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 THE JOURNAL OF SYMBOLIC LOGIC

 Volume 10, Number 4, Dec. 1945

 ON THE INTERPRETATION OF INTUITIONISTIC NUMBER THEORY

 S. C. KLEENE

 The purpose of this article is to introduce the notion of "recursive realiza-

 bility."l

 1. Let P be some property of natural numbers. Consider the existential

 statement, "There exists a number n having the property P." To explain the
 meaning which this has for a constructivist or intuitionist, it has been described

 as a partial judgement, or incomplete communication of a more specific statement
 which says that a certain given number n, or the number n obtainable by a

 certain given method, has the property P.2 The meaning of the existential
 statement thus resides in a reference to certain information, which it implies

 could be stated in detail, though the trouble is not taken to do so. Perhaps
 the detail is suppressed in order to convey a general view of some fact.

 The information to which reference is made should be thought of as possibly

 comprising other items besides the value of n or method for obtaining it, namely
 such items as may be necessary to complete the communication that that n has
 the property P.

 Consider next the generality statement, "All numbers n have the property
 P." The accompanying explanation which has been given for this is that it is

 a hypothetical assertion about whatever particular n might be given. We now
 propose, without excluding this motif, likewise to regard the generality state-
 ment as an incomplete communication of a more specific statement, namely of

 one which gives an effective general method for obtaining, to any particular
 value of n, the information implicit in the assertion that that n has the prop-
 erty P.

 As a third example, consider the implication, "A implies B." This we now
 propose to interpret intuitionistically as an incomplete communication of

 Received July 12, 1945. Preliminary report presented to the Association for Symbolic
 Logic and the American Mathematical Society, December 31, 1941.

 1 The bracketed numbers in the footnotes refer to the bibliography at the end of the

 article. The theory of recursive functions presupposed in this paper is recapitulated in

 the author's [141 or very briefly in [151. Several of the footnotes accordingly contain,
 in addition to the source references, references to those papers.

 Much of the detailed investigation of the notion of realizability introduced now is the

 work of David Nelson. In order to complete the present account of the notion, we shall

 draw upon six fundamental results of his [161, numbered (I)-(VI) below. The main con-
 clusions reached in this article are therefore joint results of Nelson and the author.

 (The work was done in the following sequence. Heuristically, the point of departure

 was the author's [141 ?16. The notion of realizability was proposed by the author in a
 seminar at the University of Wisconsin in the spring of 1941. Nelson undertook to prove
 (I). The author saw this proof in the early summer of 1941. In February 1942, the
 author completed the first draft of the present paper, in which the other five propositions
 (II)-(VI) were formulated as conjectures. Nelson undertook the proof of (II)-(VI)

 as a continuation of his part of the problem. The first draft of Nelson's [161, containing
 proofs of all six propositions, was completed in the winter of 1944-5.)

 2 [91 p. 32.

 109
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 110 S. C. KLEENE

 another statement, that statement to be one which gives an effective general
 procedure by means of which, whenever information which completes A is
 supplied, information which completes B can be found.

 In this paper, by treating from this standpoint each of the statement forms
 of the predicate calculus, presupposing some predicates of natural numbers,
 we shall reach a definition of what items of information would "realize" a given
 number-theoretic statement constructed from our primitives. The property
 of "realizability" will then be a kind of intuitionistic truth notion for the number-
 theoretic statements of the class in question.

 2. The analysis which leads to this truth definition is not to be regarded as
 more than a partial analysis of the intuitionistic meaning of the statements,
 since it takes over without analysis, or leaves unanalyzed, the component of
 evidence. Suppose for example that a mathematician makes a discovery about
 the natural numbers, and states a generality proposition as an incomplete
 communication of his discovery. A complete communication of the discovery
 to another person would have to provoke in the latter the same discovery.
 For this it may not be enough that the second person be given merely a method
 for reproducing the facts of the discovery as they apply to whatever particular
 cases of the proposition he may please to examine.

 The limitation in the extent of the analysis appears formally in that the truth
 definition employs the quantifiers and the connectives of the propositional
 calculus, as do the statements which are the objects of the definition.

 When the quantifiers and propositional connectives in the truth definition
 are interpreted intuitionistically, we can consider that the reader is supplying
 the reference to items of evidence in his reading of the definition. The definition
 then pairs, within intuitionistic number theory, to each proposition expressible
 in our primitives, a necessary and sufficient condition for the same.

 If the quantifiers and propositional connectives in the truth definition are
 interpreted in the sense of classical mathematics, the definition gives a classical
 necessary condition for the intuitionistic proposition.

 This will be made more precise below (??13ff.) on the basis of results obtained
 by David Nelson.

 3. A key to the truth definition which we shall set up is the thesis of Church
 which identifies the effective calculability of a function of natural numbers
 with its general recursiveness in the sense of Herbrand and G6del, or the Turing
 description of computing machines, from which the identity of the computable
 functions with the general recursive functions can be proved.3 This will enable
 us to represent effective general methods, to which reference is made in our
 analysis of generality statements, by general recursive functions.

