
Homework 11 Solutions

May 6, 2024

Throughout this document we assume that T satisfies conditions (a)-(d) on page 24.

You are allowed to use these lemmas and other similar results without proof.

• For a formula ϕ with free variables among A1, . . . , An

Sh(C, J) |= ∀x1 ∈ A1, . . . , xn ∈ An. ϕ(x1, . . . , xn) ↔ ∀C ∈ C. ∀x̄ ∈ Ā(C). C ⊩ ϕ(x̄).
(1)

• For the site T and any x, y ∈ C(X)(Z) we have

Z ⊩ x ̸= y ↔ ∀z ∈ Z. x(z) ̸= y(z). (2)

• Suppose T contains a terminal object and let X ∈ T and ā ∈ Ā(1) for some list of sheaves
Ā then

1 ⊩ ∀x ∈ yX . ϕ(x, ā) ↔ X ⊩ ϕ(idX , ā|X→1) (3)

Exercise 1. (2 points) For the internal Dedekind reals R we define internal intervals in the
usual way (a, b) = {x ∈ R | a < x < b} (and similarly for half open/closed intervals). Prove that
Sh(T) |= (−∞, 0) ∪ [0,∞) ̸= R.

Solution. Define the relation ϕ ⊆ ((−∞, 0) ∪ [0,∞))× R by

ϕ(x, y) ↔ (x < 0 ∧ y = 0) ∨ (x ≥ 0 ∧ y = 1).

This relation is evidently total and functional hence it defines the function f : (−∞, 0)∪[0,∞) → R

f(x) =

{
0 : x < 0

1 : x ≥ 0,

which is not continuous. If we had R = (−∞, 0) ∪ [0,∞) then this would give us a discontinuous
function R → R contradicting theorem 3.1.

Grading

• Find the idea. (1pt)

• Write a correct proof. (1pt)

Exercise 2. (3 points) In classical ZF one can prove that there is a bijection 2N ∼= R. In HHA
one cannot define such a bijection. In fact, something sligthy stronger holds. Prove that if ϕ
defines a surjection R → 2N in ZF then HHA ̸⊢ “ϕ is a function”.
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Solution. The exponent 2N is the Cantor space in Sh(X) which is a subspace of the real numbers.
Hence the composite R → 2N → R would define a continuous function from R → R such that
its image is the Cantor space. This is impossible as R is connected but the Cantor space is not
connected.

Grading

• The Cantor space is a subspace of R. (1pt)

• Conclude that the function would be continuous in ZF. (1pt)

• Obtain a contradiction using that the Cantor space is not connected. (1pt)

Exercise 3. (6 points) We define for each sheaf F a sentence dec=F := (∀x, y ∈ F. x = y∨x ̸= y).
We say that a sheaf F has decidable equality if dec=F is valid. What topological property does
dec=F characterize? More specifically if X ∈ T is a space then what topological property for X is
equivalent to yX having decidable equality?

Solution. A space in T has decidable equality if and only if it is discrete.

Proof. (⇒) Suppose Sh(T) |= dec=yX
then for any space C ∈ T and any x, y ∈ y(X)(C) we have

C ⊩ x = y ∨ x ̸= y. Let x ∈ X be arbitrary, let ∆x : X → X be the constant function ∆x(y) = x
and observe that we have X ⊩ idX = ∆x ∨ idX ̸= ∆x. Hence there is an open cover {Ui}i of X
such that

idX |Ui
= ∆x|Ui

∨ Ui ⊩ idX |Ui
̸= ∆x|Ui

for all i. In other words
∀y ∈ Ui. y = x ∨ ∀y ∈ Ui. y ̸= x

forall i. There is an i such that x ∈ Ui and hence we know that x = y for all y ∈ Ui. This implies
that Ui = {x}, and since Ui is open this shows that {x} is open.

(⇐) We need to show C ⊩ f = g∨f ̸= g for all C ∈ T and any f, g ∈ y(X)(C). Since X is discrete
the preimages of single points are open, hence the collection S = {f−1(y1)∩ g−1(y2) | y1, y2 ∈ X}
is an open cover of C. For any y1, y2 ∈ X we have y1 = y2 ∨ y1 ̸= y2 and hence we have either

(∀x ∈ f−1(y1) ∩ g−1(y2). f(x) = y1 = y2 = g(x))

or
(∀x ∈ f−1(y1) ∩ g−1(y2). f(x) = y1 ̸= y2 = g(x)).

Grading

• Discrete topology or something clearly equivalent. (2pt)

• Use idX and ∆x. (1pt)

• Unfold definitions. (1pt)

• Fibers are open. (1pt)

• Construct S. (1pt)
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Exercise 4. (4 points) We assume here that T has a terminal object for convenience. Find a
formula that defines the neighborhoods of any Hausdorff space in T. More concretely give for any
sheaf F a formula ϕF (U, x) with free variables of sort P(F ) and F such that for any Hausdorff
space X ∈ T, any point x ∈ X and any subset U ⊆ X we have

1 ⊩ ϕyX
(U, x) ↔ U ∈ N (x). (4)

Solution. Take ϕF (U, x) := (∀y ∈ F. y ∈ U ∨ x ̸= y). Note that we actually don’t quite need
our space to be Hausdorff, it suffices to assume that all singletons are closed.

Proof. Let X be such a space, let x ∈ X and let U ⊆ X then we need to show (4). We have

1 ⊩ ∀y ∈ F. y ∈ U ∨ x ̸= y ↔ X ⊩ idX ∈ U |! ∨∆x ̸= idX

↔ ∃open cover U . ∀V ∈ U . V ⊩ idX |V ∈ U |! ∨ V ⊩ ∆x ̸= idX |V

and the condition V ⊩ idX |V ∈ U |! ∨ V ⊩ ∆x ̸= idX |V is equivalent to V ⊆ U ∨ ∀p ∈ V. x ̸= p, in
other words it is equivalently

V ⊆ U ∨ V ⊆ X \ {x}. (5)

(⇒) If we have such a cover U of X then there is some V such that x ∈ V ∈ U . This implies
V ̸⊆ U \ {x} and hence V ⊆ U , which implies U ∈ N (x).

(⇐) Since U ∈ N (x) there is an open V such that x ∈ V ⊆ U and since singletons are closed
there is an open cover of X given by U = {V,X \ {x}}. Each member of this cover obviously
satisfies condition (5).

Grading

• Find a correct formula. (2pt)

• Simplify the validity statement using the provided lemmas. (1pt)

• Complete the argument. (1pt)
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