

P

I

ThusP 7! C[P ℄ provides a left adjoint (qua bicategories) to the functor mapping I : C �! E to

Sub

E

(I(�)). The logos morphismC[Sub

E

(I(�))℄ �! E which is the counit of this adjunction

at I : C �! E is always full and faithful; moreover, it is also essentially surjective (and hence

an equivalence) if and only if every E-object is a quotient of a subobject of some object in the

image of I .

In a sense the construction (C;P) 7! C[P ℄ falls between two stools. If one just wants to

realize P-predicates as subobjects in a logos, then the full subcategory of C[P ℄ consisting of

subobjects of constant objects is the universal solution. On the other hand, as well as considering

logoses with effective equivalence relations, it is very natural to consider ones with finite disjoint

coproducts as well—i.e. Heyting pretoposes (cf. Pitts 1989). The universal solution to realizing

P-predicates in a Heyting pretopos is the mild generalisation of C[P ℄ (implicit in Makkai and

Reyes 1977, Part II) whose objects are partial equivalence relations ‘spread over a finite number

of C-objects’: the definition is like that given on pp 45–46 of (Pitts 1989).

4. When is C[P ℄ a topos?

Let C be a category with finite products and P a first order hyperdoctrine over it. Suppose that

C[P ℄ does happen to be a topos (Johnstone 1977). So for each object, and in particular for each

constant object �
P

(X) there is a powerobject 
�

P

(X) equipped with a membership relation

2

�

P

(X)

�

P

(X)� 


�

P

(X) such that every subobject �

�

P

(X)� Y arises
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via a pullback

�

�

P

(X)� Y

id��

2

�

P

(X)

�

P

(X)� 


�

P

(X)

(9)

from a unique morphism � : Y �! 


�

P

(X). Let us suppose that 
�

P

(X) is (PX;Eq

X

),

say. So the membership relation 2
�

P

(X)

is given, as in Lemma 3.3, by a P-predicate In

X

2

P(X � PX). Amongst other things, In
X

must respect the partial equivalence relation Eq

X

:

8x : X; s; s

0

: PX : In

X

(x; s) & Eq

X

(s; s

0

) ) In

X

(x; s

0

): (10)

Specialising to the case when Y is a constant object �
P

(�) = (�;=

�

), for which subobjects

�

�

P

(X)� Y = �

P

(X � �)

are determined by arbitrary P-predicates R 2 P(X � �), we find that the morphism � is a

P-predicate in P(�� PX) which, in order for (9) to be a pullback, satisfies

8x : X; i : � : R(x; i), 9s : PX : In

X

(x; s) & �(i; s): (11)

Since � does determine a morphism (�;=

�

) �! (PX;Eq

X

) it also satisfies

8i : �; s; s

0

: PX : �(i; s) & �(i; s

0

) ) Eq

X

(s; s

0

) (12)

and 8i : � : i =
X

i ) 9s : PX :�(i; s), which since i =
X

i is > means that

8i : � : 9s : PX :�(i; s): (13)

From (10), (11) and (12) we deduce

8i : �; s : PX : �(i; s) ) 8x : X : In

X

(x; s),R(x; i)

which combined with (13) gives

8i : � : 9s : PX :8x : X : In

X

(x; s), R(x; i): (14)

So we have shown that if C[P ℄ is a topos, then (C;P) satisfies the following Comprehension

Axiom.

Axiom 4.1 (CA). For all C-objectsX there is a C-object PX and a P-predicate In
X

2 P(X�

PX) such that for any C-object � and P-predicateR 2 P(X��), P satisfies the sentence (14)

of its internal language.

Theorem 4.2 (First order hyperdoctrine + CA = topos). Suppose C is a category with finite

products and P is a first order hyperdoctrine over C. Then the associated category of partial

equivalence relations C[P ℄ is a topos if and only if (C;P) satisfies (CA).

Proof. The argument above gives the ‘only if’ direction. Conversely suppose the hyperdoc-

trine does satisfy (CA). We will show how to construct the powerobject 
(X;E) of any object

(X;E) in C[P ℄. Define Eq

X

2 P(PX � PX) by

Eq

X

(s; s

0

)

def

, Ex

X

(s) & 8x : X : In

X

(x; s),In

X

(x; s

0

)
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where

Ex

X

(s)

def

, (8x : X : In

X

(x; s))E(x; x)) &

(8x; x

0

: X : In

X

(x; s) &E(x; x

0

)) In

X

(x

0

; s)):

