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This hand-in consists of three exercises. We write T for some subcategory of the category of topological
spaces with the following properties:

a. If X ∈ T and U is an open subset of X, then U is an object of T and the inclusion U ↪→ T is an arrow
of T;

b. T is closed under products;

c. T is a full subcategory of the category of topological spaces;

d. R ∈ T (R is the real line with the usual topology).

When considering N or Q as topological spaces we consider them with the discrete topology.

Exercise 1. (5 points) In the seminar we defined a Grothendieck topology J on T by

S ∈ J(T ) ⇔ T = {U |U is an open subset of T , and (U ↪→ T ) ∈ S}.

Verify that this indeed defines a Grothendieck topology.

Solution. We verify the requirements from I.1.5. We start with (i). Let T ∈ T. Then the identity on
T lies in T and therefor also 1T ∈ y(T ). Noting that 1T is the inclusion of T in itself we now see

T ⊇
⋃

{U |U open in T, (U ↪→ T ) ∈ y(T )} ⊃ dom(1T ) = T

so
T =

⋃
{U |U open in T, (U ↪→ T ) ∈ y(T )}

and therefor y(T ) is a covering of T . This shows that (i) holds.

We now verify (ii). Let g : T ′ → T be a T-arrow and S ∈ J(T ). Then we have

T =
⋃

{U |U open in T, (U ↪→ T ) ∈ S}.

Consequently

T ′ =
⋃

{g−1(U)|U open in T, (U ↪→ T ) ∈ S}

Note that for U open in T with (U ↪→ T ) ∈ S we have g−1(U) open by g being continuous and for
i : g−1(U) ↪→ T ′ the inclusion we have im(g ◦ i) ⊆ U . By property (a) of T we have that g−1(U), i ∈ T ′.
Note now that g|g−1(U) = g ◦ i ∈ T and consequently g ◦ i = (U ↪→ T )◦ g|g−1(U) ∈ S. We see i ∈ (y(g))−1(S).
We now find

T ′ ⊇
⋃

{V |V open in T ′, (V ↪→ T ′) ∈ (y(g))−1(S)} ⊇
⋃

{g−1(U)|U open in T, (U ↪→ T ) ∈ S} = T ′

and therefor
T ′ =

⋃
{V |V open in T ′, (V ↪→ T ′) ∈ (y(g))−1(S)}.
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We conclude that (y(g))−1(S) is a covering of T ′ which proves (ii).

We finally verify (iii). Let R be a sieve on some T ∈ T and let S be a covering on T such that for
each (g : T ′ → T ) ∈ S we have (y(g))−1 ∈ J(T ′). Let x ∈ T . Then by S a covering there is U ⊆ T open
such that (U ↪→ T ) ∈ S and x ∈ U . Let i be the inclusion of U in T . Then (y(i))−1(R) ∈ J(U) and therefor
there is V ⊆ T ′ open in U such that (V ↪→ U) ∈ (y(i))−1(R). Consequently (V ↪→ T ) = i ◦ (V ↪→ U) ∈ R.
We see that x lies in {V |V open in T, (V ↪→ T ) ∈ R}. As x was arbitrary in T we conclude that

T = {V |V open in T, (V ↪→ T ) ∈ R}

or equivalently that R is a covering of T . This proves (iii) and completes the proof. △

From now on we consider T with the Grothendieck topology as above.

Exercise 2. (7 points) In the seminar we defined for each topological space X a presheaf C(X) on T
by C(X)(T ) = Cts(T,X) on objects T and by precomposition on arrows. Show that C(X) is a sheaf.

Solution. We have already seen during the seminar that C(X) is a presheaf. It remains to show that
C(X) has the sheaf property. Suppose that S is a covering of some T ∈ T and suppose that we have a
morphism τ : S → C(X). We need to construct an extension of τ to y(T ). Let f : T ′ → T be a T-arrow. We
need to define a continuous f∗ : T ′ → X. Let x ∈ T ′. Then there is open U in T such that (U ↪→ T ) ∈ S and
f(x) ∈ U . Then we have the map τ((U ↪→ T )) : U → X and consequently τ((U ↪→ T ))(f(x)) ∈ X. We show
now that τ((U ↪→ T ))(f(x)) does not depend on U . Let V be another open in T such that (V ↪→ T ) ∈ S
and f(x) ∈ V . Then U ∩ V is open in both U and V so (U ∩ V ↪→ U), (U ∩ V ↪→ V ) are both T-arrows. We
now find by τ being a morphism that

τ((U ↪→ T ))(f(x)) = τ((U ↪→ T ))((U ∩ V ↪→ U)(f(x)))

= (τ((U ↪→ T )) ◦ (U ∩ V ↪→ U))(f(x))

= τ((U ↪→ T ) ◦ (U ∩ V ↪→ U))(f(x))

= τ((U ∩ V ↪→ T ))(f(x))

= τ((V ↪→ T ))(f(x)).

