SEMINAR ULTRACATEGORIES: HAND-IN CHAPTER 4 Model solution

(a) Suppose that we have an object (X, \mathcal{O}_X) of $\operatorname{Comp}_{\mathcal{M}}$ and, for each $t \in T$, a map $\underline{M}_t \to (X, \mathcal{O}_X)$. By Remark 4.2.6, such a map is determined by an element $x_t \in X$ and an arrow $g_t \colon \mathcal{O}_{X,x_t} \to M_t$. We need to show that there exists a unique arrow $(f, \alpha) \colon (\beta T, \mathcal{O}_{\beta T}) \to (X, \mathcal{O}_X)$ such that the diagram

commutes for all $t \in T$. The commutativity of this diagram comes down to the following two requirements:

(i) $f(\delta_t) = x_t;$

(ii)
$$\varepsilon_{T,t} \circ \alpha_{\delta_t} = g_t$$
.

By the universal property of βT (Proposition 3.2.7), there exists a unique continuous map $f: \beta T \to X$ satisfying (i) for all $t \in T$. By Proposition 4.2.9, there exists a unique natural transformation of left ultrafunctors $\alpha: \mathcal{O}_X \circ f \to \mathcal{O}_{\beta T}$ satisfying (ii) for all $t \in T$. This completes the proof.

(b) It is given in the exercise that u_* is continuous. So, in order to prove that (u_*, α) is a morphism, it remains to show that α is a natural transformation of left ultrafunctors. That is, we need to show that α is compatible with the left ultrastructures σ_{μ} described in Proposition 4.2.8. Explicitly, let $\nu_{\bullet} \colon S \to \beta T$ be a map of sets, and let $\mu \in \beta S$. We need to show that

commutes. We obtain this diagram by appending the two squares

$$\int_{T} M_{t} d\left(\int_{T_{0}} \delta_{t_{0}} d\left(\int_{S} \nu_{s} d\mu\right)\right) = \int_{T} M_{t} d\left(\int_{S} \left(\int_{T_{0}} \delta_{t_{0}} d\nu_{s}\right) d\mu\right) \\ \downarrow^{\Delta_{\mu, f_{T_{0}}} \delta_{t_{0}} d\nu_{\bullet}} \\ \downarrow^{\Delta_{\mu, f_{T_{0}}} \delta_{t_{0}} d\nu_{\bullet}} \\ \int_{S} \left(\int_{T} M_{t} d\left(\int_{T_{0}} \delta_{t_{0}} d\nu_{s}\right)\right) d\mu \\ \downarrow^{f_{S} \Delta_{\nu_{s}, \delta_{\bullet}} d\mu} \\ \int_{T_{0}} \left(\int_{T} M_{t} d\delta_{t_{0}}\right) d\left(\int_{S} \nu_{s} d\mu\right) \xrightarrow{\Delta_{\mu, \nu_{\bullet}}} \int_{S} \left(\int_{T_{0}} \left(\int_{T} M_{t} d\delta_{t_{0}}\right) d\nu_{s}\right) d\mu \\ \downarrow^{f_{S} \left(\int_{T_{0}} \varepsilon_{T, t_{0}} d(f_{S} \nu_{s} d\mu)\right)} \\ \int_{T_{0}} M_{t_{0}} d\left(\int_{S} \nu_{s} d\mu\right) \xrightarrow{\Delta_{\mu, \nu_{\bullet}}} \int_{S} \left(\int_{T_{0}} M_{t_{0}} d\nu_{s}\right) d\mu$$

where the top square commutes by axiom (C) of an ultracategory, the bottom square commutes by the naturality of $\Delta_{\mu,\nu_{\bullet}}$ (axiom (3)), and $\int_{S} \left(\int_{T_0} \varepsilon_{T,t_0} d\nu_s \right) d\mu \circ \int_{S} \Delta_{\nu_s,\delta_{\bullet}} d\mu$ is equal to $\int_{S} \alpha_{\nu_s} d\mu$ by the functoriality of $\int_{S} \bullet d\mu$ (axiom (1)). Finally, (u_*,α) is cartesian since $\alpha_{\nu} = \Delta_{\nu,u}$ is an isomorphism for each $\nu \in \beta T_0$, by axiom (B).

Remark: everyone forgot to mention the functoriality of $\int \bullet d\mu$ *.*

(c) We obtain this diagram by appending the diagrams

where the top square commutes by axiom (A) and the bottom square commutes by the naturality of ε_{T_0,t_0} (axiom (2)).

Remark: some of you claimed that $\Delta_{\delta_{t_0},\delta_{\bullet}}$ is the inverse of ε_{T_0,t_0} : $\int_{T_0} M_{t'_0} d\delta_{t_0} \to M_{t_0}$. This is not correct, however, since the domain of $\Delta_{\delta_{t_0},\delta_{\bullet}}$ is not a map $M_{t_0} \to \int_{T_0} M_{t'_0} d\delta_{t_0}$.

(d) By exercise (a), the canonical map $\bigsqcup_{t_0 \in T_0} \underline{M}_{t_0} \rightarrow \bigsqcup_{t \in T} \underline{M}_t$ is $(f, \alpha') \colon (\beta T_0, \mathcal{O}_{\beta T_0}) \rightarrow (\beta T, \mathcal{O}_{\beta T})$, where:

- (i) f is the unique continuous map $\beta T_0 \rightarrow \beta T$ such that $f(\delta_{t_0}) = \delta_{t_0}$ for all $t_0 \in T_0$;
- (ii) α' is the unique natural transformation of left ultrafunctors $\mathcal{O}_{\beta T} \circ f \to \mathcal{O}_{\beta T_0}$ such that $\varepsilon_{T_0,t_0} \circ \alpha'_{\delta_{t_0}} = \varepsilon_{T,t_0}$ for every $t_0 \in T_0$.

By the remark preceding exercise (c), we must have $f = u_*$. By exercises (b) and (c), we get $\alpha' = \alpha$, which completes the proof.

MARKING SCHEME

- (a) 1pt Spelling out the conditions (i) and (ii) that (f, α) needs to satisfy.
 - 1pt Using Proposition 3.2.7 to deduce that f is uniquely determined.
 - 1pt Using Proposition 4.2.9 to deduce that α is uniquely determined.
- (b) $\frac{1}{2}$ pt Formulating the diagram that needs to commute (either the first diagram in the solution, or already spelled out in terms of Δ and ϵ).
 - 2pt Appending the right diagrams in order to obtain the desired diagram. One should mention the axioms that are being used (in this case: (C), (3) and (1)). Failing to mention these in some way leads to a $\frac{1}{2}$ pt subtraction (per axiom, up to a maximum of 1pt).
 - $\frac{1}{2}$ pt Mentioning that (u_*, α) is cartesian by axiom (B).
- (c) 2pt Appending the right diagrams in order to obtain the desired diagram. One should mention the axioms that are being used (in this case: (A) and (2)). Failing to mention these in some way leads to a $\frac{1}{2}$ pt subtraction
- (d) 1pt Showing that the underlying continuous function is u*.
 1pt Showing that the natural transformation of left ultrafunctors is α.