 By availing ourselves of the device of G6del numbering, as applied in the
 theory of general recursive functions by the present writer (the numbers used
 being called G6del numbers of the recursive functions, or numbers which define
 the functions recursively), the items of information which realize a statement

 3 [1], [6], [171, [18]; [14] ??2, 12, [16] ?1.
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 INTERPRETATION OF INTUITIONISTIC NUMBER THEORY 111

 will be compressed into a single natural number.4 A realization number by
 itself of course conveys no information; but given the form of statement of which
 it is a realization, we shall be able in the light of our definition to read from
 it the requisite information.

 The operation of implication is particularly a critical one for the interpretation
 of intuitionistic logic. Here a sufficient analysis of it for our purpose is ob-
 tained by use of the author's notion of partial recursive functions Negation
 is then treated as the implication of an absurd statement.6

 4. In giving our definition precisely, in the next section, we shall take the
 statements to which it applies to be the formulas of a symbolic object language.
 We shall merely sketch the distinctive features of this language, the method
 by which such a language is set up being well enough known to within inessential
 variations of detail.

 The successive natural numbers shall be represented in the language by the
 numerals 0, 0', 0", * , abbreviated as 0, 1, 2, * . . There shall be variables

 a, a,, a2, ... , x, xl, x2, ... , interpreted as ranging over the natural numbers.
 There shall be function symbols, representing certain given general recursive

 number-theoretic functions, including the successor function '. There shall be
 predicate symbols, representing certain given general recursive predicates, i.e.,
 propositional functions of natural numbers, including the equality predicate =.
 The precise selection of functions and predicates thus represented by single
 symbols we leave open, several possibilities being:

 A. Functions: ', + (sum), - (product). Predicates:
 B. Functions:'. Predicates: =, a+b=c, a-b=c.

 C. Functions: all primitive recursive functions. Predicates:
 D.. Functions: '. Predicates: all primitive recursive predicates.
 E. All primitive recursive functions and predicates.

 The selection may be intermediate between A or B and E, or it may include
 some non-primitive general recursive functions and predicates.

 The usual syntactical rules shall govern the formation from the foregoing
 primitives of expression called terms which represent constant or variable natural
 numbers, and expressions called elementary formulas which represent constant
 or variable propositions about natural numbers. From the assigned interpre-
 tations of the symbols, and the usual interpretation of the operations of com-
 position (explicit definition), each term t(al, . .,an) containing exactly the n
 distinct variables a,, .. *,an must represent a known general recursive function
 t(al, * * ,an) of n variables, and each elementary formula F(al, - * ,an) containing
 exactly the n distinct variables a1,,* ,a. must represent a known general re-
 cursive predicate F(al, *. .,an) of n variables. In particular, a term t containing
 no variables must represent a known natural number t, and an elementary
 formula F containing no variables must represent a proposition F either known

 4 [111; [14] ??4, 7, [151 ?10.
 6 [121; [14] ?6, [15] ?10.
 [10I pP. 359.

This content downloaded from 131.211.22.160 on Thu, 02 Mar 2017 13:52:15 UTC
All use subject to http://about.jstor.org/terms



 112 B. C. KLERE

 to be true or known to be false. In the case of the truth of this proposition,
 we shall say simply that F is true.

 The formulas shall be comprised of the elementary formulas, together with

 the additional formulas which can be formed from them by employing the
 logical symbols of the predicate calculus in accordance with the usual syntactical
 rules. These logical symbols we specify to be the propositional connectives

 & (and), v (or), D (implies), - (not), and the quantifiers 3x (there exists an x
 such that), Vx (for all x). In this case the interpretations shown parenthetically
 are merely verbal, our problem being to analyze them presupposing the inter-
 pretations already given for the terms and elementary formulas.

 Two notational conventions will be useful. If "x", "xl", "y", represent
 certain natural numbers intuitively, then "x", "xI", "y", ... shall represent
 the corresponding numerals, and conversely.

 If a,, -* ,a. are distinct variables, and if "E(al,. . ,an)" is explicitly introduced
 to stand for a certain term or formula, thereafter for any other appropriate set
 of terms pi, ...p, "E(pi.. ,pn)X" shall stand for the result of substituting
 pi,.. spi for the free occurrences of a,, . .,an, respectively, throughout E(ai,
 ... ,a,). (To find out what E(pi, . * ,pn) stands for, one must always go back
 to the original expression E(ai, .,an) and the original variables al, *** ,a with
 which "E" was introduced.)

 (A list of the fonts of type employed technically in the present article with
 their uses may serve to forestall confusions. (i) Roman letters "A", "x" are
 used in metamathematical designations for expressions of the symbolic object
 language or formal system, such as formulas and formal variables. (ii) Italic
 letters "A", "x" are used to designate intuitive mathematical objects such as
 propositions, predicates, and natural numbers. This is the same use of them as
 in ordinary mathematical discourse. In some contexts, a roman letter or letters
 and the same letter or letters in italics may be correlated to designate respec-
 tively, some formal object, and the intuitive object which the formal object
 represents under the interpretation of the formal system. (iii) A heavy type
 letter "x" is a metamathematical designation, used always in correlation with
 the same letter in italics, the latter standing for a natural number which may be
 variable or constant, and the former standing for the corresponding numeral.
 (iv) Script letters "CT", "a", used only in ?10, are particular predicate and
 individual variables of a formal symbolism for predicate calculus. For purists
 in the matter of designation, our use of them is autonomous. (v) A shaded
 letter "A" is a metamathematical designation, used always in correlation with
 the same letter in roman type, the latter designating a formula, and the former
 designating another formula correlated to that formula in the manner to be
 described in ??11 and 12).

