Seminar on Logic - 2018/2019. Exercise of the 17th of April with Solution.

We said that, since $y^{op}: \mathbb{C}^{op} \to \operatorname{Pro}(\mathbb{C})^{op}$ is the free small filtered cocompletion of \mathbb{C}^{op} , there is a bijection between the class of continuous presheaves $\operatorname{Pro}(\mathbb{C})^{op} \to \operatorname{SET}$ and the class of presheaves $\mathbb{C}^{op} \to \operatorname{SET}$. This bijection is the precomposition with y^{op} .

(a) - (3 points) Prove that this bijection is actually an equivalence of categories, that is, it is fully faithful.

Solution. Let F, G be continuous presheaves $\operatorname{Pro}(\mathcal{C})^{op} \to \operatorname{Set}$.

Faithfulness: let $\alpha, \beta: F \to G$ be arrows of $\operatorname{SET}^{\operatorname{Pro}(\mathbb{C})^{op}}$ such that $\alpha y^{op} = \beta y^{op}$. Let P be an object of $\operatorname{Pro}(\mathbb{C})^{op}$. Then $P = \operatorname{colim}_{(a \in \mathcal{A})} y^{op}_{C_a}$, being \mathcal{A} small and filtered and being $C_a \in \mathbb{C}$ for every $a \in \mathcal{A}$. By continuity and by colimit universal property it is the case that $\alpha(P) = \alpha(\operatorname{colim}_{(a \in \mathcal{A})} y^{op}_{C_a}) = \operatorname{colim}_{(a \in \mathcal{A})} \alpha(y^{op}_{C_a}) = \beta(\operatorname{colim}_{(a \in \mathcal{A})} y^{op}_{C_a}) = \beta(P)$. Since P is arbitrary, we conclude that $\alpha = \beta$.

Fullness: let $\alpha: Fy^{op} \to Gy^{op}$ be an arrow in $\operatorname{SET}^{\mathbb{C}^{op}}$. If $P \in \operatorname{Pro}(\mathbb{C})$, then $P = \operatorname{colim}_{(a \in \mathcal{A})} y_{C_a}^{op}$, being \mathcal{A} small and filtered and being $C_a \in \mathbb{C}$ for every $a \in \mathcal{A}$. We define $\beta(P) := \operatorname{colim}_{a \in \mathcal{A}} \alpha(C_a)$. We verify that this definition does not depend on the choice of the small filtered diagram. Then we see that β is natural $F \to G$. Finally, by definition, it is clear that $\beta(y_c^{op}) = \alpha(C)$ for every $C \in \mathbb{C}$, that is, $\beta y^{op} = \alpha$.

A clearer proof of the fact that the precomposition with:

 $\Gamma \colon \text{STONE}_{\mathfrak{C}} \to \text{Pro}(\mathfrak{C})$

induces an equivalence of categories $\operatorname{Shv}^{\operatorname{cont}}(\operatorname{Pro}(\mathcal{C})) \to \operatorname{Shv}^{\operatorname{cont}}(\operatorname{STONE}_{\mathcal{C}}).$

Let \mathcal{C} be a small pretopos.

(b) - (4 points) Without using that $\operatorname{Pro}^{wp}(\mathcal{C}) \subseteq \operatorname{Pro}(\mathcal{C})$ is a basis for the coherent topology over $\operatorname{Pro}(\mathcal{C})$ (as we did during the seminar), prove that the precomposition with the fully faithful functor:

 $\operatorname{Pro}^{wp}(\mathcal{C}) \subseteq \operatorname{Pro}(\mathcal{C})$

is an equivalence $\operatorname{Shv}(\operatorname{Pro}(\mathbb{C})) \to \operatorname{Shv}(\operatorname{Pro}^{wp}(\mathbb{C}))$, exhibiting its pseudo-inverse. *Hint: use Theorem 6.2.12* and look into the proof of Corollary 7.2.4.

Solution. There are (at least) two ways of exhibiting a pseudo-inverse: the first one is the precomposition with the functor λ : $\operatorname{Pro}(\mathcal{C}) \to \operatorname{Pro}^{wp}(\mathcal{C})$ of Theorem 6.2.12, in which case you basically verify that $\lambda \circ (\operatorname{Pro}^{wp}(\mathcal{C}) \subseteq \operatorname{Pro}(\mathcal{C}))$ and $(\operatorname{Pro}^{wp}(\mathcal{C}) \subseteq \operatorname{Pro}(\mathcal{C})) \circ \lambda$ are naturally isomorphic to the identities.

