SEMINAR ULTRACATEGORIES: HAND-IN CHAPTER 4

Model solution

(a) Suppose that we have an object $\left(X, \mathcal{O}_{X}\right)$ of $\operatorname{Comp}_{\mathcal{M}}$ and, for each $t \in T$, a map $\underline{M_{t}} \rightarrow$ $\left(X, \mathcal{O}_{X}\right)$. By Remark 4.2.6, such a map is determined by an element $x_{t} \in X$ and an arrow $g_{t}: \mathcal{O}_{X, x_{t}} \rightarrow M_{t}$. We need to show that there exists a unique arrow $(f, \alpha):\left(\beta T, \mathcal{O}_{\beta T}\right) \rightarrow$ $\left(X, \mathcal{O}_{X}\right)$ such that the diagram

commutes for all $t \in T$. The commutativity of this diagram comes down to the following two requirements:
(i) $f\left(\delta_{t}\right)=x_{t}$;
(ii) $\varepsilon_{T, t} \circ \alpha_{\delta_{t}}=g_{t}$.

By the universal property of βT (Proposition 3.2.7), there exists a unique continuous map $f: \beta T \rightarrow X$ satisfying (i) for all $t \in T$. By Proposition 4.2 .9 , there exists a unique natural transformation of left ultrafunctors $\alpha: \mathcal{O}_{X} \circ f \rightarrow \mathcal{O}_{\beta T}$ satisfying (ii) for all $t \in T$. This completes the proof.
(b) It is given in the exercise that u_{*} is continuous. So, in order to prove that $\left(u_{*}, \alpha\right)$ is a morphism, it remains to show that α is a natural transformation of left ultrafunctors. That is, we need to show that α is compatible with the left ultrastructures σ_{μ} described in Proposition 4.2.8. Explicitly, let $\nu_{\bullet}: S \rightarrow \beta T$ be a map of sets, and let $\mu \in \beta S$. We need to show that

commutes. We obtain this diagram by appending the two squares

$$
\begin{aligned}
& \int_{T} M_{t} d\left(\int_{T_{0}} \delta_{t_{0}} d\left(\int_{S} \nu_{s} d \mu\right)\right)=\int_{T} M_{t} d\left(\int_{S}\left(\int_{T_{0}} \delta_{t_{0}} d \nu_{s}\right) d \mu\right) \\
& \downarrow \downarrow \Delta_{\mu, \int_{T_{0}} \delta_{t_{0}} d \nu \bullet} \\
& \Delta_{\int_{S} \nu_{s} d \mu, \delta \bullet} \quad \int_{S}\left(\int_{T} M_{t} d\left(\int_{T_{0}} \delta_{t_{0}} d \nu_{s}\right)\right) d \mu \\
& \downarrow \int_{S} \Delta_{\nu_{s}, \delta \bullet} d \mu \\
& \int_{T_{0}}\left(\int_{T} M_{t} d \delta_{t_{0}}\right) d\left(\int_{S} \nu_{s} d \mu\right) \xrightarrow{\Delta_{\mu, \nu_{\bullet}}} \int_{S}\left(\int_{T_{0}}\left(\int_{T} M_{t} d \delta_{t_{0}}\right) d \nu_{s}\right) d \mu \\
& \int_{T_{0}} \varepsilon_{T, t_{0}} d\left(\int_{S} \nu_{s} d \mu\right) \downarrow \downarrow \int_{S}\left(\int_{T_{0}} \varepsilon_{T, t_{0}} d \nu_{s}\right) d \mu \\
& \int_{T_{0}} M_{t_{0}} d\left(\int_{S} \nu_{s} d \mu\right) \xrightarrow[S]{\Delta_{\mu, \nu_{\bullet}}}\left(\int_{T_{0}} M_{t_{0}} d \nu_{s}\right) d \mu
\end{aligned}
$$