 5. A natural number will be said to realize a formula, or to be a realization
 (or realization number) of the formula, under each of the following circum-
 stances, and only those.

 I. If A(yl,*** ,ym) is a formula containing exactly the distinct free variables
 y, * * . ,ym in order of first free occurrence, and if e realizes vyi vy** A(y(i,. *y.)
 then e also realizes A(y1, .y.).
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 INTERPRETATION OF INTUITIONISTIC NUMBER THEORY 113

 II. The remaining seven clauses govern the assignment of realization numbers
 to formulas not containing free variables.

 1. An elementary formula F without free variables is realized by 0 if it is true.
 For Clauses 2-5, A and B are formulas without free variables.
 2. If a realizes A and b realizes B, then 2a*3b realizes A & B.
 3. If a realizes A, then 20.3a realizes A v B. Also, if b realizes B, then 2'.3b

 realizes A v B.
 4. The formula A D B is realized by the Gbdel number e of a partial recursive

 function 0 such that, whenever a realizes A, then O(a) realizes B.
 5. If e realizes A D 1=0, then e also realizes nA. This clause is so written

 that, if we prefer, we can omit - from the undefined symbolism, and take -A
 to be an abbreviation for A D 1 = 0.

 For Clauses 6 and 7, x is a variable, and A(x) is a formula without free vari-
 ables other than x. The conventions introduced at the end of ?4 are used
 in stating these clauses.

 6. If a realizes A(x), then 2z.38 realizes 3xA(x).
 7. The formula vxA(x) is realized by the Godel number e of a general recur-

 sive function 4 such that, for every x, O4(x) realizes A(x).

 A formula is said to be realizable (or recursively realizable), if and only if some
 natural number realizes it.

 (This notion of realizability is obviously capable of various generalizations
 and modifications, in the first instance by employing some other enumerable
 class of partially and completely defined number-theoretic functions in place
 of the recursive.)

 6. Consider any formula A. Besides the truth definition which we have just
 set up for A, in the preceding section, there is the direct one which is given
 by the usual verbal interpretations of the logical symbols.

 This is perhaps sufficient explanation of it, but for comparison with the
 definition of realiiability we shall also give it in full in corresponding manner.7
 The letters used in the respective clauses are subject to the same stipulations.

 I. A(yi,... ,y,) is true, if y..... vymA(yi, - . ,y.) is true.
 II. 1. F is true, if F (i.e., if F is a true proposition in the theory of recursive

 predicates; cf. ?4).
 2. A & B is true, if A is true and B is true.
 3. A v B is true, if A is true or B is true.

 4. A D B is true, if A is true implies that B is true (i.e., if A is true only if B
 is true).

 5. -A is true, if A is not true.

 6. 3xA(x) is true, if there exists an x such that A(x) is true.
 7. vxA(x) is true, if, for all x, A(x) is true.

 Into what inferences we may incorporate the propositions "A is true" and
 "A is realizable" will depend on how the logical constants are being employed
 in the syntax language, and we shall distinguish between intuitionistic and
 classical uses.

 7 This method of setting up a truth definition is discussed in [13].
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 114 S. C. KLEENE

 7. The following statements are ready consequences of the definitions of ??5
 and 6 under either the intuitionistic or the classical usages, except where we
 single out the classical.8

 (a) If A is realizable and contains no occurrences of D or A, then A is true.
 (b) If 1A is true, and A contains no occurrences of D or -, then 1A is

 realizable.

 (c) Not both A and 1A can be realizable.
 (d) If A is realizable, then A flA is realizable.
 (e) If A is unrealizable and contains no free variables, then 1A is realizable.
 (f) If A is unrealizable and contains no free variables, then by (e) and (c),

 1A is unrealizable.
 (g) By the classical law of the excluded middle, either A is realizable or A

 is unrealizable. In the second case, if A contains no free variables, by (e),
 1A is realizable. Thus, classically, if A contains no free variables, either
 A is realizable or NA is realizable, despite the fact that the law of the excluded
 middle is not affirmed within the intuitionistic logic.

 (h) From (g), classically, if A contains no free variables, then A v 1A is
 realizable.

 (i) From (f) by contraposition and the classical law of double negation, if
 A contains no free variables and ADA is realizable, then A is realizable, despite
 the fact that the law of double negation is not affirmed within the intuitionistic
 logic.

 (j) If B is realizable, then A D B is realizable.
 (k) Generalizing (e), if A is unrealizable and contains no free variables, then

 A D B is realizable.
 (1) By the classical law of the excluded middle, either AD-A is realizable

 or lflA is unrealizable. Hence by (i), (j), and (k), classically, if A contains
 no free variables, then - 1A D A is realizable.

 (m) Using the theorem on the least-number operator from the theory of
 general recursive functions, if 3xA(x) is true, and A(x) is elementary, then
 3xA(x) is realizable.9 (The result can be extended to the case that A(x) merely
 contains no occurrences of 3 or v.)

