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1 Classical Mechanics

Any physical system is described by three
basic ingredients: states, observables, and
dynamics. In classical mechanics, the state
of a system is characterised by the posi-
tion ~x(t) and the momentum ~p(t) (i.e. the
product of mass and velocity, ~p(t) = m~v(t))
of the system. Observables are measurable
quantities like energy or momentum. The
dynamics of a physical system are governed
by Newton’s three laws of motion:

Law 1 Every object in a state of uniform
motion tends to remain in that
state of motion unless an external
force is applied to it.

Law 2 If a net external force is applied to
an object, the acceleration of the
object is proportional to the ap-
plied force.

Law 3 For every action there is an equal
and opposite reaction.

Let ~F be the net external force acting on
ab object. Newton’s second law then reads

~F = m~a = m
d2~x

dt2
. (1)

If we introduce the momentum ~p = md~x
dt

,
Newton’s second law reads

~F =
d~p

dt
(2)

Newton’s second law provides us with a sys-
tem of second order linear differential equa-
tion in ~x(t). Together with the initial con-
ditions

~x(t0),
d~x

dt

∣∣∣∣
t=t0

(3)

the time-evolution of the system is deter-
mined completely. In classical mechanics
we visualize the time-evolution of the sys-
tem in the phase-space of the system. For
mechanical systems, e.g. a particle, the
phase-space consists of all possible position
and momentum variables.

2 The quantum principles

In quantum mechanics we also deal with
states and observables and the dynamics
thereof. However, in quantum mechan-
ics we face a different situation altogether.
The difference between the quantum world
and the classical world are described by the
two following fundamental quantum princi-
ples:

Principle 1 (Superposition principle)
Two (or more) quantum states can be added
together (“superposed”) and the result will
be another valid quantum state.

Principle 2 (Uncertainty principle of Heisenberg)
If the same preparation procedure on a
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physical system is repeated many times,
and is followed either by a measurement of
the position x, or by a measurement of the
momentum p, the various results obtained
for x and for p have standard deviations,
∆x and ∆p, whose product cannot be less
than ~/2:

∆x∆p ≥ ~
2

(4)

2.1 Implication of the quantum
principles

Both quantum principles point us towards
the new structure of quantum mechanics.
The superposition principle leads us to con-
sider linear spaces . These will turn out to
be Hilbert spaces. Stated will now be in-
terpreted as vectors in a suitable Hilbert
space

The uncertainty principle can be deduced
once when reinterprets the meaning of an
observable; in classical mechanics one can
in principle, if the measuring device is ac-
curate enough, measure the system to in-
finite accuracy. The product of both stan-
dard deviations would be zero. However,
in quantum mechanics this is no longer the
case. There is a fundamental uncertainty
build in. And we can deduce this uncer-
tainty if we reinterpret observables. Ob-
servables are no longer functions of phase
space but linear operators on Hilbert space.
Moreover the uncertainty principle follows
from non-commuting pairs of observables.

3 Postulates of Quantum
Mechanics

Definition 3.1 Quantum mechanics is a
physical theory that deals with the structure
and behaviour of elementary particles, or
quanta.

It is governed by the following (physical)
postulates:

Postulate 1 Each physical system corre-
sponds to a complex Hilbert space H . A
state of the system is associated with a sub-
space of that Hilbert space.

Postulate 2 Physical observables are
given by densely defined (i.e. defined on a
dense linear subspace of H ) self-adjoint
operators on the Hilbert space. The ex-
pected value of the observable A for the
system in a state represented by the unit
vector ψ ∈ H is given by 〈ψ,Aψ〉. One
can show that the possible values for the
observable must belong to the spectrum
of the operator A. If the spectrum is
discrete, the possible outcomes of measur-
ing A are exactly its eigenvalues. After
the measurement, the system will be in
the eigenstate of A corresponding to the
measured eigenvalue.

Postulate 3 The dynamics of the system
is given by the time-evolution operator
U(t) ≡ e−itH , where H is the self-adjoint
Hamilton operator corresponding to the to-
tal energy of the system. If ψ(t) is the state
at time t, then the state at time t+s is given
by

ψ(t+ s) = U(s)ψ(t) (5)

for all t, s ∈ R.

