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Introduction

Let < be a binary relation on a set X . In ZFC, the following three statements
are equivalent:

1) There are no infinite <-descending sequences in X : i.e. no sequences
(xn)n∈N such that xn+1 < xn for all n.

2) Every subset Y of X that contains an element, contains an <-minimal
element.

3) (X, <) satisfies the principle of induction over <: if Y ⊆ X is such that
for all x, ∀y < x(y ∈ Y ) implies x ∈ Y , then Y = X .

However, the implication from 1) to 2) is equivalent to the principle of De-
pendent Choices (as the reader can show for himself) and cannot be proved in
ZF.

A relation < on X is called well-founded if any of these statements holds.
Intuitionistically, the 3 statements are far from equivalent (hence, in for-

malizing an intuitionistic notion of well-foundedness, care is needed). Notion
1) is, intuitionistically, too weak to be of any use; whereas notion 2) is far too
strong (by a well-known argument, as soon as an inhabited relation < satisfies
2), classical logic is forced on us). Hence we focus on notion 3), which is also
usually taken as part of an axiomatization of intuitionistic set theory.

The behaviour of well-founded induction for primitive recursive well-founded
relations on the natural numbers in formal arithmetic, has been studied by many
people. Classical results in the area are:

• Kreisel et al ([9]): Peano Arithmetic PA extended with the full induction
scheme over such relations is complete, and equivalent to true arithmetic.

• Kreisel ([8]): There is a primitive recursive linear order for which Peano
Arithmetic proves the induction scheme, yet which is not a well-order.

• Friedman and Scedrov ([2]): Any primitive recursive relation for which
HAH (higher order intuitionistic arithmetic) proves the induction scheme,
is in fact well-founded (and has ordinal < ε0 if this induction is already
provable in HA).
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In connection with realizability it is known ([13]) that the induction scheme
over primitive recursive well-founded relations < proves its own realizability
(the actual proof, l.c. 3.2.23, seems to need that < is a total order, but this
assumption is redundant).

The result discussed in the present note is of a nature similar to Friedman’s.
In realizability toposes, of which the effective topos Eff (see [3] for details) is the
best studied example, one has the phenomenon that the global sections functor
Γ : Eff → Set preserves and reflects well-founded relations.

Let us spell this out in more elementary terms. We have a set X with a
realizability relation for equality: for every x, y ∈ X a set [x = y] of realizers of
the equality of x and y is given (subject to a few natural conditions). A binary
relation R on X is given by, for each x, y ∈ X , a set R(x, y) of realizers of the
relation between x and y (which system has to be compatible with the equality
realizers). Γ(X) is the quotient set X ′/ ∼ where X ′ = {x ∈ X | [x = x] 6= ∅}
and x ∼ y iff [x = y] 6= ∅. Γ(R) is the binary relation on Γ(X) defined by:
([x], [y]) ∈ Γ(R) iff R(x, y) 6= ∅. We then have:

The binary relation R on X is internally well-founded in Eff , if and
only if Γ(R) is a (classically) well-founded relation on Γ(X)

This result can be formulated entirely in the internal logic of Eff . Call Y ⊆ X
progressive if for all x ∈ X , the statement ∀y(R(y, x) → y ∈ Y ) implies x ∈ Y .
Hence, R is well-founded iff X has no nontrivial progressive subsets. Our result
has then the following equivalent formulation:

R is internally well-founded if and only if X has no nontrivial ¬¬-
stable progressive subsets

We shall work in a slightly more general context than the one adopted here: by
Set, we shall mean an arbitrary topos with natural numbers object in which we
have an internal partial combinatory algebra A; instead of Eff we shall work
in RT(A), the realizability topos constructed over Set w.r.t. A. Moreover, we
shall (for some applications) need to formulate the above result “in parameters”
(see Corollary 1.2).