 8. Does our interpretation of the number-theoretic formulas by the notion
 of realizability satisfy the formal postulates of the intuitionists for number
 theory?

 David Nelson has obtained the following result.10
 (I) For a formal system which has a class of formulas as described in ?4,

 and which has as deductive postulates those of the intuitionistic predicate
 calculus with equality (expressed as schemata), the Peano axioms including
 mathematical induction, and arbitrary additional realizable axioms (e.g., the
 recursion equations for + and .), every formula provable in the system is
 realizable. In other words, every formula deducible from realizable formulas

 8 For several of the statements, a rigorous proof requires the use of some particular
 recursive functions, such as may be found in [4] or [6] or [91 with [11] and [12].

 9 [11 IV, [11] V; [14] ?3, [15] ?10.
 10 [16] Theorem 1.
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 INTERPRETATION OF INTUITIONISTIC NUMBER THEORY 115

 by means of the intuitionistic predicate calculus with equality and the Peano
 axioms is realizable.

 This also answers another question. Church's thesis that all effectively

 calculable number-theoretic functions are general recursive arose separately
 from the intuitionistic formalization of logic. But both correspond to the same

 constructivist standpoint. Accepting Church's thesis, should we not be able
 to show that the postulates of the intuitionists do not allow them to prove the
 existence of any other than a general recursive function?

 The existence of a function y = VI(xi, . ,x.) is expressed by a formula of the
 form Vx... Vx,3yB(xi,... ,xny) where B(xi, ,Xn,y) contains besides xi, i ,
 xny no free variables. Applying (I) to this formula, Nelson states the follow-
 ing corollary.

 If VX1.. . Vxn3yB(xl,... ,xny) is provable in the system of (I), then there
 exists a general recursive function x, (xi, * ,x n) such that, for every set xl,. * x.
 of natural numbers, the formula B(xi, ,xny), where y = IP(Xi,, ,x), is
 realizable.

 The author's earlier conjecture in this direction was expressed in terms of

 the notion of "recursive fulfillability":11 the formula Vxi... Vx n3yB(xi, . . ,x,,y)
 is recursively fulfillable, if there exists a general recursive function 4(xI,.. ,xn)
 such that, for every set xi, . ,x n of natural numbers, the formula B(xi, .X. Y),
 where y = VI(x1,--- ,xn), is true.

 The present results in terms of recursive realizability are of more interest,

 since the notion of recursive fulfillability is limited to formulas of the special
 form VX1.. - Vxn3yB(xi, ... Xn) and stops with the interpretation of the
 prefixed quantifiers VX1... Vxn3y.

 (The original form of the conjecture, namely that if VX1.... Vxn3yB(x1, ,
 xny) is intuitionistically provable, then it is recursively fulfillable, can be
 discussed on the basis of Nelson's results as follows. Let a modified notion of

 realizability for a particular formal system of (I) be defined by altering three
 clauses of the definition in ?5 as follows. Clause II 3: After "a realizes A,"
 insert "and A is provable"; and after "b realizes B," insert "and B is provable."
 Clause II 4: After "a realizes A," insert "and A is provable." Clause II 6:
 After "a realizes A(x)," insert "and A(x) is provable." Also let the particular
 formal system have the property that every true elementary formula without
 free variables is provable. It may be verified that Nelson's proof of (I) and
 the corollary holds good in this case for the modified notion of realizability.
 The formula B(xi,.-. ,Xn,Y) of the corollary is then not only realizable but is
 provable in the formal system. In order to state a result both intuitionistic-
 ally and classically, let the system of (I) be a subsystem of the classical system.
 Then B(x1,. ,xn,y), since provable, must be true, intuitionistically and clas-
 sically.)

 9. Can a formula be true classically but unrealizable? The author has given
 informally an example of a proposition which holds classically but is not re-
 cursively fulfillable.'2 If this proposition is suitably formalized in the present

 11 [141 ?16.
 12 [14] ?16, using the example given on p. 71.
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 116 S. C. KLEENE

 symbolism, supposing that the symbolism is adequate, as it would be under
 each of Plans A-E of ?4, we shall obtain a formula of the form Vx3yB(x,y),
 where B(x,y) is a formula which contains besides x and y no free variables,
 and which has the property that, for each x and y, B(x,y) is true if realizable.
 (The informal proposition involves the negation of a certain primitive recursive
 predicate T1, but if we are formalizing under any one of Plans C-E of ?4, and
 treat both T1 and its negation as simple predicates, then B(x,y) will contain
 no occurrences of D or 1, and will have the property in consequence of (a) of
 ?7. For any other suitable formalization, a proof of the property of B(x,y)
 could be drawn from the fact of equivalence of that formalization to one of
 the formalizations without D or -I in a suitable object language containing
 both.)

 The informal proposition holds, and so the formula Vx3yB(x,y) is true, by
 the classical law of the excluded middle. This implies that there exists a number-
 theoretic function y1 such that, for all x, B(x,y), where y = y6(x), is true. In
 the example, the function y1 is in fact unique, and is known to be non-recursive.