We see that τ((U ↪→ T ))(f(x)) indeed does not depend on U such that more general we may define a function
f∗ : T ′ → X by f∗(x) = τ((U ↪→ T ))(f(x)) where U is an open in T such that (U ↪→ T ) ∈ S.

We now show that f∗ is continuous. Let x ∈ T ′ and let U be open in T such that (U ↪→ T ) ∈ S and
f(x) ∈ U . Then by f being continuous f−1(U) is open in T ′ and also x ∈ f−1(U). As x was arbitrary in T ′

we see that T ′ is covered by {f−1(U)|U open in T, (U ↪→ T ) ∈ S} and that this cover is open. Also on each
f−1(U) we have that f∗ restricts to τ(U ↪→ T ) ◦ f |f−1(U) which is continuous. As f∗ is continuous on each
element of an open cover we have that f∗ is continuous.

We have now a function τ ′ : y(T ) → C(X). It remains to show that this is a morphism. Let (f : T ′ → T ) ∈
y(T ) and g : T ′′ → T ′. Then for x ∈ T ′′ there is open U of T such that (U ↪→ T ) ∈ S and f(g(x)) ∈ U . We
now compute

τ ′(f ◦ g)(x) = τ((U ↪→ T ))(f(g(x)))τ((U ↪→ T ))(f(g(x))) = τ ′(f)(g(x)) = (τ ′(f) ◦ g)(x)

so τ ′(f ◦ g) = τ ′(f) ◦ g. We see that τ ′ is a morphism which completes the proof. △

Exercise 3. (4 + 4 points) In the seminar we saw in the proof of Proposition 2.2 by unwinding forc-
ing definitions that for each space W from T we have W ⊩ ¬∃q ∈ C((Q))(q ∈ U ∧ q ∈ L) being equivalent
to the assertion that for any β : W ′ → W from T and continuous q : W ′ → Q not both (β, q) ∈ L(W ′) and
(β, q) ∈ U(W ′). Similarly, show the following:

a. Both W ⊩ ∃r ∈ C(Q)(r ∈ U) and W ⊩ ∃q ∈ C(Q)(q ∈ L) holding is equivalent to the assertion
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that there is an open cover {Wi} op W such that for each i there are continuous qi, ri : Wi → Q with
(Wi ↪→ W, qi) ∈ L(Wi) and (Wi ↪→ W, ri) ∈ U(Wi).

Solution. Suppose W ⊩ ∃r ∈ C(Q)(r ∈ U) and W ⊩ ∃q ∈ C(Q)(q ∈ L). Then there is a cover SL of
W such that for each (g : W ′ → W ) ∈ S there is q ∈ C(Q)(W ′) such that W ′ ⊩ q ∈ (L · g) and there is
similar cover SU of W for U . Let S′

L, S
′
U be the corresponding open covers. Let now {Wi} be the set of

elements of the form OL∩OU where OL ∈ S′
L and OU ∈ S′

U . By S′
L, S

′
U covering W it now follows that {Wi}

is also an open cover and therefor it generates a covering of W . Note also that each OL∩OU ∈ S′ is an open
in OL so (OL ∩OU ↪→ OL) ∈ T and consequently (OL ∩OU ↪→ W ) = (OL ↪→ W ) ◦ (OL ∩OU ↪→ OL) ∈ SL

so OL ∩ OU ∈ S′
L. By choice of S′

L and S we now find that S ⊆ SL. Similarly S ⊆ SU so S ⊆ SL ∩ SU .
Consider now some Wi. Then (Wi ↪→ W ) ∈ S ⊆ SL∩SU and therefor by choice of SL, SU we have continuous
qi, ri : Wi → Q such that W ′ ⊩ qi ∈ (L · (Wi ↪→ W )) and W ′ ⊩ ri ∈ (U · (Wi ↪→ W )). As we’re working in
the standard interpretation this is equivalent to (Wi ↪→ W, qi) ∈ L(Wi) and (Wi ↪→ W, ri) ∈ U(Wi).

