Homework 11 Solutions

May 6, 2024

Throughout this document we assume that \mathbb{T} satisfies conditions (a)-(d) on page 24 .
You are allowed to use these lemmas and other similar results without proof.

- For a formula ϕ with free variables among A_{1}, \ldots, A_{n}

$$
\begin{equation*}
\operatorname{Sh}(\mathcal{C}, J) \models \forall x_{1} \in A_{1}, \ldots, x_{n} \in A_{n} . \phi\left(x_{1}, \ldots, x_{n}\right) \quad \leftrightarrow \quad \forall C \in \mathcal{C} . \forall \bar{x} \in \bar{A}(C) . C \Vdash \phi(\bar{x}) . \tag{1}
\end{equation*}
$$

- For the site \mathbb{T} and any $x, y \in C(X)(Z)$ we have

$$
\begin{equation*}
Z \Vdash x \neq y \quad \leftrightarrow \quad \forall z \in Z . x(z) \neq y(z) . \tag{2}
\end{equation*}
$$

- Suppose \mathbb{T} contains a terminal object and let $X \in \mathbb{T}$ and $\bar{a} \in \bar{A}(1)$ for some list of sheaves \bar{A} then

$$
\begin{equation*}
1 \Vdash \forall x \in y_{X} \cdot \phi(x, \bar{a}) \quad \leftrightarrow \quad X \Vdash \phi\left(\operatorname{id}_{X},\left.\bar{a}\right|_{X \rightarrow 1}\right) \tag{3}
\end{equation*}
$$

Exercise 1. (2 points) For the internal Dedekind reals \mathbb{R} we define internal intervals in the usual way $(a, b)=\{x \in \mathbb{R} \mid a<x<b\}$ (and similarly for half open/closed intervals). Prove that $\operatorname{Sh}(\mathbb{T}) \mid=(-\infty, 0) \cup[0, \infty) \neq \mathbb{R}$.

Solution. Define the relation $\phi \subseteq((-\infty, 0) \cup[0, \infty)) \times \mathbb{R}$ by

$$
\phi(x, y) \quad \leftrightarrow \quad(x<0 \wedge y=0) \vee(x \geq 0 \wedge y=1)
$$

This relation is evidently total and functional hence it defines the function $f:(-\infty, 0) \cup[0, \infty) \rightarrow \mathbb{R}$

$$
f(x)= \begin{cases}0 & : \quad x<0 \\ 1 & : \quad x \geq 0\end{cases}
$$

which is not continuous. If we had $\mathbb{R}=(-\infty, 0) \cup[0, \infty)$ then this would give us a discontinuous function $\mathbb{R} \rightarrow \mathbb{R}$ contradicting theorem 3.1.

Grading

- Find the idea. (1pt)
- Write a correct proof. (1pt)

Exercise 2. (3 points) In classical $Z F$ one can prove that there is a bijection $2^{\mathbb{N}} \cong \mathbb{R}$. In HHA one cannot define such a bijection. In fact, something sligthy stronger holds. Prove that if ϕ defines a surjection $\mathbb{R} \rightarrow 2^{\mathbb{N}}$ in ZF then HHA $\nvdash " \phi$ is a function".

Solution. The exponent $2^{\mathbb{N}}$ is the Cantor space in $\operatorname{Sh}(X)$ which is a subspace of the real numbers. Hence the composite $\mathbb{R} \rightarrow 2^{\mathbb{N}} \rightarrow \mathbb{R}$ would define a continuous function from $\mathbb{R} \rightarrow \mathbb{R}$ such that its image is the Cantor space. This is impossible as \mathbb{R} is connected but the Cantor space is not connected.

Grading

- The Cantor space is a subspace of \mathbb{R}. (1pt)
- Conclude that the function would be continuous in ZF. (1pt)
- Obtain a contradiction using that the Cantor space is not connected. (1pt)

Exercise 3. (6 points) We define for each sheaf F a sentence $\operatorname{dec}_{F}^{\overline{=}}:=(\forall x, y \in F . x=y \vee x \neq y)$. We say that a sheaf F has decidable equality if $\operatorname{dec}_{F}^{\overline{=}}$ is valid. What topological property does $\operatorname{dec}_{F} \overline{\bar{F}}$ characterize? More specifically if $X \in \mathbb{T}$ is a space then what topological property for X is equivalent to y_{X} having decidable equality?

Solution. A space in \mathbb{T} has decidable equality if and only if it is discrete.

