Hand-in 10
 Course: Seminar Logic - Categorical Logic

Universiteit Utrecht

May 21, 2024

This hand-in consists of three exercises. We write \mathbb{T} for some subcategory of the category of topological spaces with the following properties:
a. If $X \in \mathbb{T}$ and U is an open subset of X, then U is an object of \mathbb{T} and the inclusion $U \hookrightarrow T$ is an arrow of \mathbb{T};
b. \mathbb{T} is closed under products;
c. \mathbb{T} is a full subcategory of the category of topological spaces;
d. $\mathbb{R} \in \mathbb{T}(\mathbb{R}$ is the real line with the usual topology).

When considering \mathbb{N} or \mathbb{Q} as topological spaces we consider them with the discrete topology.
Exercise 1. (5 points) In the seminar we defined a Grothendieck topology J on \mathbb{T} by

$$
S \in J(T) \Leftrightarrow T=\{U \mid U \text { is an open subset of } T, \text { and }(U \hookrightarrow T) \in S\}
$$

Verify that this indeed defines a Grothendieck topology.
Solution. We verify the requirements from I.1.5. We start with (i). Let $T \in \mathbb{T}$. Then the identity on T lies in \mathbb{T} and therefor also $1_{T} \in y(T)$. Noting that 1_{T} is the inclusion of T in itself we now see

$$
T \supseteq \bigcup\{U \mid U \text { open in } T,(U \hookrightarrow T) \in y(T)\} \supset \operatorname{dom}\left(1_{T}\right)=T
$$

so

$$
T=\bigcup\{U \mid U \text { open in } T,(U \hookrightarrow T) \in y(T)\}
$$

and therefor $y(T)$ is a covering of T. This shows that (i) holds.
We now verify (ii). Let $g: T^{\prime} \rightarrow T$ be a \mathbb{T}-arrow and $S \in J(T)$. Then we have

$$
T=\bigcup\{U \mid U \text { open in } T,(U \hookrightarrow T) \in S\}
$$

Consequently

$$
T^{\prime}=\bigcup\left\{g^{-1}(U) \mid U \text { open in } T,(U \hookrightarrow T) \in S\right\}
$$

Note that for U open in T with $(U \hookrightarrow T) \in S$ we have $g^{-1}(U)$ open by g being continuous and for $i: g^{-1}(U) \hookrightarrow T^{\prime}$ the inclusion we have $\operatorname{im}(g \circ i) \subseteq U$. By property (a) of \mathbb{T} we have that $g^{-1}(U), i \in T^{\prime}$. Note now that $\left.g\right|_{g^{-1}(U)}=g \circ i \in \mathbb{T}$ and consequently $g \circ i=\left.(U \hookrightarrow T) \circ g\right|_{g^{-1}(U)} \in S$. We see $i \in(y(g))^{-1}(S)$. We now find

$$
T^{\prime} \supseteq \bigcup\left\{V \mid V \text { open in } T^{\prime},\left(V \hookrightarrow T^{\prime}\right) \in(y(g))^{-1}(S)\right\} \supseteq \bigcup\left\{g^{-1}(U) \mid U \text { open in } T,(U \hookrightarrow T) \in S\right\}=T^{\prime}
$$

and therefor

$$
T^{\prime}=\bigcup\left\{V \mid V \text { open in } T^{\prime},\left(V \hookrightarrow T^{\prime}\right) \in(y(g))^{-1}(S)\right\}
$$

We conclude that $(y(g))^{-1}(S)$ is a covering of T^{\prime} which proves (ii).
We finally verify (iii). Let R be a sieve on some $T \in \mathbb{T}$ and let S be a covering on T such that for each $\left(g: T^{\prime} \rightarrow T\right) \in S$ we have $(y(g))^{-1} \in J\left(T^{\prime}\right)$. Let $x \in T$. Then by S a covering there is $U \subseteq T$ open such that $(U \hookrightarrow T) \in S$ and $x \in U$. Let i be the inclusion of U in T. Then $(y(i))^{-1}(R) \in J(U)$ and therefor there is $V \subseteq T^{\prime}$ open in U such that $(V \hookrightarrow U) \in(y(i))^{-1}(R)$. Consequently $(V \hookrightarrow T)=i \circ(V \hookrightarrow U) \in R$. We see that x lies in $\{V \mid V$ open in $T,(V \hookrightarrow T) \in R\}$. As x was arbitrary in T we conclude that

$$
T=\{V \mid V \text { open in } T,(V \hookrightarrow T) \in R\}
$$

or equivalently that R is a covering of T. This proves (iii) and completes the proof.
From now on we consider \mathbb{T} with the Grothendieck topology as above.
Exercise 2. (7 points) In the seminar we defined for each topological space X a presheaf $C(X)$ on \mathbb{T} by $C(X)(T)=\operatorname{Cts}(T, X)$ on objects T and by precomposition on arrows. Show that $C(X)$ is a sheaf.