 Now suppose Vx3yB(x,y) were realizable. By Clauses II 6 and 7 of the
 definition of realizability, there would have to be a general recursive function
 4 such that, for all x, B(x,y), where y = #(x), is realizable, and hence true.
 Since this cannot be, Vx3yB(x,y) is unrealizable. Note that Vx3yB(x,y)
 contains no free variables.

 Can a formula be realizable, but untrue classically? If A is any formula
 containing no free variables which is true classically but unrealizable, such as
 the formula just considered, then by (e), 1A (or by (k), A D B where B is any
 false formula) is realizable but untrue classically.

 10. It is of interest to apply Nelson's result (I) to questions concerning
 provability in the pure intuitionistic predicate calculus as expressed in terms
 of proposition and predicate variables (I, (f(.), --. If a formula of the in-
 tuitionistic predicate calculus is provable, then it must have the property that
 every number-theoretic formula in the sense of this paper which comes from it
 by a substitution of number-theoretic formulas for its proposition and predicate
 variables is realizable.

 We may combine this with the author's result (?9) that a certain formula
 Vx3yB(x,y) containing no free variables is true classically but unrealizable.
 The classical demonstration of its truth can be formalized as a deduction by
 means of the intuitionistic predicate calculus with equality from a certain
 number-theoretic formula of the form Vx(A(x) v lA(x)) containing no free
 variables.

 By Nelson's result, therefore, the formula Vx(A(x) v NA(x)) must itself be
 unrealizable. Since no free variables are present, by (f), -nVx(A(x) v 1A(x))
 is also unrealizable (this is for a certain number-theoretic A(x)).
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 INTERPRETATION OF INTUITIONISTIC NUMBER THEORY 117

 Therefore, by Nelson's result, the formula

 (1) v me(X))

 is unprovable in the intuitionistic predicate calculus.-3
 It has been well known that the simple law of the excluded middle al v -iA

 is unprovable, yet its double absurdity -n1(a v ( T) is provable, in the in-
 tuitionistic logic.14 The explanation of this under the interpretation provided
 by the notion of realizability now appears in that the refutation of (a v --a
 requires the presence of a free individual variable representing generality.
 To complete the picture, the double absurdity is unprovable when this in-
 dividual variable is present and is universally quantified so that the double
 absurdity applies to the generality statement.

 This result naturally entails the unprovability of various other formulas
 in the intuitionistic predicate calculus, of which we shall mention several.

 We know that VJF1(&Gf() v -(G)) is provable. Were also
 (2) V11L() D viV(&(<)

 provable, we could thence deduce (1). Therefore (2) is unprovable.

 We know that V.J11aG^) D 13ac3(a) is provable.15 Were also
 (3) __1V(f (,) D) 3, _1CT(i,)
 provable, applying contraposition to the latter, we could deduce (2). There.
 fore (3) is unprovable.

 No substitution with free individual variables having been used in these
 deductions, it follows that the absurdity of the absurdity of each of (2) and
 (3) are also unprovable.

 11. Let A be a formula, let yi,.,yn (m _0) be the free variables of the
 formula in the order of their first free occurrences, and let the formula also be
 denoted by "A(yi,.. aym)."

 We have thus far been considering the formula as a formal expression for
 a proposition, with its free variables expressing generality. But the formula
 also serves as a formal expression for a predicate, i.e., propositional function,
 with its free variables in the r6le of the parameters or independent variables.
 We shall now distinguish between the interpretations of the formula by a prop-
 osition and the interpretations by a predicate.

 Let us catalog the several interpretations.
 Under the direct interpretation of A by a proposition, this proposition is

 the proposition "A is true" as used above, which is synonymous with 'Ivy,..
 vy=A(yi,2 *yt) is true" and with "for all yi,... ,ym, A(y1, * . ,ym) is true."

 13 In the summer of 1941, after Nelson and the author had this result, G6del communi-
 cated to the author in conversation that he had established the same fact, at about the
 same time as they, by a different method also using partial recursive functions.

 14 [71 p. 52 and p. 56.
 15 [81 p. 18.
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 118 S. c. KLEENE

 Under the direct interpretation of A by a predicate, we shall speak of this
 predicate as the predicate "A is true"; it is "A(yi,. Oy) is true" considered
 as predicate of Yi,* ,ym.

 Under the realizability interpretation of A by a proposition, this proposition
 is the proposition "A is realizable" as used above, which is synonymous with

 "vy.. vymA(yi-..,ym) is realizable." But we refrain from identifying it
 with "for all y.. -,ym, A(yi,... ,ym) is realizable." Classically, the formula
 3yB(x,y) from ?9 is a counter example, since Vx3yB(x,y) is unrealizable, but
 in fact, using (h), classically, for every x, 3yB(x,y) is realizable.

 Under the realizability interpretation of A by a predicate, we shall speak
 of this predicate as the predicate "A is realizable"; it is "A(y1, ,ym) is realiz-
 able" considered as predicate of yi,.-. ,ym.

 In the absence of the qualifying word "proposition" or "predicate," we shall
 understand as above the interpretations by a proposition.

 When there are no free variables (i.e., m=O), the predicate interpretations
 coincide with the proposition interpretations.