One can show that (PX;Eq
X

) is a C[P ℄-object and that the formula In

X

(x; s) & Ex

X

(s)

determines (via Lemma 3.3) a subobject

2 (X;E)� (PX;Eq

X

): (15)

For any other C[P ℄-object (�; G) and subobject

�

(X;E)� (�; G) (16)

determined by R 2 P(X � �) say, let � 2 P(�� PX) be

�(i; s)

def

, (8x : X : In

X

(x; s),R(i; x)) &G(i; i)

Routine calculation in the internal logic of (C;P) shows that � is a morphism from (�; G) to

(PX;Eq

X

), that the subobject (16) is the pullback of (15) along id ��, and that � is the unique

morphism in C[P ℄ with this property. So (PX;Eq

X

) is indeed a powerobject for (X;E). Thus

when (C;P) satisfies (CA), C[P ℄ has finite limits (Theorem 3.4) and powerobjects and hence is

a topos.

In Axiom 4.1, one way to satisfy (14) is to insist that its ‘Skolemized’ version holds, i.e. that

there is a C-morphism f : � �! PX satisfying

8i : � :8x : X : In

X

(x; f(i)),R(x; i)

i.e. such that R = P(id

X

� f)(In

X

) in P(X � �). (Of course, such an f is not necessarily

unique up to equality of C-morphisms.) This leads to the definition of tripos.

Definition 4.3 (Triposes). Let C be a category with finite products. A C-tripos is a first order

hyperdoctrineP over C equipped with the following extra structure. For each C-object X there

is a C-object PX and a P-predicate In

X

2 P(X � PX) such that given any � and R 2

P(X ��), there is a C-morphism fRg : � �! PX with R = P(id

X

�fRg)(In

X

). Since this

implies that P satisfies (CA) we know from the above theorem that C[P ℄ is a topos—the topos

generated by the C-tripos P .

If the base categoryC happens to be cartesian closed, one can further simplify this Skolemized

version of (CA).

Theorem 4.4 (Generic predicates). Let C be a category with finite products and P a first order

hyperdoctrine over C

(i) IfP is a tripos, then it possesses a generic predicate (Hyland, Johnstone, and Pitts 1980, Def-

inition 1.2(iii)). By definition this means that there is some C-object Prop and P-predicate

Prf 2 P(Prop) such that for any� andA 2 P(�) there is aC-morphism pAq : � �! Prop

with A = P(pAq)(Prf ).

(ii) Conversely, assuming C is cartesian closed, if P has a generic predicate, then it is a tripos.
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Proof. For part (i), using the tripos structure of P we can take Prop = P1 and Prf =

P(h!; id

P1

i)(In

1

), using the isomorphism h!; id

P1

i : P1

�

=

1 � P1. For any A 2 P(�), we

get P(�
2

)(A) 2 P(1 � �) and can define pAq to be fP(�
2

)(A)g : � �! P1. A simple

calculation shows that P(pAq)(Prf ) = A. Hence we do have a generic predicate.

For part (ii) suppose that C is cartesian closed and that the hyperdoctrine P has a generic

predicate Prf 2 P(Prop). For eachC-objectX define PX to be the exponentialPropX and the

membership predicate In
X

2 P(X�Prop

X

) to beP(ev
X

)(Prf ), where ev
X

: X�Prop

X

�!

Prop is evaluation (counit of the exponential adjunction X � (�) a (�)

X at Prop). For any

R 2 P(X��) we have pRq : X�� �! Prop and can take its transpose across the exponential

adjunction to get a morphism fRg : � �! Prop

X . It is straightforward to see that this has the

property required in Definition 4.3.

Example 4.5. The hyperdoctrines in Examples 2.2 and 2.3 both possess generic predicates and

hence by Theorem 4.4 are Set-triposes (since Set is cartesian closed).

In the first case we can take Prop to be (the underlying set of) H and Prf 2 P(H) = H

H

to be the identity function; for any A 2 P(X), pAq is just A itself. The topos generated by this

tripos is precisely Higg’s category of H-valued sets, equivalent to the category of sheaves on the

complete Heyting algebra H : see (Fourman and Scott 1979).

In the second example we can take Prop to be the powerset P (A ) of the PCA A and Prf 2

P(P (A )) to be equivalence class of the identity function; for any A 2 P(�), choosing a rep-

resentative � 2 P (A )

� for it, we can take pAq = � since P(�)(Prf ) = P(�)([id

P (A)

℄) =

[id

P (A)

Æ �℄ = [�℄ = A. The topos generated by this tripos is the so-called realizability topos

of the partial combinatory algebra A : see (Hyland, Johnstone, and Pitts 1980; Pitts 1981; van

Oosten 1991; Longley 1995).