Solution. We have already seen during the seminar that $C(X)$ is a presheaf. It remains to show that $C(X)$ has the sheaf property. Suppose that S is a covering of some $T \in \mathbb{T}$ and suppose that we have a morphism $\tau: S \rightarrow C(X)$. We need to construct an extension of τ to $y(T)$. Let $f: T^{\prime} \rightarrow T$ be a \mathbb{T}-arrow. We need to define a continuous $f^{*}: T^{\prime} \rightarrow X$. Let $x \in T^{\prime}$. Then there is open U in T such that $(U \hookrightarrow T) \in S$ and $f(x) \in U$. Then we have the map $\tau((U \hookrightarrow T)): U \rightarrow X$ and consequently $\tau((U \hookrightarrow T))(f(x)) \in X$. We show now that $\tau((U \hookrightarrow T))(f(x))$ does not depend on U. Let V be another open in T such that $(V \hookrightarrow T) \in S$ and $f(x) \in V$. Then $U \cap V$ is open in both U and V so $(U \cap V \hookrightarrow U),(U \cap V \hookrightarrow V)$ are both \mathbb{T}-arrows. We now find by τ being a morphism that

$$
\begin{aligned}
\tau((U \hookrightarrow T))(f(x)) & =\tau((U \hookrightarrow T))((U \cap V \hookrightarrow U)(f(x))) \\
& =(\tau((U \hookrightarrow T)) \circ(U \cap V \hookrightarrow U))(f(x)) \\
& =\tau((U \hookrightarrow T) \circ(U \cap V \hookrightarrow U))(f(x)) \\
& =\tau((U \cap V \hookrightarrow T))(f(x)) \\
& =\tau((V \hookrightarrow T))(f(x)) .
\end{aligned}
$$

We see that $\tau((U \hookrightarrow T))(f(x))$ indeed does not depend on U such that more general we may define a function $f^{*}: T^{\prime} \rightarrow X$ by $f^{*}(x)=\tau((U \hookrightarrow T))(f(x))$ where U is an open in T such that $(U \hookrightarrow T) \in S$.

We now show that f^{*} is continuous. Let $x \in T^{\prime}$ and let U be open in T such that $(U \hookrightarrow T) \in S$ and $f(x) \in U$. Then by f being continuous $f^{-1}(U)$ is open in T^{\prime} and also $x \in f^{-1}(U)$. As x was arbitrary in T^{\prime} we see that T^{\prime} is covered by $\left\{f^{-1}(U) \mid U\right.$ open in $\left.T,(U \hookrightarrow T) \in S\right\}$ and that this cover is open. Also on each $f^{-1}(U)$ we have that f^{*} restricts to $\left.\tau(U \hookrightarrow T) \circ f\right|_{f^{-1}(U)}$ which is continuous. As f^{*} is continuous on each element of an open cover we have that f^{*} is continuous.

We have now a function $\tau^{\prime}: y(T) \rightarrow C(X)$. It remains to show that this is a morphism. Let $\left(f: T^{\prime} \rightarrow T\right) \in$ $y(T)$ and $g: T^{\prime \prime} \rightarrow T^{\prime}$. Then for $x \in T^{\prime \prime}$ there is open U of T such that $(U \hookrightarrow T) \in S$ and $f(g(x)) \in U$. We now compute

$$
\tau^{\prime}(f \circ g)(x)=\tau((U \hookrightarrow T))(f(g(x))) \tau((U \hookrightarrow T))(f(g(x)))=\tau^{\prime}(f)(g(x))=\left(\tau^{\prime}(f) \circ g\right)(x)
$$

so $\tau^{\prime}(f \circ g)=\tau^{\prime}(f) \circ g$. We see that τ^{\prime} is a morphism which completes the proof.
Exercise 3. ($4+4$ points) In the seminar we saw in the proof of Proposition 2.2 by unwinding forcing definitions that for each space W from \mathbb{T} we have $W \Vdash \neg \exists q \in C((Q))(q \in U \wedge q \in L)$ being equivalent to the assertion that for any $\beta: W^{\prime} \rightarrow W$ from \mathbb{T} and continuous $q: W^{\prime} \rightarrow \mathbb{Q}$ not both $(\beta, q) \in L\left(W^{\prime}\right)$ and $(\beta, q) \in U\left(W^{\prime}\right)$. Similarly, show the following:
a. Both $W \Vdash \exists r \in C(\mathbb{Q})(r \in U)$ and $W \Vdash \exists q \in C(\mathbb{Q})(q \in L)$ holding is equivalent to the assertion
that there is an open cover $\left\{W_{i}\right\}$ op W such that for each i there are continuous $q_{i}, r_{i}: W_{i} \rightarrow \mathbb{Q}$ with $\left(W_{i} \hookrightarrow W, q_{i}\right) \in L\left(W_{i}\right)$ and $\left(W_{i} \hookrightarrow W, r_{i}\right) \in U\left(W_{i}\right)$.