 We now ask whether, to each particular formula A, the realizability predicate
 for A can be expressed directly in the formal symbolism. More precisely, to
 each A, can we find another formula A such that the predicates "A is realizable"
 and "A is true" are equivalent? In the next section we shall answer this
 question in the affirmative, under the supposition that the object language has
 adequate means for the expression of certain primitive recursive predicates.

 When we have this result for predicates, we can at once answer the correspond-
 ing question for propositions. Since "vy,.. vy.A(yi,.-. ,ym) is realizable"
 and "for all yi,... ,ym, A(yi,... ,ym) is realizable" are not in general identified,
 we cannot in general use the same formula A as we use when A is interpreted

 by a predicate. However let B be the closure yy.... vymA(y1,... ,yy) of A.
 Then the propositions "A is realizable" and "B is realizable" are equivalent;
 and by the stated result, since B contains no free variables, the propositions
 "B is realizable" and "1B is true" are equivalent. Thus the propositions "A
 is realizable" and "B is true" are equivalent; i.e., B is the desired formula.
 If A has no free variables, A and B are the same formula.

 (By ?5 I and II 7, "B is true" always implies "A is true"; but, at least on
 classical grounds, not conversely, in view of the counter example 3yB(x,y)
 given above.)

 (We have discussed only the case that all of the free variables express gen-
 erality, and the case that all are predicate variables. In intermediate cases,
 evidently closures would be taken with respect to just those of the free variables
 which are intended to express generality.)

 12. Let us examine how the predicate "A is realizable" is determined from
 our definition, for a particular formula A.

 In doing so, it will be convenient to use an informal logical symbolism which
 has been employed in the theory of recursive functions. In this symbolism,
 "for all x" is expressed by "(x)"; "there exists an x such that" by "(Ex)";
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 "iknplies" by "-*"; and "and" and "or" by the same symbols "&" and "v",
 respectively, as in the formal symbolism.

 Using this symbolism and a certain primitive recursive predicate T1 and
 function U which have a r6le in the theory of recursive functions, Clauses II 4
 and 7 of ?5 can be restated thus.'6

 II 4. e realizes A D B, if (a)[{a realizes Al -} (Ey)[Ti(e,a,y) & { U(y) realizes
 Bi]].

 II 7. e realizes VxA(x), if (x)(EyfT1(e,x,y) & {U(y) realizes A(x)}].
 To obtain the predicate "A is realizable" for the particular A, we start out

 with "(E) {e realizes A(y1,... ,ym)1 ", considering y...- ,ym as parameters,
 and break the realization predicate "e realizes A(y1, - ,ym)" down by applica-
 tions of Clauses II 2-7. In the process, A(yl,.-. ,ym) is progressively decom-
 posed into parts, and its variables are progressively replaced by numerals
 under applications of Clauses II 6 and 7.

 Using II 4 and 7 in their new forms, at each stage we shall evidently gain an
 expression for the realizability predicate in terms of certain recursive predicates
 and functions, the predicate calculus with number variables only, and the
 realization predicate for the parts.

 Eventually, we come to apply II 1 to elementary formulas. Each such
 elementary formula F will have the form F(xi,.- ,x"), where xl, * ,x are the
 variables which occur in the corresponding part of the original formula A,
 where F(xi, *- ,x") is this corresponding part, where xl, ,xn are natural
 numbers, and xl,... x-, are the corresponding numerals. We shall be applying
 II 1 to F, i.e., to F(x1,.-. ,Xn), considering x1,*.. ,xn as parameters; in other
 words, we shall be requiring "e realizes F(xi, . ,x")" as predicate of e,x, ...,x
 Now this predicate is precisely "e= 0 & F(xli,.- ,Xn)" where F(xi,... ,Xn) is
 the recursive predicate represented by the elementary formula F(xl,..- ,x")

 (cf. ?4).
 Thus, for the particular A, we shall finally reach an explicit expression for the

 predicate "A is realizable" in terms of certain recursive predicates and func-
 tions, numerals, and the predicate calculus with number variables only. These
 recursive predicates and functions are 2X-3 , T1(e,x,y), and U(y), and otherwise
 only predicates known to be expressible in the formal symbolism. Therefore,
 if the three mentioned are so expressible, or if at least T1 and the predicates
 into the composition of which the functions enter are so expressible (not neces-
 sarily by elementary formulas), then the expression can be translated into the
 formal symbolism. This will be the case under any one of Plans A-E of ?4.
 We thus obtain heuristically the formula A for the given A.

 In conclusion we shall give the definition of A from A metamathematically,
 for the case that the requisite functions and predicates are represented in the
 formal symbolism immediately by like designated terms and formulas. The
 letters "F." "A," "B." "x," "A(x)" are used subject to the same stipulations
 as in II 1-7 of ?5, except that now free variables are not excluded. The vari-

 16 [14] ??4, 7, [16] ?10.
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 ables introduced below are to be so chosen as to avoid collision with such free
 variables.

 First we define by a metamathematical recursion a formula e ? A depending
 on A, which represents the realization predicate "e realizes A."

 1. e ? F is e=O & F.

 2. e ? A & B is 3a3b[e=2a-3b & a g A & b ? B].
 3. e ? A v B is 3a[e=20-3a & a ? A] v 3b[e=21-3b & b ? B].
 4. e ? A D B is Va[a ? A D 3y[TI(e,a,y) & U(y) ? B]].
 5. e { lA is e ? A D 1=0.