There are two minor differences between Definition 4.3 and the definition of tripos given

in (Hyland, Johnstone, and Pitts 1980) or (Pitts 1981). The first has to do with generalised quan-

tifiers; the second has to do with the use of preorders rather than partial orders. These differences

are discussed in the next two remarks.

Remark 4.6 (Generalised quantification). The original definition of tripos assumes that C

has all finite limits, rather than just finite products, and that there are adjoints (9
f

;8

f

) for all

the monotone functions P(f), rather than just for the case when f is a product projection or

diagonal; furthermore these adjoints are required to be stable in the sense that ‘Beck-Chevalley’

conditions hold:

W

h

k

Z

g

Y

f

X

implies

P(W )

8

h

P(Z)

P(Y )

P(k)

8

f

P(X)

P(g)

pullback in C commutes in Poset.

(If this holds for all pullbacks, then a similar condition holds for the left adjoints 9
f

as well.)

From the work of Lawvere (1969) we know that in a first order hyperdoctrine as defined in
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Section 2 such generalised quantifiers are definable from the usual ones:

(8

f

A)(x)

def

, 8y : Y: x =

X

f(y) ) A(y)

(9

f

A)(x)

def

, 9y : Y: x =

X

f(y) & A(y):

These formulas do define adjoints to P(f) and these adjoints satisfy the Beck-Chevalley condi-

tion for certain pullback squares—the ones that exist by dint of the finite product structure in C.

However, there is no reason why the Beck-Chevalley condition should hold for all the pullback

squares that happen to exist in C. In this sense the definitions in (Hyland, Johnstone, and Pitts

1980) and (Pitts 1981) assume a bit more than is strictly necessary.

Remark 4.7 (Canonically presented hyperdoctrines). The original definition of tripos was

phrased in terms of indexed preordered sets Cop

�! Preord, rather than indexed posets

C

op

�! Poset. Each setting has its conveniences and it is easy to pass between the two.

However, one advantage of using preorders is that one can often identify predicates on X with

functions from X to some fixed object. For example if we present the realizability triposes of

Example 2.3 using indexed preordered sets, then we can take P(X) to be P (A )X rather than a

quotient of it. Triposes in which predicates are functions are called canonically presented in (Hy-

land, Johnstone, and Pitts 1980; Pitts 1981).

In the partially ordered setting we are using here, we can say that a first order hyperdoctrine

(C;P) as in Definition 2.1 is canonically presented by a C-object Prop if for each C-object �

there is a surjective function e

�

: C(�;Prop) P(�); natural in �. For then we can make

C(�;Prop) into a C-indexed preordered set equivalent to P by declaring f � f

0 in C(�;Prop)

to mean that e
�

(f) � e

�

(f

0

) holds in P(�). Note that from Theorem 4.4(i) we have that if P is

a C-tripos, then P : C

op

�! Poset can be canonically presented by P1. However, if P merely

satisfies (CA), then it is not necessarily canonically presentable. The following example shows

this. It already occurs in (Pitts 1981, Section 2.9). However, I was not aware at that time of the

general result (Theorem 4.2) of which it is an instance. (If I had been, doubtless the definition of

tripos would have been different.)

Example 4.8 (A non-tripos satisfying CA). Let Fin denote the category of finite sets and

functions. From any infinite Boolean algebra B we can define a hyperdoctrineP
B

over Fin that

satisfies (CA), but which is not a tripos, as follows.

In fact P
B

is just like Example 2.2 except that we restrict the base category to be finite sets so

that the quantifiers use only the finite meets and joins assumed to exist in B. Thus for each finite

set X , define P
B

(X) to be the the X-fold product BX of the Boolean algebra B; and for each

f : X �! Y in Fin, define P
B

(f) : P(Y ) �! P(X) to be Bf . Equality predicates =
X

in

P

B

(X �X) are given by the functions

=

X

(x; x

0

)

def

=

(

> if x = x

0

? if x 6= x

0

and quantification is given by

(9X)

�

(A)

def

= �i 2 � :

W

x2X

A(i; x) (8X)

�

(A)

def

= �i 2 � :

V

x2X

A(i; x):

The fact that P
B

is a first order hyperdoctrine of course only depends upon the Heyting algebra
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structure of B. However, to see that it also satisfies the Comprehension Axiom 4.1 we make

essential use of the fact that B has complements (:) rather than just relative pseudocomplements

(!).

