Seminar on Set Theory

Hand-out lecture 15 January 15, 2016

IZF and the Heyting valued universe

I. IZF and ordinals

IZF is IZ extended with the Axiom Schemes of Collection and \in -induction.

Definition.

- i) A set x is *transitive* if $\forall y \in x \ y \subseteq x$.
- ii) An ordinal is a transitive set of transitive sets. The class of ordinals is denoted by ORD.
- iii) An ordinal α is simple if $\forall \beta, \gamma \in \alpha \ (\beta \in \gamma \lor \beta = \gamma \lor \gamma \in \beta)$.

Examples. 0, $\{0\}$, $\{0 \mid \phi\}$, $\{0, \{0 \mid \phi\}\}$ are ordinals. We write $1 = \{0\}$.

Proposition. If every ordinal is simple, then the Law of the Excluded Middle holds.

Definition.

- i) If $\alpha \in \text{ORD}$, then its successor α^+ is defined as $\alpha \cup \{\alpha\}$.
- ii) If $A \subseteq \text{ORD}$ is a set, then its *supremum* is defined as $\bigcup A$.
- iii) For $\alpha, \beta \in \text{ORD}$, we write $\alpha < \beta$ for $\alpha \in \beta$, and $\alpha \leq \beta$ for $\alpha \subseteq \beta$.

Properties.

- $\bullet \ \alpha^+ \leq \beta \leftrightarrow \alpha < \beta.$
- $\bigcup A \leq \beta \leftrightarrow \forall \alpha \in A \ \alpha \leq \beta.$
- $\alpha < \beta \leq \gamma \rightarrow \alpha < \gamma$.

Definition. An $\alpha \in \text{ORD}$ is

- i) a weak limit if $\forall \beta \in \alpha \ \exists \gamma \in \alpha \ \beta \in \gamma$;
- ii) a strong limit if $\forall \beta \in \alpha \ \beta^+ \in \alpha$.

Proposition. Is every weak limit is also a strong limit, then the Law of the Excluded Middle holds.

II. Heyting valued universe

For a Heyting algebra H, we can define $V^{(H)}$, $\mathcal{L}^{(H)}$ and $\llbracket \cdot \rrbracket^H$. We have:

- first order intuitionistic logic holds in $V^{(H)}$;
- $V^{(H)} \models \text{IZF};$
- a hat operator $\hat{\cdot}: V \to V^{(H)};$
- $V^{(H)} \models$ Zorn's Lemma.

III. Algebra of opens

Let (P, \leq) be a poset. For $p \in P$, we write $O_p = \{q \in P \mid q \leq p\}$. We give P the *left order topology*, generated by the base $\{O_p \mid p \in P\}$. We let

$$H = O(P) = \{ X \subseteq P \mid \forall p \in X \forall q \in P \ (q \le p \to q \in X) \}.$$

Definition. Let $p \in P$ and $\sigma \in \mathcal{L}^{(H)}$. We say that p forces σ , written $p \Vdash \sigma$, if $O_p \leq \llbracket \sigma \rrbracket$.

Property. For $p \in P$ and $\mathcal{L}^{(H)}$ -sentences σ and τ , we have

$$p \Vdash \sigma \lor \tau$$
 iff $p \Vdash \sigma$ or $p \Vdash \tau$.

Theorem. For $P = \mathbb{N}^{\text{op}}$ and $K = \{ \langle \hat{n}, O_n \rangle \mid n \in \mathbb{N} \} \in V^{(H)}$, we have

 $V^{(H)} \models K$ is infinite, but not Dedekind infinite.