The second one is the following. Since it is the case that:

 $\mathcal{F} \cong \mathrm{Eq}(\mathcal{F} \upharpoonright_{\mathrm{Pro}^{w_p}(\mathcal{C})} \lambda(-) \rightrightarrows \mathcal{F} \upharpoonright_{\mathrm{Pro}^{w_p}(\mathcal{C})} \lambda(\lambda(-) \times_{(-)} \lambda(-)))$

for every $\mathcal{F} \in \operatorname{Pro}(\mathcal{C})$ (as we can see in the proof of Corollary 7.2.4), we can consider the functor:

$$\operatorname{Pro}^{wp}(\mathcal{C}) \ni \mathcal{F}' \mapsto \operatorname{Eq}(\mathcal{F}'\lambda(-) \rightrightarrows \mathcal{F}'\lambda(\lambda(-) \times_{(-)} \lambda(-))) \in \operatorname{Pro}(\mathcal{C}),$$

that provides a pseudo-inverse of:

$$\operatorname{Pro}(\mathcal{C}) \ni \mathcal{F} \mapsto \mathcal{F} \circ (\operatorname{Pro}^{wp}(\mathcal{C}) \subseteq \operatorname{Pro}(\mathcal{C}))^{op} = \mathcal{F} \upharpoonright_{\operatorname{Pro}^{wp}(\mathcal{C})} \in \operatorname{Pro}^{wp}(\mathcal{C}).$$

In both cases we are using that λ preserves small filtered limits (Theorem 6.2.12).

(c) - (3 points) Prove that this equivalence restrics to an equivalence:

 $\operatorname{Shv}^{cont}(\operatorname{Pro}(\mathcal{C})) \to \operatorname{Shv}^{cont}(\operatorname{Pro}^{wp}(\mathcal{C}))$

and so conclude the usual equivalence:

$$\operatorname{Shv}^{\operatorname{cont}}(\operatorname{Pro}(\mathcal{C})) \to \operatorname{Shv}^{\operatorname{cont}}(\operatorname{STONE}_{\mathcal{C}})$$

induced by $\Gamma \colon \text{STONE}_{\mathfrak{C}} \to \text{Pro}(\mathfrak{C})$.

Solution. Let $\mathcal{F} \in \operatorname{Pro}(\mathcal{C})$. Since $\operatorname{Pro}^{wp}(\mathcal{C}) \subseteq \operatorname{Pro}(\mathcal{C})$ preserves small filtered limits (Remark 6.2.7), whenever \mathcal{F} is continuous, it is the case that $\mathcal{F} \circ (\operatorname{Pro}^{wp}(\mathcal{C}) \subseteq \operatorname{Pro}(\mathcal{C}))^{op}$ is continuous. Viceversa, if $\mathcal{F} \circ (\operatorname{Pro}^{wp}(\mathcal{C}) \subseteq \operatorname{Pro}(\mathcal{C}))^{op} = \mathcal{F} \upharpoonright_{\operatorname{Pro}^{wp}(\mathcal{C})}$ is continuous, then, since λ preserves small filtered limits, since:

$$\mathfrak{F} \cong \mathrm{Eq}(\mathfrak{F} \upharpoonright_{\mathrm{Pro}^{wp}(\mathfrak{C})} \lambda(-) \rightrightarrows \mathfrak{F} \upharpoonright_{\mathrm{Pro}^{wp}(\mathfrak{C})} \lambda(\lambda(-) \times_{(-)} \lambda(-)))$$

and since in SET small filtered colimits commute with finite limits, it is also the case that \mathcal{F} is continuous. Therefore the equivalence $\operatorname{Shv}(\operatorname{Pro}(\mathcal{C})) \simeq \operatorname{Shv}(\operatorname{Pro}^{wp}(\mathcal{C}))$ restricts to an equivalence $\operatorname{Shv}^{cont}(\operatorname{Pro}(\mathcal{C})) \simeq \operatorname{Shv}^{cont}(\operatorname{Pro}^{wp}(\mathcal{C}))$.

Finally, since $\Gamma \colon \text{STONE}_{\mathcal{C}} \to \text{Pro}(\mathcal{C})$ factors as:

$$(\text{STONE}_{\mathcal{C}} \xrightarrow{\Gamma} \text{Pro}(\mathcal{C})) = (\text{STONE}_{\mathcal{C}} \simeq \text{Pro}^{wp}(\mathcal{C}) \subseteq \text{Pro}(\mathcal{C}))$$

(Theorem 6.3.14) and since, as we saw, the precomposition with $\operatorname{Pro}^{wp}(\mathcal{C}) \subseteq \operatorname{Pro}(\mathcal{C})$ is an equivalence $\operatorname{Shv}^{cont}(\operatorname{Pro}(\mathcal{C})) \simeq \operatorname{Shv}^{cont}(\operatorname{Pro}^{wp}(\mathcal{C}))$, it is the case that the precompositon with Γ is an equivalence $\operatorname{Shv}^{cont}(\operatorname{Pro}(\mathcal{C})) \simeq \operatorname{Shv}^{cont}(\operatorname{STONE}_{\mathcal{C}})$.