For each finite set X , we take PX to be the set f?;>gX of functions from X to the two-

element Boolean subalgebra f?;>g of B. The membership P-predicate In
X

2 P(X �PX) is

given by function application. Then for any R 2 P

B

(X � �) we have

> =

V

i2�

V

x2X

>

=

V

i2�

V

x2X

R(x; i) _ :R(x; i)

=

V

i2�

V

x2X

W

b2f?;>g

b,R(x; i)

=

V

i2�

W

s2f?;>g

X

V

x2X

s(x),R(x; i)

the last step using the fact that B is a distributive lattice. Thus by definition of PX and In

X

, the

formula

8i : � : 9s : PX :8x : X : In

X

(x; s), R(x; i)

of the internal language of P is satisfied. Hence (CA) holds and Fin[P

B

℄ is a topos for any

Boolean algebra B, whether or not it is infinite.

However, if B is infinite then P

B

cannot be made into a tripos for any choice of X 7!

(PX; In

X

). For if it could, then by Theorem 4.4 it would possess a generic predicate and hence

be canonically presented by some objectProp inFin. So in particular there would be a surjection

from the finite set Prop �
=

Fin(1;Prop) onto P
B

(1)

�

=

B, which is impossible.

Remark 4.9 (An open problem in topos theory). If C is a category with finite products and

P a first order hyperdoctrine over C, then Lemmas 3.2 and 3.3 imply that the Heyting algebra

Sub

C[P℄

(1) of subobjects of the terminal object 1 in the logos C[P ℄ is isomorphic to P(1). In

Example 4.8, P
B

(1) is the Boolean algebra B. Thus by Theorem 4.2, Fin[P
B

℄ is a topos with

Sub

Fin[P

B

℄

(1) isomorphic toB. In general the subobjects of 1 in a toposE (i.e. its ‘truth-values’)

form a Heyting algebra. We have just seen that every Boolean algebra can arise as Sub
E

(1) for

some topos E. However, it is not known whether every Heyting algebra can arise in this way.

(Probably the free Heyting algebra on countably many generators cannot be the Heyting algebra

of truth-values of a topos; see Pitts 1992, Section 1 for more on this topic.)

5. Conclusion

The notion of ‘tripos’ was motivated by the desire to explain in what sense Higg’s description

of sheaf toposes as H-valued sets and Hyland’s realizability toposes are instances of the same

construction. The construction itself involves building a category of partial equivalence relations

and can be seen as the universal way of realizing the predicates of a first order hyperdoctrine as

subobjects in a logos having effective equivalence relations (Theorem 3.6). This yields a topos if

and only if the hyperdoctrine satisfies a certain comprehension property (Theorem 4.2). Triposes

satisfy this property, but there are examples of non-triposes satisfying this form of comprehension

(Example 4.8).

So should the definition of tripos in (Pitts 1981) have used this more general form? The main

use for triposes seems to occur when one has some non-standard notion of predicate and one
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wishes to see that it can be used to generate a topos. For examples see (van Oosten 1991; Hof-

mann 1999; Awody, Birkedal, and Scott 1999). In this respect the condition (CA) seems useful,

because it is more permissive that its Skolemized form. However, triposes often arise by applying

various constructions to other triposes. In particular, (Pitts 1981) establishes quite a rich theory of

triposes akin to that for sheaf theory, involving notions of geometric morphism, Lawvere-Tierney

topologies, etc. I do not know how far this theory extends to the case of hyperdoctrines satisfy-

ing the (CA) axiom, but I guess it is not very far. For example, one of the most useful results

in (Pitts 1981) concerns the question of iteration: if P is a tripos over C and R a tripos over

C[P ℄, when is �
R

Æ�

P

: C �! C[P ℄ �! C[P ℄[R℄ the topos of partial equivalence relations

of aC-tripos? Theorem 6.2 of (Pitts 1981) provides a practically useful answer to this question—

namely that R0

(�) = R(�

P

(�)) is a C-tripos with C[R

0

℄ equivalent to C[P ℄[R℄, provided R

has ‘fibrewise quantification’. Fibrewise quantification is a concept that applies to triposes based

on toposes and occurs frequently (e.g. Examples 2.2 and 2.3 have fibrewise quantification). It

means that the quantifiers in R are induced by morphisms
V

R

;

W

R

: 


Prop

�! Prop in a

certain obvious fashion (cf. Hyland, Johnstone, and Pitts 1980, Proposition 1.12), where 
 is the

subobject classifier of the topos and Prop the carrier of the generic predicate of the tripos (The-

orem 4.4). We saw in Example 4.8 that hyperdoctrines satisfying (CA) do not necessarily have

generic predicates, so the notion of fibrewise quantification and its consequences for iteration are

not so useful in that setting.
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