 6. e ? 3xA(x) is 3x3a[e=2x-3a & a ? A(x)].
 7. e ? VxA(x) is Vx3y[TI(e,x,y) & U(y) ? A(x)].

 Then we define A, representing the realizability predicate, to be 3e[e ? A].
 Another notation for A would be "?A". This would be available in compli-
 cated work where it might not be convenient to represent each formula con-
 sidered by a simple capital letter.

 Note that both these "?" notations are irregular, since except in the ele-
 mentary case the formulas abbreviated as "e ? A" and "?A" do not contain
 the formula A directly as part.

 13. On the basis of the general considerations adduced at the beginning of
 this paper, it seems reasonable to affirm the following three statements.

 Intuitionistically, if A is true, then A is realizable.
 Intuitionistically, if A is realizable, then A is true.
 If A is true intuitionistically, then intuitionistically and classically, A is

 realizable.

 Consider any known formal system S for intuitionistic number theory. For
 the moment, let us confine our attention to formulas A which contain no free
 variables.

 We certainly cannot hope to formalize the first statement by a metamathemat-
 ical proof that, for every A, A D A is provable in S. For all such intuitionis-
 tic systems are subsystems of classical ones. By ?9, there is antA such that
 classically, A is true, but A is unrealizable, i.e., A is untrue. Therefore for
 this A, A D A is untrue classically, hence unprovable in the classical system
 and hence in the intuitionistic, if the classical system is consistent with its
 interpretation.

 Likewise, using the second result of ?9, we cannot expect that, corresponding
 formally to the second statement, for every A, A D A is provable in S.

 Rather, the definition of realizability is thought to make explicit certain
 necessary and intuitionistically sufficient conditions that a proposition hold
 from the standpoint of the intuitionists, which hitherto have not been made
 explicit in such formal postulates as the intuitionists have stated. By annexing
 A D A and A D A to S as new axiom schemata, we should obtain a strengthen-
 ed formalization S' of the intuitionistic standpoint for number theory, in which
 the theory would diverge from the classical.

 If we now remove the restriction that A contain no free variables, but retain
 A D A and A D A as the form of the new schemata, we shall be formalizing
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 the conditions expressed by the first two statements, not only for propositions
 but for predicates as well.

 Nelson's result (I) that for a suitable S, if A is provable, then A is realizable,
 constitutes a formalization of the third statement. Nelson's proof is in terms
 of a classical or an unstrengthened intuitionistic syntax language sufficiently
 strong otherwise to contain the general concept of realizability for the formulas
 of S.

 Nelson's results can be used to secure the consistency of the strengthened
 intuitionistic number theory by the method of interpretation. We use his
 aforementioned result (I) in the form that every formula deducible in S from
 realizable formulas is realizable. Nelson has obtained a second result.'7

 (II) For any formula A, the formulas A D A and A D A are realizable.
 From (I) and (II) it follows that in the enlarged system S' only realizable

 formulas are provable. If each formula A is interpreted as meaning "A is
 realizable," or in other words read as though it were B where B is the closure
 of A, then only correct formulas are provable in S'.

 14. The present discussion is built on the author's G6del numbering of the
 recursive functions in terms of his predicate T, and function U. A straight-
 forward formalization of this numbering has appeared to involve rather unman-
 ageable complexities. Nelson has circumvented this difficulty, and has for-
 malized his proofs of realizability ((I) and (II)) as they apply to particular for-
 mulas (as well as to particular classes of formulas of the form A(y.,---,ym)
 where y1,.. ,ym range over all natural numbers) to obtain results which can
 be summarized as follows, for a suitable S which Nelson has described."8

 (III) If A is deducible in S from Al, . ,Ak (k>0), and if B,B1, . ,Bk are the
 respective closures of A,A1, * ,Ak, then B is deducible in S from B, , ** ,Bk.
 (Likewise, if A is deducible in S from Al, ,..,Ak, and if B,B,,... ,Bk are the
 respective closures of A,A, , * ,Ak with respect to the free variables of Al, - * *,Ak
 not held constant in the deduction, then B is deducible in S from B1, * * *,Bk.)

 (IV) For each formula A, if C and D be the respective closures of A D A
 and A D A, then C and D are provable in S.

 These two results of Nelson's give the following elementary metamathematical
 refinement of the foregoing interpretative consistency proof for the strengthen-
 ing of intuitionistic number theory (end of ?13). In this metamathematical
 refinement, the use of the general concept of realizability for an arbitrary formula
 A is eliminated.

 Combining the two facts, they relate provability in S' with provability in
 S, thus:

 Let A be any formula, and B its closure. If A is provable in S', then B is
 provable in S.

 Now take as A the false elementary formula 1=0. Either system is simply

 17 [161 Theorem 2 Corollary.
 a [161. The system S is Nelson's system S3 introduced in Lemma 15. The results

 (III) and (IV) appear as Theorem 4 Corollary 4.1 and Theorem 5 Corollary Formulas (iii)
 and (iv), respectively, each taken in conjunction with Theorem 3.
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 consistent, if and only if this formula A is unprovable in the system. If it is
 unprovable in S, then so is it in S', because B is 3e[e=O & A], from which
 A is deducible.

