Seminar on Logic - 2018/2019. Exercise of the 17th of April.

We said that, since $y^{op}: \mathbb{C}^{op} \hookrightarrow \operatorname{Pro}(\mathbb{C})^{op}$ is the free small filtered cocompletion of \mathbb{C}^{op} , there is a bijection between the class of continuous presheaves $\operatorname{Pro}(\mathbb{C})^{op} \to \operatorname{SET}$ and the class of presheaves $\mathbb{C}^{op} \to \operatorname{SET}$. This bijection is the precomposition with y^{op} .

(a) - (3 points) Prove that this bijection is actually an equivalence of categories, that is, it is fully faithful.

A clearer proof of the fact that the precomposition with:

$$\Gamma \colon \text{Stone}_{\mathfrak{C}} \to \text{Pro}(\mathfrak{C})$$

induces an equivalence of categories $\operatorname{Shv}^{\operatorname{cont}}(\operatorname{Pro}(\mathcal{C})) \to \operatorname{Shv}^{\operatorname{cont}}(\operatorname{Stone}_{\mathcal{C}}).$

Let ${\mathfrak C}$ be a small pretopos.

(b) - (4 points) Without using that $\operatorname{Pro}^{wp}(\mathcal{C}) \subseteq \operatorname{Pro}(\mathcal{C})$ is a basis for the coherent topology over $\operatorname{Pro}(\mathcal{C})$ (as we did during the seminar), prove that the precomposition with the fully faithful functor:

$$\operatorname{Pro}^{wp}(\mathcal{C}) \subseteq \operatorname{Pro}(\mathcal{C})$$

is an equivalence $\operatorname{Shv}(\operatorname{Pro}(\mathbb{C})) \to \operatorname{Shv}(\operatorname{Pro}^{wp}(\mathbb{C}))$, exhibiting its pseudo-inverse. *Hint: use Theorem 6.2.12 and look into the proof of Corollary 7.2.4.*

(c) - (3 points) Prove that this equivalence restrics to an equivalence:

 $\operatorname{Shv}^{cont}(\operatorname{Pro}(\mathcal{C})) \to \operatorname{Shv}^{cont}(\operatorname{Pro}^{wp}(\mathcal{C}))$

and so conclude the usual equivalence:

$$\operatorname{Shv}^{\operatorname{cont}}(\operatorname{Pro}(\mathcal{C})) \to \operatorname{Shv}^{\operatorname{cont}}(\operatorname{Stone}_{\mathcal{C}})$$

induced by Γ : Stone_{\mathcal{C}} \rightarrow Pro(\mathcal{C}).