Homework 11 Solutions

May 6, 2024

Throughout this document we assume that \mathbb{T} satisfies conditions (a)-(d) on page 24.

You are allowed to use these lemmas and other similar results without proof.

• For a formula ϕ with free variables among A_1, \ldots, A_n

$$\operatorname{Sh}(\mathcal{C},J) \models \forall x_1 \in A_1, \dots, x_n \in A_n. \ \phi(x_1, \dots, x_n) \quad \leftrightarrow \quad \forall C \in \mathcal{C}. \ \forall \bar{x} \in \bar{A}(C). \ C \Vdash \phi(\bar{x}).$$

$$(1)$$

• For the site \mathbb{T} and any $x, y \in C(X)(Z)$ we have

$$Z \Vdash x \neq y \quad \leftrightarrow \quad \forall z \in Z. \ x(z) \neq y(z). \tag{2}$$

• Suppose \mathbb{T} contains a terminal object and let $X \in \mathbb{T}$ and $\bar{a} \in \bar{A}(1)$ for some list of sheaves \bar{A} then

$$1 \Vdash \forall x \in y_X. \ \phi(x, \bar{a}) \quad \leftrightarrow \quad X \Vdash \phi(\mathrm{id}_X, \bar{a}|_{X \to 1}) \tag{3}$$

Exercise 1. (2 points) For the internal Dedekind reals \mathbb{R} we define internal intervals in the usual way $(a,b) = \{x \in \mathbb{R} \mid a < x < b\}$ (and similarly for half open/closed intervals). Prove that $\operatorname{Sh}(\mathbb{T}) \models (-\infty, 0) \cup [0, \infty) \neq \mathbb{R}$.

Solution. Define the relation $\phi \subseteq ((-\infty, 0) \cup [0, \infty)) \times \mathbb{R}$ by

$$\phi(x,y) \quad \leftrightarrow \quad (x < 0 \land y = 0) \lor (x \ge 0 \land y = 1).$$

This relation is evidently total and functional hence it defines the function $f: (-\infty, 0) \cup [0, \infty) \to \mathbb{R}$

$$f(x) = \begin{cases} 0 & : & x < 0\\ 1 & : & x \ge 0, \end{cases}$$

which is not continuous. If we had $\mathbb{R} = (-\infty, 0) \cup [0, \infty)$ then this would give us a discontinuous function $\mathbb{R} \to \mathbb{R}$ contradicting theorem 3.1.

Grading

- Find the idea. (1pt)
- Write a correct proof. (1pt)

Exercise 2. (3 points) In classical ZF one can prove that there is a bijection $2^{\mathbb{N}} \cong \mathbb{R}$. In HHA one cannot define such a bijection. In fact, something sligthy stronger holds. Prove that if ϕ defines a surjection $\mathbb{R} \to 2^{\mathbb{N}}$ in ZF then HHA $\nvDash "\phi$ is a function".

Solution. The exponent $2^{\mathbb{N}}$ is the Cantor space in Sh(X) which is a subspace of the real numbers. Hence the composite $\mathbb{R} \to 2^{\mathbb{N}} \to \mathbb{R}$ would define a continuous function from $\mathbb{R} \to \mathbb{R}$ such that its image is the Cantor space. This is impossible as \mathbb{R} is connected but the Cantor space is not connected.

Grading

- The Cantor space is a subspace of \mathbb{R} . (1pt)
- Conclude that the function would be continuous in ZF. (1pt)
- Obtain a contradiction using that the Cantor space is not connected. (1pt)

Exercise 3. (6 points) We define for each sheaf F a sentence $\operatorname{dec}_F^{=} := (\forall x, y \in F. x = y \lor x \neq y)$. We say that a sheaf F has decidable equality if $\operatorname{dec}_F^{=}$ is valid. What topological property does $\operatorname{dec}_F^{=}$ characterize? More specifically if $X \in \mathbb{T}$ is a space then what topological property for X is equivalent to y_X having decidable equality?

Solution. A space in \mathbb{T} has decidable equality if and only if it is discrete.