where the top square commutes by axiom (C) of an ultracategory, the bottom square commutes by the naturality of $\Delta_{\mu, \nu_{\bullet}}$ (axiom (3)), and $\int_{S}\left(\int_{T_{0}} \varepsilon_{T, t_{0}} d \nu_{s}\right) d \mu \circ \int_{S} \Delta_{\nu_{s}, \delta \boldsymbol{\bullet}} d \mu$ is equal to $\int_{S} \alpha_{\nu_{s}} d \mu$ by the functoriality of $\int_{S} \bullet d \mu$ (axiom (1)). Finally, $\left(u_{*}, \alpha\right)$ is cartesian since $\alpha_{\nu}=\Delta_{\nu, u}$ is an isomorphism for each $\nu \in \beta T_{0}$, by axiom (B).

Remark: everyone forgot to mention the functoriality of $\int \bullet d \mu$.
(c) We obtain this diagram by appending the diagrams

where the top square commutes by axiom (A) and the bottom square commutes by the naturality of $\varepsilon_{T_{0}, t_{0}}$ (axiom (2)).

Remark: some of you claimed that $\Delta_{\delta_{t_{0}}, \delta \bullet}$ is the inverse of $\varepsilon_{T_{0}, t_{0}}: \int_{T_{0}} M_{t_{0}^{\prime}} d \delta_{t_{0}} \rightarrow M_{t_{0}}$. This is not correct, however, since the domain of $\Delta_{\delta_{t_{0}}, \delta \bullet}$ is not a map $M_{t_{0}} \rightarrow \int_{T_{0}} M_{t_{0}^{\prime}} d \delta_{t_{0}}$.
(d) By exercise (a), the canonical map $\bigsqcup_{t_{0} \in T_{0}} \underline{M_{t_{0}}} \rightarrow \bigsqcup_{t \in T} \underline{M_{t}}$ is $\left(f, \alpha^{\prime}\right):\left(\beta T_{0}, \mathcal{O}_{\beta T_{0}}\right) \rightarrow$ $\left(\beta T, \mathcal{O}_{\beta T}\right)$, where:
(i) f is the unique continuous map $\beta T_{0} \rightarrow \beta T$ such that $f\left(\delta_{t_{0}}\right)=\delta_{t_{0}}$ for all $t_{0} \in T_{0}$;
(ii) α^{\prime} is the unique natural transformation of left ultrafunctors $\mathcal{O}_{\beta T} \circ f \rightarrow \mathcal{O}_{\beta T_{0}}$ such that $\varepsilon_{T_{0}, t_{0}} \circ \alpha_{\delta_{t_{0}}}^{\prime}=\varepsilon_{T, t_{0}}$ for every $t_{0} \in T_{0}$.
By the remark preceding exercise (c), we must have $f=u_{*}$. By exercises (b) and (c), we get $\alpha^{\prime}=\alpha$, which completes the proof.

Marking SCheme

(a) 1 pt Spelling out the conditions (i) and (ii) that (f, α) needs to satisfy.

1 pt Using Proposition 3.2.7 to deduce that f is uniquely determined.
1 pt Using Proposition 4.2.9 to deduce that α is uniquely determined.
(b) $\frac{1}{2} \mathrm{pt}$ Formulating the diagram that needs to commute (either the first diagram in the solution, or already spelled out in terms of Δ and ϵ).
2 pt Appending the right diagrams in order to obtain the desired diagram. One should mention the axioms that are being used (in this case: (C), (3) and (1)). Failing to mention these in some way leads to a $\frac{1}{2} \mathrm{pt}$ subtraction (per axiom, up to a maximum of 1 pt).
$\frac{1}{2} \mathrm{pt}$ Mentioning that $\left(u_{*}, \alpha\right)$ is cartesian by axiom (B).
(c) 2 pt Appending the right diagrams in order to obtain the desired diagram. One should mention the axioms that are being used (in this case: (A) and (2)). Failing to mention these in some way leads to a $\frac{1}{2}$ pt subtraction
(d) 1 pt Showing that the underlying continuous function is u_{*}.

1 pt Showing that the natural transformation of left ultrafunctors is α.