More generally the time-evolution of a
quantum system is described by the time-
dependent Schrödinger equation

i
d

dt
ψ(t) = Hψ(t). (6)
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4 Mathematical structure of
Quantum Mechanics

4.1 Hilbert space

Definition 4.1 (Hilbert Space) A
Hilbert space is a C-vector space H
equipped with an inner product 〈f, g〉 such
that the norm defined by

|f | ≡
√
〈f, f〉

turns H into a complete metric space, i.e.
a metric space in which every Cauchy se-
quence is convergent. Recall that the norm
d(f, g) ≡

√
|f − g| is induced by the inner

product 〈 , 〉 and satisfies

1. d(f, g) = 0 ⇐⇒ f = g.
2. d(f, g) = d(g, f).
3. d(f, g) + d(g, h) ≥ d(f, h).

In quantum mechanics one often takes as
a Hilbert space the infinite-dimensional
Hilbert space L2(Rn), i.e. the set of all

functions f : Rn → C such that the in-
tegral of |f |2 over the whole space is finite.
In this case, the inner product is defined by
(∗ denotes complex conjugation)

〈f, g〉 =

∫
Rn

f∗g dnx. (7)

Let M denote a subspace of a Hilbert space
H . Then the orthogonal complement M⊥

of M is defined to be

M⊥ = {f ∈H | 〈f, g〉 = 0∀g ∈M }.

Lemma 4.1 A subspace M of a Hilbert
space H is called dense if and only if
M⊥ = {0}.

4.2 Self-adjoint operators

A linear operator is a function from a sub-
space M ⊂ H to the Hilbert space H .

The adjoint operator A∗ of a densely
defined operator A is defined by

D(A∗)= {ψ ∈H | ∃ψ̃ ∈H : 〈ψ,Aφ〉 = 〈ψ̃, φ〉 ∀φ ∈ D(A)},
A∗ψ = ψ̃. (8)

If the operator A is symmetric, i.e.

〈ψ,Aψ〉 = 〈Aψ,ψ〉 ∀ψ ∈ D(A) (9)

and A = A∗ then we call A self-adjoint.

Theorem 4.2 (Stone’s theorem) Let
{U(t) | t ∈ R} be a strongly1 continuous
one-parameter unitary group on a Hilbert
space H . Then there exists a unique

1Strongly continuous: ∀t0 ∈ R, ψ ∈ H :
limt→t0 Utψ = Ut0ψ

self-adjoint operator A on H such that
U(t) = eiAt. The operator iA is called the
infinitesimal generator of U(t).

If we take a closer look at the third postu-
late, the time-evolution of a quantum state:

ψ(t+ s) = U(s)ψ(t),

then the set U(s) constitutes a one-
parameter unitary group. Stone’s theorem
then guarantees the existence of a unique
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self-adjoint operator H such that U(s) =
e−isH .

5 Derivation of the
uncertainty principle

Let A and B be two non-commuting oper-
ators on a Hilbert space H . The expecta-
tion values 〈A〉 and 〈B〉 of A and B in a
given state ψ are given by

〈A〉 = 〈ψ,Aψ〉, 〈B〉 = 〈ψ,Bψ〉. (10)

We then define the standard deviation ∆A
(or uncertainty) of A to be

∆A =

√
〈(A− 〈A〉)2〉 (11)

Likewise for B. One can then show that

∆A∆B ≥ 1

2
|〈[A,B], 〉| (12)

where the brackets [ , ] denote the commu-
tator of A and B:

[A,B] ≡ AB −BA. (13)

In quantum mechanics the fundamental
commutator for position and momentum is

[x, p] ≡ i~. (14)

We take H = L2(R) in this example. The
operator p is taken to be the closure of i d

dx
with domain S(R), the Schwartz space or
the space of rapidly decreasing functions.
This operator is self-adjoint on S(R) . The
operator x is the operator Tx, which multi-
plies with the function f(x) = x.

The Schwartz space S(R), is the set off
all Schwartz functions. A function f ∈
C∞(Rn) is called a Schwartz function if it
goes to zero as |x| → ∞ faster than any in-
verse power of x, as do all of its derivatives.
That is, a function is a Schwartz function
if there exist real constants Cαβ such that

sup
x∈Rn

|xα∂βf(x)| ≤ Cαβ, (15)

where multi-index notation has been used
for α and β. (i.e. α = (α1, . . . , αn))
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