## Seminar on Logic - 2018/2019. Exercise of the 20th of March.

Let $S$ be a set and let $\mu: \mathcal{P}(S) \rightarrow\{0,1\}$ be an ultrafilter over $S$. Let $\bar{\mu}:=\left\{S_{0} \in \mathcal{P}(S): \mu\left(S_{0}\right)=1\right\}$. Let $\left\{M_{s}\right\}_{s \in S}$ be a family of nonempty sets. We define:

$$
\text { the ultraproduct } \Pi_{(s \in S)} M_{s} / \mu \text { of the family }\left\{M_{s}\right\}_{s \in S} \text { w.r.t. the ultrafilter } \mu
$$

as the quotient:

$$
\left(\Pi_{(s \in S)} M_{s}\right) / \sim
$$

where, for every $f, g \in \Pi_{(s \in S)} M_{s}$, we say that $f \sim g$ iff $\{s \in S: f(s)=g(s)\} \in$ $\bar{\mu}$.

Prove that the diagram:

$$
\begin{aligned}
(\bar{\mu}, \supseteq) & \rightarrow \mathrm{SET} \\
\left(S_{0} \supseteq S_{1}\right) & \mapsto\left(\left(\Pi_{\left(s \in S_{0}\right)} M_{s}\right) \ni f \mapsto f \upharpoonright_{S_{1}} \in\left(\Pi_{\left(s \in S_{1}\right)} M_{s}\right)\right)
\end{aligned}
$$

has the ultraproduct $\Pi_{(s \in S)} M_{s} / \mu$ as colimit, exhibiting the corresponding arrows $\Pi_{\left(s \in S_{0}\right)} M_{s} \rightarrow \Pi_{(s \in S)} M_{s} / \mu$.

During the seminar, we used this characterization in order to prove that $\Pi_{(s \in S)} M_{s} / \delta_{s_{0}}$ is isomorphic (as a set) to $M_{s_{0}}$ (for every choice of $s_{0} \in S$ ), being $\delta_{s_{0}}$ the ultrafilter over $S$ defined by $\delta_{s_{0}}\left(S_{0}\right)=1$ iff $S_{0} \ni s_{0}$, for every $S_{0} \subseteq S$ (actually we did so in a more general situation that includes this one). However, we can also prove this fact by exhibiting a very natural set-theoretic bijection: find this bijection and enjoy it!

## Solution.

Let $S_{0} \in \bar{\mu}$. For every $f \in \Pi_{\left(s \in S_{0}\right)} M_{s}$ let us pick an element $\hat{f} \in \Pi_{(s \in S)} M_{s}$ such that $\hat{f} \upharpoonright_{S_{0}}=f$ (we are using the axiom of choice). Then the map:

$$
q_{\mu}^{S_{0}}: \Pi_{\left(s \in S_{0}\right)} M_{s} \ni f \mapsto[\hat{f}] \in \Pi_{(s \in S)} M_{s} / \mu
$$

does not depend on the choice of $\hat{f}$. Indeed, whenever $\hat{f}^{\prime} \in \Pi_{(s \in S)} M_{s}$ is such that $\hat{f}^{\prime} \upharpoonright_{S_{0}}=f$, it is the case that $\hat{f}^{\prime} \upharpoonright_{S_{0}}=\hat{f} \upharpoonright_{S_{0}}$ and then $\hat{f}^{\prime} \sim \hat{f}$. Moreover, whenever $S_{0} \supseteq S_{1}$ is an arrow of $(\bar{\mu}, \supseteq)$, it is the case that the following diagram:

$$
\Pi_{\left(s \in S_{0}\right)} M_{s} \longrightarrow \Pi_{\left(s \in S_{1}\right)} M_{s}
$$

commutes and therefore the family $\left\{q_{\mu}^{S_{0}}\right\}_{\left(S_{0} \in \bar{\mu}\right)}$ exhibits $\Pi_{(s \in S)} M_{s} / \mu$ as a cocone of the given diagram.

Let $C$ be a cocone of the given diagram, with the family $\left\{p_{\mu}^{S_{0}}: \Pi_{\left(s \in S_{0}\right)} M_{s} \rightarrow\right.$ $C\}$. Then, whenever $S_{0} \supseteq S_{1}$ is an arrow of $(\bar{\mu}, \supseteq)$, it is the case that the following diagram:

commutes. Then the map:

$$
\varphi: \Pi_{(s \in S)} M_{s} / \mu \ni[f] \mapsto p_{\mu}^{S}(f) \in C
$$

is well-defined: let us assume that $f, g \in \Pi_{(s \in S)} M_{s}$ are such that $f \sim g$. Then there is $S_{0} \in \bar{\mu}$ such that $f \upharpoonright_{S_{0}}=g \upharpoonright_{S_{0}}$ and, since the following diagram:

commutes, it is the case that $p_{\mu}^{S}(f)=p_{\mu}^{S_{0}}\left(f \upharpoonright_{S_{0}}\right)=p_{\mu}^{S_{0}}\left(g \upharpoonright_{S_{0}}\right)=p_{\mu}^{S}(g)$. Moreover, whenever $S_{0} \in \bar{\mu}$, it is the case that the following diagram:

commutes: let $f \in \Pi_{\left(s \in S_{0}\right)} M_{s}$. Then $q_{\mu}^{S_{0}}(f)=[\hat{f}]$ for some $\hat{f} \in \Pi_{(s \in S)} M_{s}$ such that $\hat{f} \upharpoonright_{S_{0}}=f$. Then $\varphi\left(q_{\mu}^{S_{0}}(f)\right)=\varphi([\hat{f}])=p_{\mu}^{S}(\hat{f})=p_{\mu}^{S_{0}}\left(\hat{f} \upharpoonright_{S_{0}}\right)=p_{\mu}^{S_{0}}(f)$, where the third equality holds because of the commutativity of the previous diagram. We proved that $\varphi$ is an arrow between cocones of the given diagram. Hence, being $C$ an arbitary cocone, it is the case that $\Pi_{(s \in S)} M_{s} / \mu$ is the initial one.

Let $s_{0} \in S$. Then $\Pi_{(s \in S)} M_{s} / \delta_{s_{0}} \ni[f] \mapsto f\left(s_{0}\right) \in M_{s_{0}}$ is well-defined: whenever $f, g \in \Pi_{(s \in S)} M_{s}$ are such that $f \sim g$, it is the case that $f \upharpoonright_{S_{0}}=g \upharpoonright_{S_{0}}$ for some $S_{0} \in \overline{\delta_{s_{0}}}$. Since $s_{0} \in S_{0}$, it holds that $f\left(s_{0}\right)=g\left(s_{0}\right)$.

If $[f],[g] \in \Pi_{(s \in S)} M_{s} / \delta_{s_{0}}$ are such that $f\left(s_{0}\right)=g\left(s_{0}\right)$, then $f \upharpoonright_{\left\{s_{0}\right\}}=g \upharpoonright_{\left\{s_{0}\right\}}$. Being $\left\{s_{0}\right\} \in \overline{\delta_{s_{0}}}$, it is the case that $[f]=[g]$. This proves that our map is injective. Moreover, if $m \in M_{s_{0}}$, the class $[f]$ of an element $f \in \Pi_{(s \in S)} M_{s}$ such that $f\left(s_{0}\right)=m$ (we are using the axiom of choice) is sent to $m$, and this proves that our map is surjective.

