Seminar on Set Theory

Hand-out lecture 1 September 18, 2015

Part I - Lattices and algebras

Definition.

- (i) We say that a poset (L, \leq) is a **bounded lattice** if every pair of elements $x, y \in L$ has a supremum/join $x \lor_L y$ and an infimum/meet $x \land_L y$, and there are a greatest element 1_L and a least element 0_L .
- (ii) We say that a bounded lattice is **distributive** is for all $x, y, z \in L$, we have

$$x \land (y \lor z) = (x \land y) \lor (x \land z)$$
 and $x \lor (y \land z) = (x \lor y) \land (x \lor z)$.

(iii) A bounded lattice is *complete* if every subset $A \subset L$ has a supremum $\bigvee A$ and an infimum $\bigwedge A$.

Properties. Let (L, \leq) be a bounded lattice. For all $x, y, z \in L$, we have:

$$\begin{aligned} x \lor 0 &= x, & x \land 1 = x, \\ x \lor y &= y \lor x, & x \land y = y \land x, \\ x \lor (y \lor z) &= (x \lor y) \lor z, & x \land (y \land z) = (x \land y) \land z, \\ x \lor x = x, & x \land x = x, \\ (x \lor y) \land y = y, & (x \land y) \lor y = y. \end{aligned}$$

Definition. A bounded lattice (H, \leq) is a **Heyting algebra** if for all $x \in H$, the set $\{z \in H \mid z \land x \leq y\}$ has a greatest element. We call this element the *implication* of x and y, and is denoted by $x \Rightarrow_H y$. We define the **pseudocomplement** x^* of an $x \in H$ as $x \Rightarrow 0$.

Properties. Let (H, \leq) be a Heyting algebra. For all $x, y, z \in H$, we have:

- $z \wedge x \leq y$ iff $z \leq (x \Rightarrow y)$;
- $(x \Rightarrow y) \land x \le y;$
- if $y \leq z$, then $(x \Rightarrow y) \leq (x \Rightarrow z)$;
- $(x \Rightarrow y) = 1$ iff $x \le y$;
- $(x \Leftrightarrow y) = 1$ iff x = y;
- $(x \Rightarrow (y \Rightarrow z)) = ((x \land y) \Rightarrow z);$
- $y \le x^*$ iff $x \land y = 0$ iff $x \le y^*$;
- $x \wedge x^* = 0;$
- $x \leq x^{**};$
- $x^* = x^{***};$

Proposition 1. Every Heyting algebra is distributive.

As a result, we get another property of Heyting algebras: $(x \lor y)^* = x^* \land y^*$ for all $x, y \in H$.

Proposition 2. (Bell, proposition 0.1, variant.) Given are a bounded lattice (L, \leq) and an operation $\Rightarrow: L^2 \to L$. Then \Rightarrow makes L into a Heyting algebra if and only if the following are satisfied:

- (i) $(x \Rightarrow x) = 1;$
- (*ii*) $(x \Rightarrow y) \land x \leq y;$
- (iii) $y \le (x \Rightarrow y);$
- (iv) $(x \Rightarrow (y \land z)) = (x \Rightarrow y) \land (x \Rightarrow z).$

Proposition 3. Let (L, \leq) a complete bounded lattice. This is a Heyting algebra if and only if $x \wedge \bigvee_{i \in I} y_i = \bigvee_{i \in I} (x \wedge y_i)$ for all $x, y_i \in L$. In this case, we also have $(\bigvee_{i \in I})^* = \bigwedge_{i \in I} x_i^*$ for all $x_i \in H$.

Definition.

- (i) Let (L, \leq) be a bounded lattice, and $a \in L$. A *complement* of a is a $b \in L$ such that $a \wedge b = 0$ and $a \vee b = 1$.
- (ii) A **Boolean algebra** is a Heyting algebra (H, \leq) such that x^* is a complement of x for all $x \in H$.

Remark. The Boolean algebras are precisely the bounded lattices equipped with a complement operation.

Proposition 4. (Bell, proposition 0.2.) Let (H, \leq) be a Heyting algebra. Then $x \vee x^* = 1$ for all $x \in H$ if and only if $x^{**} = x$ for all $x \in H$.

Properties. Let (B, \leq) be a Boolean algebra. For all $x, y \in B$, we have:

- $x \lor x^* = 1;$
- $x^{**} = x;$
- $(x \wedge y)^* = x^* \vee y^*$.

If B is complete, then for all $x, x_i, y_i \in B$, we have

- $x \vee \bigwedge_{i \in I} y_i = \bigwedge_{i \in I} (x \vee y_i);$
- $\left(\bigwedge_{i\in I} x_i\right)^* = \bigvee_{i\in I} x_i^*.$

Part II - Filters and ultrafilters

Filters and Ideals

Let L be a bounded distributive lattice. A *filter* F on L is a subset $F \subset L$ such that:

- $1_L \in F$ and $0_L \notin F$
- if $x, y \in F$ then $x \wedge_L y \in F$
- if $x \in F$ and $x \leq y$ then $y \in F$

An *ideal* I on L is a subset $I \subseteq L$ such that:

- $0_L \in I$ and $1_L \notin I$
- if $x, y \in I$ then $x \vee_L y \in I$
- if $x \in I$ and $y \leq x$ then $y \in I$

The set

$$X^{+} = \{ y \in L : \exists x_{1}, ..., x_{n} \in X(x_{1} \wedge_{L} ... \wedge_{L} x_{n} \leq y) \}$$

is called the *filter generated by* X. A filter F is called *prime* if $x \in F$ or $y \in F$ whenever $x \lor_L y \in F$. A filter that is maximal under inclusion is called an *ultrafilter*.

Proposition 0.3 Let $F \subset L$ be filter and let $b \in L - F$. Then there is a filter F' containing F and maximal under inclusion with respect to $b \notin F'$. Any such filter is prime.

Corollary 0.4 For any $a, b \in L$ with $a \not\leq b$ we can find a prime filter containing a but not b. **Corollary 0.5** Each filter in a bounded lattice is contained in an ultrafilter.

If L, L' are distributive lattices, then $h: L \to L'$ is a *lattice homomorphism* if:

- $h(0_L) = 0_{L'}$ and $h(1_L) = 1_{L'}$
- $h(x \wedge_L y) = h(x) \wedge_{L'} h(y)$ and $h(x \vee_L y) = h(x) \vee_{L'} h(y)$ for all $x, y \in L$

If L and L' are Heyting algebras and $h(x \Rightarrow y) = h(x) \Rightarrow h(y)$ for all $x, y \in L$ then h is an **algebra homomorphism**. A bijective homomorphism is called an **isomorphism** and if the domain and codomain are equal it is called an **automorphism**.

Let B be a Boolean algebra and S a family of subsets of B such that every $X \in S$ has a join $\bigvee X$. An ultrafilter U in B is S-complete if for all $X \in S$ we have $\bigvee X \in U$ implies $X \cap U \neq \emptyset$.

Theorem 0.6 (Rasiowa-Sikorski) If S is a countable family of subsets of a Boolean algebra B and every member of S has a join, then for each $a \neq 0_B$ in B there is an S-complete ultrafilter in B containing a.