1 Well-founded relations in realizability toposes

We assume the reader is familiar with the construction of the Realizability Topos
RT(A) based on a partial combinatory algebra A. For a treatment of the
paradigmatic case, see [3]. We recall that this topos comes equipped with an
adjoint pair of functors ∇ : Set → RT(A) and Γ : RT(A) → Set, making
Set a subtopos of RT(A). The pair (Γ ⊣ ∇) with ∇ full and faithful, is called
a geometric inclusion. In this situation, the internal logic of RT(A) comes
equipped with a modal operator j which satisfies the axioms:

p → j(p)
j(j(p)) → j(p)

(p → q) → (j(p) → j(q))
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Such an operator is often called an internal topology or a local operator. For a
good introduction into the logic with such j, consult [1]. Here we just recall a
few notions: a subset A′ ⊂ A is j-dense if ∀x : A.j(x ∈ A′) holds, and A′ ⊆ A
is j-closed if ∀x : A (j(x ∈ A′) → x ∈ A′) holds. An object X is a j-sheaf if
for any j-dense A′ ⊂ A, any map from A′ to X can be uniquely extended to a
map from A to X . In the situation above, Set is equivalent to the category of
j-sheaves in RT(A) for a unique j. If Set is Boolean, j will be the operator ¬¬.

The following definitions make sense in any topos, and are important in
Algebraic Set Theory, Synthetic Domain Theory and the study of W -types in
toposes, as will become apparent in section 3.

Consider pairs (X, <) where < is a binary relation on the object X . A
subobject P of X is called progressive with respect to <, if

Prog(P ) ∀x : X (∀y : X(y < x → y ∈ P ) → x ∈ P )

holds. (X, <) is well-founded if X has no nontrivial progressive subobjects w.r.t.
<, that is:

WF ∀P : P(X)(Prog(P ) → ∀x : X.x ∈ P )

If j is a local operator (internal topology), we denote by Pj(X) the object of
j-closed subobjects of X . We say that (X, <) is j-well-founded if X has no
nontrivial j-closed progressive subobjects:

WFj ∀P ∈ Pj(X)(Prog(P ) → ∀x : X.x ∈ P )

Theorem 1.1 Let j be the topology in RT(A) for which Set is the sheaf subto-
pos. Then every j-well-founded object is well-founded. Moreover, the sheafifica-
tion functor Γ : RT(A) → Set preserves and reflects well-founded objects.

Proof. Suppose X = (W, =) with =: W × W → P(A). We may suppose that
E(w) = [w = w] is inhabited for each w ∈ W , so there is an equivalence relation
∼ on W defined by: w ∼ w′ iff [w = w′] is inhabited.

Now Pj(X) can be represented as ∇({U ⊆ W |U is closed under ∼}). It
is easy to see, that (X, <) is j-well-founded, if for each U ⊆ W which is closed
under ∼ it holds, that:

if for all x ∈ W , {y ∈ W | [y < x] is inhabited } ⊆ U implies x ∈ U , then
U = W

Note at once that this is equivalent to saying that (ΓX, Γ(<)) is well-founded
in Set, so the second assertion in the theorem follows from the first.

Now suppose (X, <) is j-well-founded. By the second recursion theorem
in the partial combinatory algebra A there is for each e ∈ A an element re,
uniformly in e, such that for all n ∈ A,

ren ≃ en(ΛyΛq.rey)
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Now let P : W → P(A) represent an element of P(X). We claim that for each
e,

if e  Prog(P ) then re  ∀x : X.P (x)

(we write  for the realizability relation).
To this end assume e  Prog(P ). Define the following subset U of W :

(1) U =
{x ∈ W | ∀y ∈ W ([y < x] is inhabited ⇒

∀m ∈ E(y) (rem ∈ P (y)))}

Clearly, U is closed under ∼.
The assumption e  Prog(P ) means:

(2) ∀x ∈ W∀n ∈ E(x) (en is defined and
∀b(b  (∀y : X.y < x → y ∈ P ) ⇒ enb  x ∈ P ))

Now let x ∈ W and suppose that {y ∈ W | [y < x] is inhabited} is a subset of
U . This means:

(3)
∀yv ∈ W∀m ∈ A (([y < x] and [v < y] are inhabited and

m ∈ E(v)) ⇒ rem ∈ P (v))