 The simple consistency of S' is thus reduced to that of S.'9
 (This also secures the consistency of the extension of intuitionistic number

 theory which was proposed earlier using the notion of recursive fulfillability.20
 When the propositions "(x)(Ey)A (x,y) -{ for some general recursive *,
 (x)A(x,ck(x))1 " are expressed as formulas in S, using. T, and U, the formulas
 expressing the realizability of those formulas will be provable in S, by Nelson's
 methods, and hence the formulas themselves will belong to S'.)

 (If B is the closure of a formula A, then B D A is provable in S. Therefore
 (IV) and the provability relation following it hold also without taking closures.)

 15. Nelson has also formalized the author's proofs of unrealizability (?7 (f)
 and ?9) as follows.2'

 (V) For each formula A, if C is the formula fl flA, then -lA D NiC is
 provable in S.

 (VI) If A is the formula Vx3yB(x,y) of ?9, then -1A is provable in S.
 The second of these results of Nelson makes it possible as follows to refine

 metamathematically the reasoning in ?13 that A D A and A D A cannot
 be provable in S, and that their addition to S gives a system S' which diverges
 from the classical.

 Let S. be the classical system which results from S by annexing the law of the
 excluded middle as an axiom schema.

 For the first incompleteness result for S, namely that A D A is unprovable
 in it for a certain A, let A be the formula Vx3yB(x,y) of ?9. This formula
 is actually provable in S,. Suppose A D A were provable in S, and therefore
 in S, which contains S. Then A would be provable in S. But according to
 (VI), 7A is provable in S, and hence in S.. Thus Se would be simply in-
 consistent.

 Therefore A D A is unprovable in S, if Se is simply consistent. By a result
 of Gddel's,22 S, is simply consistent, if S is simply consistent.

 For the other incompleteness result (stating it now with the letter "C" in-
 stead of "A"), let C be the formula fA of the present context. By (VI), IA
 is provable in S, and hence in S'. Also A D A is an axiom of S'. By contra-
 position, 7A D 1A is provable in S'. Therefore 1A is provable in S'.

 Therefore, by the relation between provability in S' and provability in S
 mentioned in ?14 (applied with MA as the "A" of the statement in ?14, and
 with C as the "B"), C is provable in S.

 19 Gentzen's method of proving consistency, [2], [3], [10] pp. 360 ff., applies to S. As
 is remarked in [10) p. 334 and p. 368, both the Gentzen proof and the proof by a direct
 truth definition escape the Godel limitation [4] by using a predicate, the explicit definition
 of which would require an enumerably infinite number of quantifiers. The same is true
 of the consistency proof by the realizability interpretation (?7 (c) and ?8).

 20 [14] ?16.
 21 [16] Theorem 6 (ii) with Theorem 3; and Theorem 7.2 Corollary.
 22 [5].
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 Now suppose C D C were provable in S. Then C would be provable in S;

 that is, nA would be provable in S, and hence in S,. But A is provable in S,.
 Therefore C D C is unprovable in S, if S, is simply consistent, and hence

 if S is simply consistent.
 As has appeared in the course of the discussion, A is an example of a formula

 which is provable in Sc, while its negation 1A is provable in S'.
 (Similar formalization can be applied to a remark in ?11, to show that for

 a certain formula A, if B is the closure of A, B is not deducible in S from A.
 Let A be the formula 3yB(x,y) for the B(x,y) of ?9. By Nelson's methods, it

 can be shown that A is provable in S,. But the closure B of this A is the
 "A" of (VI). Thus 71B is provable in S. Were B deducible in S from A,

 then Sc, which contains S, would be simply inconsistent, and then S itself
 would be. Since B is deducible from A in S, this also shows that the closure
 requirement in (III) cannot be further weakened.)

 16. Together Nelson's results (V) and (VI) give the following metamathe-
 matical refinement of the proof in ?10, which was expressed in terms of the

 interpretation, that (1) and therefore certain other formulas of the classical
 predicate calculus are unprovable in the intuitionistic predicate calculus.

 Let A, B, C be the number-theoretic formulas Vx3yB(x,y), Vx(A(x) v 7A(x)),
 ThlVx(A(x) v 7A(x)), respectively, of ?10.

 The formula A is deducible from B in S. Hence by (III), A is deducible
 from B in S. Hence by the deduction theorem, which certainly applies since

 no free variables are present, B D A is provable in S, and by contraposition,
 so is 7A D 7B. Also by (VI), -A is provable in S. Therefore dB is
 provable in S, and by (V) (applied with B as the "A" of (V)), so is -C.

 Now S is a subsystem of S', so :C is provable in S'. The formula C D C
 is an axiom of S', and by contraposition, -C D NC is provable in S'. There-
 fore MC is provable in S'.

 Now were the formula (1) of ?10 provable in the intuitionistic predicate cal-
 culus, by substitution C would be provable in S'. Then S' would' be simply
 inconsistent. As we saw in ?14, this is impossible if S is simply consistent.

 Therefore (1) is unprovable in the intuitionistic predicate calculus, if S is
 simply consistent.
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