Proof. (\Rightarrow) Suppose $\operatorname{Sh}(\mathbb{T}) \models \operatorname{dec}_{y_X}^=$ then for any space $C \in \mathbb{T}$ and any $x, y \in y(X)(C)$ we have $C \Vdash x = y \lor x \neq y$. Let $x \in X$ be arbitrary, let $\Delta_x : X \to X$ be the constant function $\Delta_x(y) = x$ and observe that we have $X \Vdash \operatorname{id}_X = \Delta_x \lor \operatorname{id}_X \neq \Delta_x$. Hence there is an open cover $\{U_i\}_i$ of X such that

$$\operatorname{id}_X|_{U_i} = \Delta_x|_{U_i} \quad \lor \quad U_i \Vdash \operatorname{id}_X|_{U_i} \neq \Delta_x|_{U_i}$$

for all i. In other words

$$\forall y \in U_i. \ y = x \quad \lor \quad \forall y \in U_i. \ y \neq x$$

for all *i*. There is an *i* such that $x \in U_i$ and hence we know that x = y for all $y \in U_i$. This implies that $U_i = \{x\}$, and since U_i is open this shows that $\{x\}$ is open.

(⇐) We need to show $C \Vdash f = g \lor f \neq g$ for all $C \in \mathbb{T}$ and any $f, g \in y(X)(C)$. Since X is discrete the preimages of single points are open, hence the collection $S = \{f^{-1}(y_1) \cap g^{-1}(y_2) \mid y_1, y_2 \in X\}$ is an open cover of C. For any $y_1, y_2 \in X$ we have $y_1 = y_2 \lor y_1 \neq y_2$ and hence we have either

$$(\forall x \in f^{-1}(y_1) \cap g^{-1}(y_2), f(x) = y_1 = y_2 = g(x))$$

or

$$(\forall x \in f^{-1}(y_1) \cap g^{-1}(y_2), f(x) = y_1 \neq y_2 = g(x)).$$

Grading

- Discrete topology or something clearly equivalent. (2pt)
- Use id_X and Δ_x . (1pt)
- Unfold definitions. (1pt)
- Fibers are open. (1pt)
- Construct S. (1pt)

Exercise 4. (4 points) We assume here that \mathbb{T} has a terminal object for convenience. Find a formula that defines the neighborhoods of any Hausdorff space in \mathbb{T} . More concretely give for any sheaf F a formula $\phi_F(U, x)$ with free variables of sort $\mathcal{P}(F)$ and F such that for any Hausdorff space $X \in \mathbb{T}$, any point $x \in X$ and any subset $U \subseteq X$ we have

$$1 \Vdash \phi_{y_X}(U, x) \quad \leftrightarrow \quad U \in \mathcal{N}(x). \tag{4}$$

Solution. Take $\phi_F(U, x) := (\forall y \in F. \ y \in U \lor x \neq y)$. Note that we actually don't quite need our space to be Hausdorff, it suffices to assume that all singletons are closed.

Proof. Let X be such a space, let $x \in X$ and let $U \subseteq X$ then we need to show (4). We have

$$1 \Vdash \forall y \in F. \ y \in U \lor x \neq y \quad \leftrightarrow \quad X \Vdash \operatorname{id}_X \in U|_! \lor \Delta_x \neq \operatorname{id}_X \\ \leftrightarrow \quad \exists \text{open cover } \mathcal{U}. \ \forall V \in \mathcal{U}. \ V \Vdash \operatorname{id}_X|_V \in U|_! \lor V \Vdash \Delta_x \neq \operatorname{id}_X|_V$$

and the condition $V \Vdash \operatorname{id}_X|_V \in U|_! \lor V \Vdash \Delta_x \neq \operatorname{id}_X|_V$ is equivalent to $V \subseteq U \lor \forall p \in V$. $x \neq p$, in other words it is equivalently

$$V \subseteq U \lor V \subseteq X \setminus \{x\}. \tag{5}$$

(⇒) If we have such a cover \mathcal{U} of X then there is some V such that $x \in V \in \mathcal{U}$. This implies $V \not\subseteq U \setminus \{x\}$ and hence $V \subseteq U$, which implies $U \in \mathcal{N}(x)$.

(\Leftarrow) Since $U \in \mathcal{N}(x)$ there is an open V such that $x \in V \subseteq U$ and since singletons are closed there is an open cover of X given by $\mathcal{U} = \{V, X \setminus \{x\}\}$. Each member of this cover obviously satisfies condition (5).

Grading

- Find a correct formula. (2pt)
- Simplify the validity statement using the provided lemmas. (1pt)
- Complete the argument. (1pt)