Then for all y ∈ W with [y < x] inhabited, we have

(4) ΛmΛv.rem  ∀v : X.v < y → v ∈ P

Hence by (2), applied to such y, we have that for each n ∈ E(y),

(5) en(ΛmΛv.rem)  y ∈ P

That is, ren  y ∈ P . Hence, x ∈ U .
From the j-well-foundedness of (X, <) we conclude that U = W . So for all

x ∈ W we have
ΛmΛv.rem  (∀y : X.y < x → y ∈ P )

We conclude that for all n ∈ E(x), en is defined and that

en(ΛmΛv.rem)  x ∈ P

in other words,
ren  x ∈ P

So re  ∀x : X.x ∈ P , as desired. �

The above proof is entirely constructive and holds in the presence of arbitrary
parameters. This means that it internalizes in RT(A) in the following sense.
Let (X, <) be as before. Let Pwf(X) be the object of well-founded subobjects
of X (that is: those subsets Y ⊂ X which are well-founded w.r.t. the restriction
of <), and Pjwf the object of j-well-founded subobjects of X .

Corollary 1.2 Pwf(X) = Pjwf(X). In particular, Pwf(X) is a j-closed subob-
ject of P(X).
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This is of importance in Algebraic Set Theory and the theory of W-types in topoi
(section 3), where one defines the “object of well-founded X-labelled trees”.

If the Axiom of Choice holds in Set, we can represent Pwf(X) as the closed
subobject of P(X) on those functions α : W → P(A) for which there are
no infinite sequences (x0, x1, . . .) in W , such that for each i, both α(xi) and
[xi+1 < xi] are nonempty.

2 A generalized form of Markov’s Principle

Let us formulate a consequence of the phenomenon observed in section 1. Sup-
pose E is a topos and j is an internal topology in E . We say that E has property
Qj if the statement of Corollary 1.2 holds in E :

Qj for all (X, <), Pwf(X) = Pjwf(X)

If furthermore E has a natural numbers object, we say that E satisfies Gener-
alized Markov’s Principle (GMP) with respect to j, if for each object X the
following internal statement is true:

GMPj

∀P, T : P(X)∀f : X → X
∀x : X ((¬T (x) → P (fx)) → P (x)) →
∀x : X (j(∃n : N.T (fnx)) → P (x))

Markov’s Principle (MP) with respect to j is the axiom:

MPj ∀R : P(N) (∀n : N.R(n) ∨ ¬R(n)) → (j(∃n : N.R(n)) → ∃n : N.R(n))

Theorem 2.1 Let E be a topos with natural numbers object and internal topol-
ogy j.

1. GMPj follows from property Qj.

2. MPj follows from GMPj.

Proof. For 1), given X , P, T, f , define < on X by: y < x iff y = f(x)∧¬T (x).
Then for any subobject P of X , Prog(P ) is equivalent to ∀x : X ((¬T (x) →
P (fx)) → P (x)). So Prog(P ) implies ∀x : X(T (x) → P (x)) and ∀x : X (P (fx) →
P (x)), and hence ∀x : X (j(∃n : N.T (fnx)) → j(P (x))). We see then, that if
X ′ = {x : X | j(∃n : N.T (fnx))}, X ′ ∈ Pjwf(X) holds: suppose A ⊂ X ′

j-closed, progressive. First we prove by induction on n that T (fnx) implies
x ∈ A (for n = 0 this is trivial since ∀y < x(y ∈ A) holds vacuously, and the
induction step is also easy), so we see that ∃n : N.T (fnx) → x ∈ A. By the
axioms for j we have ∀x : X (j(∃n : N.T (fnx)) → j(x ∈ A)). By definition of
X ′ and the assumption that A is j-closed and progressive, A = X ′ follows.

