
Seminar Ultracategories - Model solution 5
Tim Baanen

Let P be a complete linear order, i.e. a linear order such that all subsets of P have a least
upper and greatest lower bound. Note that P , as a poset category, is then also complete,
hence it has a categorical ultrastructure.

1. Show that the category StoneP is equivalent to the category with:

• Objects (X, f), where X is a Stone space and f : X → P is a function such that for all µ
there is an S0 ∈ µ and s ∈ S0 with f(

∫
s∈S

xs dµ) ≤ f(xs);

• Arrows (X, f)
ϕ→ (Y, g) are continuous functions ϕ : Y → X such that for all y ∈ Y , g(y) ≤

f(ϕ(y)).

By definition, an object of StoneP is a Stone space X, together with an ultrafunctor f : X → P . We
will show that a map f : X → P is an ultrafunctor if and only if for all ultrafilters µ there is an s with
f(
∫
s∈S

xs dµ) ≤ f(xs). Since all diagrams in P commute and there are no nontrivial arrows in X, f is
an ultrafunctor if and only if for all {xs}s∈S we have f(

∫
s∈S

xs dµ) ≤
∫
s∈S

f(xs)dµ. Thus, we need to
check that the given condition is equivalent to f(

∫
s∈S

xs dµ) ≤
∫
s∈S

f(xs)dµ. In the case that P is finite,
we have f(

∫
s∈S

xs dµ) ≤
∫
s∈S

f(xs)dµ for all x : S → X and µ : βS, then we have
∫
s∈S

f(xs)dµ =
maxS0∈µ mins∈S0

f(xs), so we can simply take the corresponding S0 and s, and get the equivalence.
Now we need to extend this to an arbitrary linear order P . Given µ ∈ βS and x : S → X, and let f

be an ultrafunctor. We want to show there is an s ∈ S with f(
∫
s∈S

xs dµ) ≤ f(xs). Since the principal
ultrafilters are dense in βS, we can write µ as the limit of principal ultrafilters {δn}. Consider the map∫
s∈S

xs d_ : βS → X. This is a continuous map between compact Hausdorff spaces, so its image is closed.
Let {xn} be the sequence given by applying this map to each δn, then this will also converge to

∫
s∈S

xs dµ.
Moreover, for each n we have f(

∫
s∈S

xs dδn) ≤ f(xn) since f is an ultrafunctor. Note that it does not really
make sense to take the limit of f(xn) since that would mix the concept of topological limit with the concept
of limit in orders. We can fix this by considering the limit supremum, lim supn∈N xn (since the topology on
P for which limits coincide with suprema is the topology of upsets AP from the next exercise). Let yn be
the subsequence (allowing repetitions) of xn occuring in the limit supremum, then it is a subsequence of a
converging sequence in a closed subspace of a compact Hausdorff space. Thus, it converges to some point of
this closed subspace (not necessarily the same if yn remains constant for large enough n), which is exactly
the xs that we are looking for (and we can take S0 to be S itself).

For the converse, suppose f(
∫
s∈S

xs dµ) >
∫
s∈S

f(xs)dµ. Since the ultraproduct is a supremum over
the elements of µ, we also have f(

∫
s∈S

xs dµ) >
∏

s∈S0
f(xs) for all S0 ∈ µ. The product in a poset is the

greatest lower bound, and we have a strict inequality, we have f(
∫
s∈S

xs dµ) > f(xs) for xs ∈ S0, which is
exactly the negation of the condition f(

∫
s∈S

xs dµ) ≤ f(xs).
For arrows, the conditions for (ϕ, α) : (X, f) → (Y, g) in StoneP state that ϕ : Y → X is a continuous

function, and that α is a natural transformation of ultrafunctors g ⇒ f ◦ ϕ, which is just a natural trans-
formation that commutes with the ultrastructures on the two functors. Since Stone spaces have only trivial
arrows and all diagrams in P commute, this means that at each object y ∈ Y we have an arrow from g(y)
to f(ϕ(y)). This is exactly the condition that we require.
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2. Let AP be the topology on P where a set U ⊆ P is open iff it is an upset (i.e. x ∈ U and
x ≤ y imply y ∈ U). Show that Shv (AP ) is equivalent to Fun(P,Set).
Let F : Aop

