Hand-in 10

Course: Seminar Logic - Categorical Logic

Universiteit Utrecht

April 30, 2024

This hand-in consists of three exercises. We write \mathbb{T} for some subcategory of the category of topological spaces with the following properties:

- a. If $X \in \mathbb{T}$ and U is an open subset of X, then U is an object of \mathbb{T} and the inclusion $U \hookrightarrow T$ is an arrow of \mathbb{T} ;
- b. \mathbb{T} is closed under products;
- c. \mathbb{T} is a full subcategory of the category of topological spaces;
- d. $\mathbb{R} \in \mathbb{T}$ (\mathbb{R} is the real line with the usual topology).

When considering \mathbb{N} or \mathbb{Q} as topological spaces we consider them with the discrete topology.

Exercise 1. (5 points) In the seminar we defined a Grothendieck topology J on \mathbb{T} by

$$S \in J(T) \Leftrightarrow T = \{U | U \text{ is an open subset of } T, \text{ and } (U \hookrightarrow T) \in S\}.$$

Verify that this indeed defines a Grothendieck topology.

From now on we consider \mathbb{T} with the Grothendieck topology as above.

Exercise 2. (7 points) In the seminar we defined for each topological space X a presheaf C(X) on \mathbb{T} by $C(X)(T) = \operatorname{Cts}(T,X)$ on objects T and by precomposition on arrows. Show that C(X) is a sheaf.

- **Exercise 3.** (4+4 points) In the seminar we saw in the proof of Proposition 2.2 by unwinding forcing definitions that for each space W from \mathbb{T} we have $W \Vdash \neg \exists q \in C((Q)) (q \in U \land q \in L)$ being equivalent to the assertion that for any $\beta: W' \to W$ from \mathbb{T} and continuous $q: W' \to \mathbb{Q}$ not both $(\beta, q) \in L(W')$ and $(\beta, q) \in U(W')$. Similarly, show the following:
- **a.** Both $W \Vdash \exists r \in C(\mathbb{Q})(r \in U)$ and $W \Vdash \exists q \in C(\mathbb{Q})(q \in L)$ holding is equivalent to the assertion that there is an open cover $\{W_i\}$ op W such that for each i there are continuous $q_i, r_i : W_i \to \mathbb{Q}$ with $(W_i \hookrightarrow W, q_i) \in L(W_i)$ and $(W_i \hookrightarrow W, r_i) \in U(W_i)$.
- **b.** The forcing $W \Vdash \forall q, r \in C(\mathbb{Q}) (q < r \land r \in L \Rightarrow q \in L)$ is equivalent to the assertion that for any $\beta : W' \to W$ and continuous $q, r : W' \to \mathbb{Q}$ if q(x) < r(x) for all $x \in W'$ and $(\beta, r) \in L(W')$ then $(\beta, q) \in L(W')$. (Hint: You may use that under the isomorphism from Proposition 2.1 the ordering on $C(\mathbb{Q}_{dis})$ becomes the pointwise ordering.)