By Property Qj , X ′ ∈ Pwf(X), which gives the desired conclusion.
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For 2), take N for X , R for T and ∃k : N.R(n+k) for P (n). Let f : N → N
be the successor function. The premiss of GMPj in this case,

∀n : N ((¬R(n) → ∃k R(n + k + 1)) → ∃k R(n + k))

is easily seen to follow from the decidability of R(n). By GMPj we conclude

∀n : N (j(∃k R(n + k)) → ∃k R(n + k))

which, by instantiating 0 for n, gives the conclusion of MPj . �

Remark. In the context of first-order arithmetic HA one can consider the
following form of GMP: the axiom scheme

GMP0 [∀n((¬T (n) → P (n + 1)) → P (n))] → ∀n(¬¬∃kT (n + k) → P (n))

where T and P are arbitrary formulas. One can also consider the axiom GMP1

in second-order arithmetic HAS, which is the universally quantified form (quan-
tifiers over T and P ) of GMP0. One has the following theorem, the proof of
which we leave as an exercise (see also [15]). Here, MP stands for MP¬¬ and
ShP is Shanin’s Principle for second-order arithmetic:

ShP ∀X∃Y (∀z(¬¬z ∈ Y → z ∈ Y ) ∧ ∀x(x ∈ X ↔ ∃y〈x, y〉 ∈ Y ))

Theorem 2.2

a) In HA + MP, GMP0 is realizable.

b) HA + GMP0 ⊢ MP

c) In HAS + MP + ShP, GMP1 is realizable.

3 Applications

In categorical logic, well-foundedness often manifests itself in the form of ini-
tiality of algebras of a particular type. The fact that an algebra is initial (has a
unique algebra homomorphism to any other algebra) is usually proved by recur-
sion along the well-founded relation, but in a number of cases also the converse
holds: initiality implies well-foundedness.

In this section we shall briefly discuss three examples of this: the categorical
treatment of W-types, the initial Lift-algebras of Synthetic Domain Theory
(these are, actually, special W-types), and initial ZF-algebras in Algebraic Set
Theory.
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3.1 Well-founded trees and W-types

Let us work in the following context: (Γ ⊣ ∇) : F → E is a geometric inclusion
of toposes; we denote the local operator in E induced by this inclusion by j.
We assume that both E and F have natural numbers objects; in the discussion
below, the variable n is assumed to run over the natural numbers object.

Let f : B → A be a morphism in E . A Pf -algebra is an object X together
with, for each a ∈ A, a function from the set of all f−1(a)-tuples {xb | f(b) = a}
to X ; categorically this is expressed as a map





X × A
↓
A













B
↓ f
A









→





X × A
↓
A





in the slice E/A. The W -type of f , W (f), is the initial such Pf -algebra, if it
exists.

In [11], it is shown that in a topos, W (f) always exists and may be con-
structed in the following way.

For any object X , let X∗ be the free monoid on X ; that is the object of
finite sequences of elements of X . An X-labelled tree t is a subset of X∗ that
contains exactly one sequence of length 1, and is such that if (x1, . . . , xn+1) ∈ t,
then (x1, . . . , xn) ∈ t, for all n ≥ 1.

Given f : B → A in E , an f -tree is an (A + B)-labelled tree t with the
following properties:

i) If (x1, . . . , xn) ∈ t then xi ∈ A if i is odd, and xi ∈ B if i is even;

ii) if (x1, . . . , x2n) ∈ t then there is a unique x2n+1 ∈ A such that (x1, . . . , x2n+1) ∈
t;

iii) if (x1, . . . , x2n+1) ∈ t then {x | (x1, . . . , x2n+1, x) ∈ t} = {b ∈ B | f(b) =
x2n+1}

Clearly, one can form the object T (X) of X-labelled trees and the object T (f)
of f -trees. W (f), the W-type associated to f , is now constructed as the set of
well-founded f -trees.

Our objective is to calculate W-types in E from knowledge about F .

Lemma 3.1 Suppose that the local operator j is dense (that is, j(⊥) = ⊥)
and that A is j-separated. Then T (f) embeds into Pj((A + B)∗), the object of
j-closed subobjects of (A + B)∗.

Proof. We have to show that for t ∈ T (f) and (x1, . . . , xn) ∈ (A + B)∗, that
j((x1, . . . , xn) ∈ t) implies (x1, . . . , xn) ∈ t. This is done by induction on n.
For n = 1, let a be the unique element of A such that (a) ∈ t. j((x1) ∈ t)
is equivalent to j(x1 = a). This implies x1 = a since A is j-separated; hence,
(x1) ∈ t follows.
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Suppose j((x1, . . . , xn+1) ∈ t). Then j((x1, . . . , xn) ∈ t) since t ∈ T (f), so
(x1, . . . , xn) ∈ t by induction hypothesis.