P → Set be a sheaf, then we can define a functor F : P → Set as follows: Given an object x ∈ P ,
define ↑ (x) = {y | y ≥ x}, and note that this is indeed open in AP . We set F (x) = F(↑ (x)). Given an arrow
x ≤ y in P , by transitivity of the order we have that ↑ (y) ⊆ ↑ (x). Applying F to this inclusion gives an
arrow in the opposite direction F (x) = F(↑ (x)) → F(↑ (y)) = F (y). Note that F being a presheaf implies
that F is a functor. Any natural transformation F ⇒ G will give rise to a natural transformation of the
corresponding functor, since the functor is essentially a restriction of the sheaf.

For the opposite direction, let F : P → Set be a functor, then we want to find a sheaf F : Aop
P → Set.

Note that a basis of AP is given by all the upsets of the form ↑ (x) = {y | y ≥ x}, together with the empty
set, since any upset U is equal to

∪
x∈U ↑ (x). Thus, it suffices to specify F on this basis to get a sheaf up to

natural isomorphism, so we set F(∅) = ⊤ for some choice of terminal object ⊤, and F(↑ (x)) = F (x). For
the arrows to F(∅) we take the unique maps to the terminal object (which automatically satisfy the sheaf
axioms), and for other arrows F(↑ (x)) → F(↑ (y)) for ↑ (y) ⊆ ↑ (x), we note that y ∈ ↑ (y) ⊆ ↑ (x) implies
x ≤ y, so we can take the arrow F (x ≤ y) : F (x) = F(↑ (x)) → F(↑ (y)) = F (y). This gives a presheaf since
we can just extend the proof that F is a functor with the fact that the maps to the terminal object ⊤ are
unique. Moreover F is a sheaf, since any open cover of a basic open ↑ (x) must contain ↑ (x) itself, so the
locality and gluing axioms are automatically satisfied. By uniquely extending a given natural transformation
F ⇒ G, we find a map of sheaves F ⇒ G.

It remains to show that these constructions are pseudo-inverses to each other. If we start with a functor
F : P → Set, construct a sheaf, then go back to a functor, we get exactly the same functor back. On the
other hand, if we start with a sheaf F , then apart from ∅ we restrict F to the basis consisting of sets of the
form ↑ (x), and then extend it uniquely, up to natural isomorphism, back to F ′. This new sheaf is isomorphic
to F except perhaps in its component at ∅. However, by the sheaf axioms, since ∅ is an initial object, we
have that F(∅) is terminal (and F ′(∅) is terminal by construction). Thus we can find an isomorphism of
sheaves from F to F ′, which sends one terminal object to another, and leaves other components in place.

3. Show that all functors in Fun(P,Set) have a left ultrastructure.
Here I will use a nice argument given by Bart and Matteo. Given F : P → Set, we find a left ultrastructure

on F using Proposition 1.4.9. Suppose we have M : S → P and µ : βS, we want to show that the maps
F (qS0

µ ) : F (
∏

s∈S0
Ms) → F (

∫
s∈S

Ms dµ) exhibit F (
∫
s∈S

Ms dµ) as the colimit of the diagram consisting of
all F (

∏
s∈S0

Ms). Note that in P , we have that qS0
µ is just the inequality

∏
s∈S0

Ms ≤
∫
s∈S

Ms dµ.
Sending this through the equivalence of the previous exercise, we find a sheaf F on AP , and we want

to know whether F(↑
(∫

s∈S
Ms dµ

)
⊆ ↑

(∏
s∈S0

Ms

)
) form the colimiting cocone over the diagram of all

F(↑
(∏

s∈S0
Ms

)
) for S0 ∈ µ. Since the inclusion between sets ↑ (x) of AP just form the dual category to