Conversely if there is an open cover {Wi} op W such that for each i there are continuous qi, ri : Wi → Q
with (Wi ↪→ W, qi) ∈ L(Wi) and (Wi ↪→ W, ri) ∈ U(Wi) we take S to be the covering of T generated by
{Wi}. Let g : W ′ → W . Then we have by the presheaf property (g|g−1(Wi), (qi ◦ g)|g−1(Wi)) ∈ L(g−1(Wi))
for each i and as g is continuous we have that {g−1(Wi)} is an open cover of W ′ and therefor it generated
a covering of T ′ such that by L a sheaf we have (g, qi ◦ g) ∈ L(W ′) or equivalently W ′ ⊩ qi ◦ g ∈ (L · g). We
see that W ⊩ ∃q ∈ C(Q)(q ∈ L) holds. We may similarly show W ⊩ ∃q ∈ C(Q)(q ∈ U). This completes the
proof. △

b. The forcing W ⊩ ∀q, r ∈ C(Q)(q < r ∧ r ∈ L ⇒ q ∈ L) is equivalent to the assertion that for any
β : W ′ → W and continuous q, r : W ′ → Q if q(x) < r(x) for all x ∈ W ′ and (β, r) ∈ L(W ′) then
(β, q) ∈ L(W ′). (Hint: You may use that under the isomorphism from Proposition 2.1 the ordering on C(Q)
becomes the pointwise ordering.)

Solution. By the forcing definition for universal quantification we have that W ⊩ q, r ∈ C(Q)(q < r ∧ r ∈
L ⇒ q ∈ L) is equivalent to that for each W ′′ γ−→ W ′ β−→ W , q ∈ C(Q)(W ′) and r ∈ C(Q)(W ′′) the forcing
W ′′ ⊩ q · γ < r ∧ r ∈ L · β · γ ⇒ q · γ ∈ L · β · γ holds. By the forcing definition for implication this

is equivalent to that for each W ′′′ δ−→ W ′′ γ−→ W ′ β−→ W , q ∈ C(Q)(W ′) and r ∈ C(Q)(W ′′) the forcing
W ′′′ ⊩ q ·γ ·δ < r ·δ∧r ·δ ∈ L ·β ·γ ·δ implies W ′′′ ⊩ q ·γ ·δ ∈ L ·β ·γ ·δ. By the forcing definition for conjunc-

tions this is again equivalent to that for each W ′′′ δ−→ W ′′ γ−→ W ′ β−→ W , q ∈ C(Q)(W ′) and r ∈ C(Q)(W ′′)
the forcings W ′′′ ⊩ q · γ · δ < r · δ and W ′′′ ⊩ r · δ ∈ L · β · γ · δ implying W ′′′ ⊩ q · γ · δ ∈ L · β · γ · δ.
Unpacking the meaning of < and ∈ this now becomes that for each W ′′′ δ−→ W ′′ γ−→ W ′ β−→ W , q ∈ C(Q)(W ′)
and r ∈ C(Q)(W ′′) if (q ◦ γ ◦ δ)(x) < (r ◦ δ)(x) for all x ∈ W ′′′ and (β ◦ γ ◦ δ, r ◦ δ) ∈ L(W ′′′) then
(β ◦ γ ◦ δ, q ◦ γ ◦ δ) ∈ L(W ′′′).

Taking in the above γ = δ = 1W ′ gives us that for each β : W ′ → W and continuous q, r ∈ W ′ → Q
if q(x) < r(x) for all x ∈ W ′ and (β, r) ∈ L(W ′) then (β, q) ∈ L(W ′). Conversely if for each β : W ′ → W

this implication holds then for each W ′′′ δ−→ W ′′ γ−→ W ′ β−→ W , q ∈ C(Q)(W ′) and r ∈ C(Q)(W ′′) we have
that q ◦γ ◦ δ, r ◦ δ ∈ C(Q)(W ′′′) such that by the assumption if (q ◦γ ◦β)(x) < (r ◦ δ)(x) for all x ∈ W ′′′′ and
(β ◦ γ ◦ δ, r ◦ β) ∈ L(W ′′′) implies (β ◦ γ ◦ δ, q ◦ γ ◦ β) ∈ L(W ′′′). We have seen above that this is equivalent
to W ⊩ q, r ∈ C(Q)(q < r ∧ r ∈ L ⇒ q ∈ L) so this completes the proof. △
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