
Seminar on Logic. Exercise to be handed in 13th of March

1. We first look at condition (0). There are some commutative diagrams that have to be constructed, but
once you have that, the rest follows quite easily. The first is already given in the exercise:

F (
∏
s∈S0

Ms)
∏
s∈S0

(F (Ms))

F (
∫
S
Msdµ)

∫
S

(F (Ms))dµ

F (qS0µ )

P

qS0µ

σµ

Furthermore, by definition of the qS0
µ , we have the following commuting diagram:

∏
s∈S0

Ms

∏
s∈S0

M ′s

∫
S
Msdµ

∫
S
M ′sdµ

qS0µ

∏
s∈S0

fs

qS0µ∫
S
fsdµ

And of course we have a similar diagram for F (qS0
µ ). We can also see that the following diagram

commutes:

F (
∏
s∈S0

Ms) F (
∏
s∈S0

M ′s)

∏
s∈S0

F (Ms)
∏
s∈S0

F (M ′s)

F (
∏
s∈S0

fs)

P P ′∏
s∈S0

F (fs)

This is because both the clockwise and the counter-clockwise are the same at every component; that
is easy to check. Now in the same way as above, we also have the following commutative diagrams:∏

s∈S0
F (Ms)

∏
s∈S0

F (M ′s)

∫
S
F (Ms)dµ

∫
S
F (M ′s)dµ

qS0µ

∏
s∈S0

F (fs)

qS0µ∫
S
F (fs)dµ

F (
∏
s∈S0

M ′s)
∏
s∈S0

(F (M ′s))

F (
∫
S
M ′sdµ)

∫
S

(F (M ′s))dµ

F (qS0µ )

P ′

qS0µ

σµ

Now from all of these diagrams, we can conclude the following equivalence: σµ ◦F (
∫
S
fsdµ) ◦F (qS0

µ ) =

σµ ◦ F (qS0
µ ) ◦ F (

∏
s∈S0

fs) = qS0
µ ◦ P ′ ◦ F (

∏
s∈S0

fs) = qS0
µ ◦

∏
s∈S0

F (fs) ◦ P =
∫
S
F (fs)dµ ◦ qS0

µ ◦
P =

∫
S
F (fs)dµ ◦ σµ ◦ F (qS0

µ ). Now we use that F preserves filtered colimits to conclude that σµ ◦
F (

∫
S
fsdµ) =

∫
S
F (fs)dµ ◦ σµ. So that is condition (0).

For condition (1) we look at the diagram of the exercise again. We take µ = δs0 for some s0 ∈ S and we
take S0 = {s0}, so that we have µ(S0) = 1. This gives us that F (

∏
s∈S0

Ms) = F (Ms0) =
∏
s∈S0

F (Ms).
So the map P is the identity in this special case.

Furthermore, the map εS,s0 is special in this particular case. Let fs0 : Ms0 →M ′s0 be given. Then we
see that the following diagram commutes:
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∫
S
Ms0dδs0

∫
S
M ′s0dδs0

Ms0 M ′s0

εS,s0

∫
S
fs0dδs0

εS,s0

fs0

From this, and the definition of q
{s0}
µ , we may conclude that q

{s0}
µ = ε−1S,s0 . Using this in combi-

nation with the fact of map P , we get that σδs0 ◦ F (ε−1S,s0) = ε−1S,s0 . Rewriting this, we get that
εS,s0 ◦ σδs0 = F (εS,s0). And this is exactly condition (1).

2. The first important fact to notice is that in Set filtered colimits commute with finite limits. One can
find this fact, for example, in the Elephant. Using this fact, we can see that we only need to bother
with the functors of the form {Ms}s∈S →

∏
s∈S0

Ms. So we show that these functors preserve finite
limits, initial object and effective epis.

We start with the case of finite limits. Since we are talking about a product functor, it is trivial to see
that the initial object and binary products are preserved. A little set theoretical argument then also
gives that equalizers are preserved.

The initial object in SetS is the constant presheaf 0. Since the product over initial objects is clearly
initial, we see that initial objects are also preserved.

For the effective epis, we need another observation. Since Set is a regular category, all epis are ef-
fective. So instead of looking at effective epis, we can, and have to, look at epis in general. So look at
an epi f in SetS . If f is an epi, that means that every one of its components is a surjective function.
This means that if you take the product over the components of f , you still get a surjective function,
which means epi, and therefore also effective epi. This gives that the functor also preserves effective epis.

3. First we note that it is easy to see that there is a bijection if we ignore the fact that we are looking
at left-ultrafunctors, specifically. That is, for any element F ∈ Fun(M,Fun(C,Set)), we can define a
functor G ∈ Fun(C,Fun(M,Set)) as follows: G(C)(M) = F (M)(C). One can easily see that this is a
bijection.

Now the question is as follows: suppose we have that F ∈ Fun(M,FunLUlt(C,Set)), can we use the
same bijection? That is, can we define an ultrastructure on G? We already have an ultrastructure
σµ : F (M)(

∫
S
Csdµ)→

∫
S
F (M)(Cs)dµ. So we look at the following:

G(

∫
S

Csdµ)(M) = F (M)(

∫
S

Csdµ)→
∫
S

F (M)(Cs)dµ =

∫
S

G(Cs)(M)dµ

Here the arrow is the σµ of F . So we see that we indeed have a very natural transformation
G(

∫
S
Csdµ)(M) →

∫
S
G(Cs)(M)dµ. It then is little work to show that this is a bijection, because

the inverse function is easily shown to have the same properties.
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