Proof. (\Rightarrow) Suppose $\operatorname{Sh}(\mathbb{T}) \models \operatorname{dec}_{y_{X}}^{=}$then for any space $C \in \mathbb{T}$ and any $x, y \in y(X)(C)$ we have $C \Vdash x=y \vee x \neq y$. Let $x \in X$ be arbitrary, let $\Delta_{x}: X \rightarrow X$ be the constant function $\Delta_{x}(y)=x$ and observe that we have $X \Vdash \operatorname{id}_{X}=\Delta_{x} \vee \operatorname{id}_{X} \neq \Delta_{x}$. Hence there is an open cover $\left\{U_{i}\right\}_{i}$ of X such that

$$
\left.\mathrm{id}_{X}\right|_{U_{i}}=\left.\left.\Delta_{x}\right|_{U_{i}} \quad \vee \quad U_{i} \Vdash \operatorname{id}_{X}\right|_{U_{i}} \neq\left.\Delta_{x}\right|_{U_{i}}
$$

for all i. In other words

$$
\forall y \in U_{i} . y=x \quad \vee \quad \forall y \in U_{i} . y \neq x
$$

forall i. There is an i such that $x \in U_{i}$ and hence we know that $x=y$ for all $y \in U_{i}$. This implies that $U_{i}=\{x\}$, and since U_{i} is open this shows that $\{x\}$ is open.
(\Leftarrow) We need to show $C \Vdash f=g \vee f \neq g$ for all $C \in \mathbb{T}$ and any $f, g \in y(X)(C)$. Since X is discrete the preimages of single points are open, hence the collection $S=\left\{f^{-1}\left(y_{1}\right) \cap g^{-1}\left(y_{2}\right) \mid y_{1}, y_{2} \in X\right\}$ is an open cover of C. For any $y_{1}, y_{2} \in X$ we have $y_{1}=y_{2} \vee y_{1} \neq y_{2}$ and hence we have either

$$
\left(\forall x \in f^{-1}\left(y_{1}\right) \cap g^{-1}\left(y_{2}\right) . f(x)=y_{1}=y_{2}=g(x)\right)
$$

or

$$
\left(\forall x \in f^{-1}\left(y_{1}\right) \cap g^{-1}\left(y_{2}\right) . f(x)=y_{1} \neq y_{2}=g(x)\right) .
$$

Grading

- Discrete topology or something clearly equivalent. (2pt)
- Use id_{X} and Δ_{x}. (1pt)
- Unfold definitions. (1pt)
- Fibers are open. (1pt)
- Construct S. (1pt)

Exercise 4. (4 points) We assume here that \mathbb{T} has a terminal object for convenience. Find a formula that defines the neighborhoods of any Hausdorff space in \mathbb{T}. More concretely give for any sheaf F a formula $\phi_{F}(U, x)$ with free variables of sort $\mathcal{P}(F)$ and F such that for any Hausdorff space $X \in \mathbb{T}$, any point $x \in X$ and any subset $U \subseteq X$ we have

$$
\begin{equation*}
1 \Vdash \phi_{y_{X}}(U, x) \quad \leftrightarrow \quad U \in \mathcal{N}(x) \tag{4}
\end{equation*}
$$

Solution. Take $\phi_{F}(U, x):=(\forall y \in F . y \in U \vee x \neq y)$. Note that we actually don't quite need our space to be Hausdorff, it suffices to assume that all singletons are closed.

Proof. Let X be such a space, let $x \in X$ and let $U \subseteq X$ then we need to show (4). We have

$$
\begin{aligned}
1 \Vdash \forall y \in F . y \in U \vee x \neq y & \left.\leftrightarrow X \Vdash \mathrm{id}_{X} \in U\right|_{!} \vee \Delta_{x} \neq \mathrm{id}_{X} \\
& \leftrightarrow \quad \exists \text { open cover } \mathcal{U} . \forall V \in \mathcal{U} .\left.\left.V \Vdash \mathrm{id}_{X}\right|_{V} \in U\right|_{!} \vee V \Vdash \Delta_{x} \neq\left.\operatorname{id}_{X}\right|_{V}
\end{aligned}
$$

and the condition $\left.\left.V \Vdash \mathrm{id}_{X}\right|_{V} \in U\right|_{!} \vee V \Vdash \Delta_{x} \neq\left.\mathrm{id}_{X}\right|_{V}$ is equivalent to $V \subseteq U \vee \forall p \in V . x \neq p$, in other words it is equivalently

$$
\begin{equation*}
V \subseteq U \vee V \subseteq X \backslash\{x\} \tag{5}
\end{equation*}
$$

(\Rightarrow) If we have such a cover \mathcal{U} of X then there is some V such that $x \in V \in \mathcal{U}$. This implies $V \nsubseteq U \backslash\{x\}$ and hence $V \subseteq U$, which implies $U \in \mathcal{N}(x)$.
(\Leftarrow) Since $U \in \mathcal{N}(x)$ there is an open V such that $x \in V \subseteq U$ and since singletons are closed there is an open cover of X given by $\mathcal{U}=\{V, X \backslash\{x\}\}$. Each member of this cover obviously satisfies condition (5).

Grading

- Find a correct formula. (2pt)
- Simplify the validity statement using the provided lemmas. (1pt)
- Complete the argument. (1pt)