If n is even, there is a unique a ∈ A such that (x1, . . . , xn, a) ∈ t. Also, we
have j(xn+1 ∈ A) because t ∈ T (f). It follows that xn+1 ∈ A because A is
complemented in A + B and j is dense. Therefore j(xn+1 = a) and again by
separatedness of A, xn+1 = a so (x1, . . . , xn+1) ∈ t.

If n is odd, we have j(xn+1 ∈ B) from which, just as in the previous case,
we conclude xn+1 ∈ B, and j(f(xn+1) = xn) by t ∈ T (f). Separatedness of A
gives f(xn+1) = xn, and (x1, . . . , xn+1) ∈ t now follows from t ∈ T (f). �

The adjunction Γ ⊣ ∇ carries over to an adjunction between the categories of
monoids in F and E (this is true for arbitrary geometric morphisms; see e.g. [5]),
and Γ preserves free monoids as well as sums, so Γ((A+B)∗) ∼= (Γ(A)+Γ(B))∗,
the free monoid on Γ(A) + Γ(B) in F . Moreover, we have an isomorphism
Pj((A + B)∗) ∼= ∇(P(Γ((A + B)∗))) (on the RHS, P denotes the power-object
in F). Hence Lemma 3.1 gives an inclusion from T (f) into ∇(P((ΓA + ΓB)∗)).
It is easy to see that this inclusion factors through ∇(T (ΓA + ΓB)), the (image
of the) object of ΓA + ΓB-labelled trees in F .

Let us specialize to the case where F is Set and E is RT(A). The local operator
j is dense in this case. We calculate W (f) in the case that A is j-separated,
using Corollary 1.2 and Lemma 3.1.

Since T (f) is a subobject of ∇(T (ΓA + ΓB)) the underlying set of T (f)
may be taken as the set of ΓA + ΓB-labelled trees in Set. There is an element
relation ∈→֒ (A + B)∗ × T (f), realized by:

e  (x1, . . . , xn) ∈ t iff e  E(x1, . . . , xn) and ([x1], . . . , [xn]) ∈ t

Here, E(x1, . . . , xn) is short for (x1, . . . , xn) = (x1, . . . , xn) (the equality relation
on (A+B)∗), and for the second condition t is identified with the corresponding
(ΓA + ΓB)-labelled tree.

Then the predicate that singles out T (f) from ∇(T (ΓA + ΓB)) is the real-
izability interpretation of the conditions for t being an f -tree:

e realizes t ∈ T (f) if and only if for all natural numbers i > 0, e·i is defined
and:

• there is an a ∈ A such that (e·1)0  a = a and

(e·1)1  ∀x : (A + B).(x) ∈ t ↔ x = a

•

e·2i 

{

∀(x1, . . . , x2i) : (A + B)∗.(x1, . . . , x2i) ∈ t → ∃y : (A + B)
(y ∈ A ∧ ∀z : (A + B)((x1, . . . , x2i, z) ∈ t ↔ y = z))
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•

e·(2i + 1) 

{

∀(x1, . . . , x2i+1) : (A + B)∗.(x1, . . . , x2i+1) ∈ t →
∀y : (A + B)((x1, . . . , x2i+1, y) ∈ t ↔ F (y, x2i+1))

(where F is the predicate on A + B defining the morphism f : B → A)

W (f), being (by Corollary 1.2) a j-closed subobject of T (f), has the same
realizers but the underlying set consists of those t ∈ T (ΓA + ΓB) which are
well-founded in Set.

This simplifies (and generalizes) somewhat the computation of W-types for
separated objects, presented in [14].