P itself, and by completeness of P , colimits in P are sent to limits and AP , we have that ↑
(∫

s∈S
Ms dµ

)
is the limit of the diagram ↑

(∏
s∈S0

Ms

)
for S0 ∈ µ. Using the fact that sheaves send limits in AP to

colimits in Set, we conclude that F (qS0
µ ) exhibits F (

∫
s∈S

Ms dµ) as the colimit of the diagram consisting of
all F (

∏
s∈S0

Ms), so F has an ultrastructure.
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4. Can we conclude that FunLUlt(P,Set) is equivalent to Shv (AP )?
This is the case if and only if each functor F : P → Set has a left ultrastructure that is unique up to

natural isomorphism of left ultrafunctors. By Proposition 1.4.9 and the result of the previous exercise, this
happens exactly when all ultrafunctors F, σµ have the property that for all µ ∈ βS and S0 ∈ µ, the following
diagram commutes up to natural isomorphism of σµ:

F (
∏

s∈S0
Ms)

∏
s∈S0

F (Ms)

F (
∫
s∈S

Ms dµ)
∫
s∈S

F (Ms)dµ.

F (qS0
µ ) qS0

µ

σµ

Following the previous exercise, we can assume that F arises from restricting a sheaf F on AP to the basis
that corresponds to P itself, and again use that sheaves send limits in AP to colimits in Set, we want to
know whether the following diagram commutes up to natural isomorphism of σµ:

F(↑
(∫

s∈S
Ms dµ

)
) lim−→S0∈µ

∏
s∈S0

F(↑ (Ms))

lim−→S0∈µ
F(↑

(∏
s∈S0

Ms

)
) ,

σµ

∼
lim−→S0∈µ

ϕS0

where ϕS0
: F(↑

(∏
s∈S0

Ms

)
) = F (

∏
s∈S0

Ms) →
∏

s∈S0
F (Ms) =

∏
s∈S0

F(↑ (Ms)) is the canonical map
switching the order of functor and product.

First, we will show the diagram commutes for principal ultrafilters µ = δs. In that case, we have that∫
s∈S

Ms dδs = Ms, so we have the following diagram:

F(↑ (Ms)) = F(↑
(∫

s∈S
Ms dδs

)
)

∫
s∈S

Ms dδs

F(↑ (Ms)) ,

id=F (ϵs)

σδs

ϵs

which commutes due to the ultrastructure axioms.
Since ultraproducts are dense in βS, write an arbitrary ultraproduct µ as µ =

∫
s∈S

δs dµ. Next, we
extend S by adjoining a new element ∗, and set m∗ =

∏
s∈S0

Ms. The inclusion S ↪→ S ∪ {∗} gives rise to
a monomorphism βS ↪→ β(S ∪ {∗}), where the image of a principal ultrafilter δs is just the corresponding
principal ultrafilter δs (on a larger powerset), while the image of µ is µ∗ =

∫
s∈S

δ′s dµ (with δ′s a principal
ultrafilter on S ∪ {∗}). We extend a given M : S → P to S ∪ {∗} by setting M ′

∗ =
∏

s∈S0
Ms. Since it is a

principal ultrafilter, σδ∗ makes the diagram for M ′ commute. By construction, we also have that σµ∗ makes
the following diagram commute, for S0 specifically:

F (
∏

s∈S0
Ms) = F (M ′

∗)
∏

s∈S0
F (Ms)

F (
∫
s∈S

Ms dµ∗)
∫
s∈S

F (Ms)dµ∗.

F (qS0
µ∗ ) qS0

µ∗

σµ∗

(where we use that M ′ restricted to a subset of S is just M). Applying the Fubini transform to µ =
∫
s∈S

δs dµ
and µ∗ =

∫
s∈S

δ′s dµ, we find that this defines σµ up to natural isomorphism as σµ∗ , which was unique by
Proposition 1.4.9.

Thus, we conclude that the left ultrastructures on a functor F : P → Set are unique up to isomorphism,
which means that FunLUlt(P, Set) is indeed equivalent to Shv (AP ).
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