Solution. Suppose $W \Vdash \exists r \in C(\mathbb{Q})(r \in U)$ and $W \Vdash \exists q \in C(\mathbb{Q})(q \in L)$. Then there is a cover S_{L} of W such that for each $\left(g: W^{\prime} \rightarrow W\right) \in S$ there is $q \in C(\mathbb{Q})\left(W^{\prime}\right)$ such that $W^{\prime} \Vdash q \in(L \cdot g)$ and there is similar cover S_{U} of W for U. Let $S_{L}^{\prime}, S_{U}^{\prime}$ be the corresponding open covers. Let now $\left\{W_{i}\right\}$ be the set of elements of the form $O_{L} \cap O_{U}$ where $O_{L} \in S_{L}^{\prime}$ and $O_{U} \in S_{U}^{\prime}$. By S_{L}^{\prime}, S_{U}^{\prime} covering W it now follows that $\left\{W_{i}\right\}$ is also an open cover and therefor it generates a covering of W. Note also that each $O_{L} \cap O_{U} \in S^{\prime}$ is an open in O_{L} so $\left(O_{L} \cap O_{U} \hookrightarrow O_{L}\right) \in \mathbb{T}$ and consequently $\left(O_{L} \cap O_{U} \hookrightarrow W\right)=\left(O_{L} \hookrightarrow W\right) \circ\left(O_{L} \cap O_{U} \hookrightarrow O_{L}\right) \in S_{L}$ so $O_{L} \cap O_{U} \in S_{L}^{\prime}$. By choice of S_{L}^{\prime} and S we now find that $S \subseteq S_{L}$. Similarly $S \subseteq S_{U}$ so $S \subseteq S_{L} \cap S_{U}$. Consider now some W_{i}. Then $\left(W_{i} \hookrightarrow W\right) \in S \subseteq S_{L} \cap S_{U}$ and therefor by choice of S_{L}, S_{U} we have continuous $q_{i}, r_{i}: W_{i} \rightarrow \mathbb{Q}$ such that $W^{\prime} \Vdash q_{i} \in\left(L \cdot\left(W_{i} \hookrightarrow W\right)\right)$ and $W^{\prime} \Vdash r_{i} \in\left(U \cdot\left(W_{i} \hookrightarrow W\right)\right)$. As we're working in the standard interpretation this is equivalent to $\left(W_{i} \hookrightarrow W, q_{i}\right) \in L\left(W_{i}\right)$ and $\left(W_{i} \hookrightarrow W, r_{i}\right) \in U\left(W_{i}\right)$.

Conversely if there is an open cover $\left\{W_{i}\right\}$ op W such that for each i there are continuous $q_{i}, r_{i}: W_{i} \rightarrow \mathbb{Q}$ with $\left(W_{i} \hookrightarrow W, q_{i}\right) \in L\left(W_{i}\right)$ and $\left(W_{i} \hookrightarrow W, r_{i}\right) \in U\left(W_{i}\right)$ we take S to be the covering of T generated by $\left\{W_{i}\right\}$. Let $g: W^{\prime} \rightarrow W$. Then we have by the presheaf property $\left(\left.g\right|_{g^{-1}\left(W_{i}\right)},\left.\left(q_{i} \circ g\right)\right|_{g^{-1}\left(W_{i}\right)}\right) \in L\left(g^{-1}\left(W_{i}\right)\right)$ for each i and as g is continuous we have that $\left\{g^{-1}\left(W_{i}\right)\right\}$ is an open cover of W^{\prime} and therefor it generated a covering of T^{\prime} such that by L a sheaf we have $\left(g, q_{i} \circ g\right) \in L\left(W^{\prime}\right)$ or equivalently $W^{\prime} \Vdash q_{i} \circ g \in(L \cdot g)$. We see that $W \Vdash \exists q \in C(\mathbb{Q})(q \in L)$ holds. We may similarly show $W \Vdash \exists q \in C(\mathbb{Q})(q \in U)$. This completes the proof.
b. The forcing $W \Vdash \forall q, r \in C(\mathbb{Q})(q<r \wedge r \in L \Rightarrow q \in L)$ is equivalent to the assertion that for any $\beta: W^{\prime} \rightarrow W$ and continuous $q, r: W^{\prime} \rightarrow \mathbb{Q}$ if $q(x)<r(x)$ for all $x \in W^{\prime}$ and $(\beta, r) \in L\left(W^{\prime}\right)$ then $(\beta, q) \in L\left(W^{\prime}\right)$. (Hint: You may use that under the isomorphism from Proposition 2.1 the ordering on $C(\mathbb{Q})$ becomes the pointwise ordering.)