3.2 The initial Lift algebra

Let us look at a simple application in Synthetic Domain Theory. A dominance
in a topos E with natural numbers object ([12]) is a subobject Σ of Ω such that

1. ⊤ ∈ Σ, and

2. ∀p, q : Ω.(p ∈ Σ ∧ p → (q ∈ Σ)) → ((p ∧ q) ∈ Σ)

both hold in E. Given a dominance Σ we have a lift functor L: internally,

LX =
{α ∈ P(X) | ∀xy : X (x ∈ α ∧ y ∈ α → x = y)∧

[∃x : X.x ∈ α] ∈ Σ}

Note that LX is isomorphic to the set of pairs

{(σ, f) |σ ∈ Σ, f : {∗ |σ} → X}

That is, to the domain of the exponential





X × Σ
↓
Σ













1
↓ ⊤
Σ









in E/Σ.
Hence the initial L-algebra, usually denoted I, is the W -type associated to

(1
⊤
→ Σ), that is: the set of well-founded trees with nodes labelled by elements

of Σ, such that the set of branches out of a node labelled p is in bijective
correspondence with the set {∗ | p}.

One can show that the set of all (not just well-founded) such trees is isomor-
phic to the set F of functions p : N → Σ satisfying ∀n : N.pn+1 → pn.

From property Qj it follows that I is a j-closed subobject of F . Since it is
easy to see that we always have for p ∈ F ,

∃n.¬pn → p ∈ I → ¬¬∃n.¬pn
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we see at once that if j is the local operator ¬¬,

I = {p ∈ F | ¬¬∃n.¬pn}

This reproves Theorem 3.2 from [16], where this was shown for the Effective
Topos. The proof there generalizes to arbitrary RT(A), but here we see that
the result follows axiomatically from property Q¬¬.

We can refine this a bit and show that it is also a consequence of GMP¬¬.

Theorem 3.2 Let E be a topos with dominance Σ and natural numbers object.
If E satisfies GMP¬¬, then the initial lift algebra I is

{p ∈ F | ¬¬∃n : N.¬pn}

In particular if Σ is ¬¬-separated, I = {p ∈ F | ¬∀n : N.pn}.

Proof. M. Jibladze ([4]) has shown that the well-foundedness condition for
p ∈ F can be simplified to:

p ∈ I iff ∀φ : Ω.(∀n : N.((pn → φ) → φ)) → φ

For an application of GMP¬¬, let X = F , P = I, T = {p ∈ F | ¬p0}, f(p) =
λn.pn+1.

Since I ⊆ {p ∈ F | ¬¬∃n.¬pn} = {p ∈ F | ¬¬∃n.T (fnp)}, by GMP¬¬ we are
done if we can show

∀p ((¬¬p0 → λn.pn+1 ∈ I) → p ∈ I)

We use Jibladze’s formula. Suppose ¬¬p0 → λn.pn+1 ∈ I; let φ : Ω and assume
∀n.(pn → φ) → φ. We have to conclude that φ holds.

The second assumption gives

(i) (p0 → φ) → φ
(ii) ∀n.(pn+1 → φ) → φ

Suppose p0. Then ¬¬p0. By the assumption ¬¬p0 → λn.pn+1 ∈ I, λn.pn+1 ∈ I.
By ii) and Jibladze’s formula, φ follows. Summarizing: p0 → φ holds. Now using
i) we have φ, as desired. �

3.3 Algebraic Set Theory

A. Joyal and I. Moerdijk, in their monograph [6], develop a way to do set theory
algebraically. Cornerstone of their theory is a set of axioms for a so-called “class
of small maps”. Given such a class S, one defines the notion of a ZF-algebra. It
is shown that if V is an initial ZF-algebra, then V is a model of intuitionistic set
theory IZF (with Collection). They give some examples of classes of small maps;
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one example is for the Effective Topos. In [7], this is compared with McCarty’s
realizability model for IZF, [10]. It is shown that McCarty’s universe can be
viewed as an object in the Effective Topos and that it is actually the initial ZF-
algebra for the class of small maps that Joyal and Moerdijk define in their book.
This is done by first proving a theorem which characterizes initial ZF-algebras
by a few conditions. One of the conditions is that the algebra is well-founded
w.r.t. the ∈-relation. Checking this for McCarty’s model is an easy application
of Theorem 1.1, since it is easy to see that its Γ-image is well-founded in Set.
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