Solution. By the forcing definition for universal quantification we have that $W \Vdash q, r \in C(\mathbb{Q})(q<r \wedge r \in$ $L \Rightarrow q \in L)$ is equivalent to that for each $W^{\prime \prime} \xrightarrow{\gamma} W^{\prime} \xrightarrow{\beta} W, q \in C(\mathbb{Q})\left(W^{\prime}\right)$ and $r \in C(\mathbb{Q})\left(W^{\prime \prime}\right)$ the forcing $W^{\prime \prime} \Vdash q \cdot \gamma<r \wedge r \in L \cdot \beta \cdot \gamma \Rightarrow q \cdot \gamma \in L \cdot \beta \cdot \gamma$ holds. By the forcing definition for implication this is equivalent to that for each $W^{\prime \prime \prime} \xrightarrow{\delta} W^{\prime \prime} \xrightarrow{\gamma} W^{\prime} \xrightarrow{\beta} W, q \in C(\mathbb{Q})\left(W^{\prime}\right)$ and $r \in C(\mathbb{Q})\left(W^{\prime \prime}\right)$ the forcing $W^{\prime \prime \prime} \Vdash q \cdot \gamma \cdot \delta<r \cdot \delta \wedge r \cdot \delta \in L \cdot \beta \cdot \gamma \cdot \delta$ implies $W^{\prime \prime \prime} \Vdash q \cdot \gamma \cdot \delta \in L \cdot \beta \cdot \gamma \cdot \delta$. By the forcing definition for conjunctions this is again equivalent to that for each $W^{\prime \prime \prime} \xrightarrow{\delta} W^{\prime \prime} \xrightarrow{\gamma} W^{\prime} \xrightarrow{\beta} W, q \in C(\mathbb{Q})\left(W^{\prime}\right)$ and $r \in C(\mathbb{Q})\left(W^{\prime \prime}\right)$ the forcings $W^{\prime \prime \prime} \Vdash q \cdot \gamma \cdot \delta<r \cdot \delta$ and $W^{\prime \prime \prime} \Vdash r \cdot \delta \in L \cdot \beta \cdot \gamma \cdot \delta$ implying $W^{\prime \prime \prime} \Vdash q \cdot \gamma \cdot \delta \in L \cdot \beta \cdot \gamma \cdot \delta$. Unpacking the meaning of $<$ and \in this now becomes that for each $W^{\prime \prime \prime} \xrightarrow{\delta} W^{\prime \prime} \xrightarrow{\gamma} W^{\prime} \xrightarrow{\beta} W, q \in C(\mathbb{Q})\left(W^{\prime}\right)$ and $r \in C(\mathbb{Q})\left(W^{\prime \prime}\right)$ if $(q \circ \gamma \circ \delta)(x)<(r \circ \delta)(x)$ for all $x \in W^{\prime \prime \prime}$ and $(\beta \circ \gamma \circ \delta, r \circ \delta) \in L\left(W^{\prime \prime \prime}\right)$ then $(\beta \circ \gamma \circ \delta, q \circ \gamma \circ \delta) \in L\left(W^{\prime \prime \prime}\right)$.

Taking in the above $\gamma=\delta=1_{W^{\prime}}$ gives us that for each $\beta: W^{\prime} \rightarrow W$ and continuous $q, r \in W^{\prime} \rightarrow \mathbb{Q}$ if $q(x)<r(x)$ for all $x \in W^{\prime}$ and $(\beta, r) \in L\left(W^{\prime}\right)$ then $(\beta, q) \in L\left(W^{\prime}\right)$. Conversely if for each $\beta: W^{\prime} \rightarrow W$ this implication holds then for each $W^{\prime \prime \prime} \xrightarrow{\delta} W^{\prime \prime} \xrightarrow{\gamma} W^{\prime} \xrightarrow{\beta} W, q \in C(\mathbb{Q})\left(W^{\prime}\right)$ and $r \in C(\mathbb{Q})\left(W^{\prime \prime}\right)$ we have that $q \circ \gamma \circ \delta, r \circ \delta \in C(\mathbb{Q})\left(W^{\prime \prime \prime}\right)$ such that by the assumption if $(q \circ \gamma \circ \beta)(x)<(r \circ \delta)(x)$ for all $x \in W^{\prime \prime \prime \prime}$ and $(\beta \circ \gamma \circ \delta, r \circ \beta) \in L\left(W^{\prime \prime \prime}\right)$ implies $(\beta \circ \gamma \circ \delta, q \circ \gamma \circ \beta) \in L\left(W^{\prime \prime \prime}\right)$. We have seen above that this is equivalent to $W \Vdash q, r \in C(\mathbb{Q})(q<r \wedge r \in L \Rightarrow q \in L)$ so this completes the proof.

