
The consistency of ZF + LO + ¬AC
Jan Rooduijn

Utrecht University

January 25, 2016

In [1], Bell constructs a Boolean-valued version of what is known as the basic Cohen model or the first
Cohen model of ZF. Bell shows that in this model, denoted by V (Γ), there is a set s such that

V (Γ) |= s is infinite, but not Dedekind infinite,

thereby showing that the Axiom of Choice (AC) fails in this model.
Interestingly enough, one might say that this model does contain some choice. Indeed, in [2] it is shown

that the statement ‘every set can be linearly ordered’ (LO) does hold in the model. By the equivalence of
AC to the well-ordering theorem, it is easily seen that AC implies LO. This shows that LO is strictly weaker
than AC. Since there are also models of ZF in which it does fail, e.g. in the second Cohen model (see [2]),
it follows that ZF + LO is strictly in between ZF and ZF + AC in terms of strength.

In this small article we will prove that LO holds in the Boolean-valued basic Cohen model, as constructed
by Bell in [1]. It should be read as an amateur addendum to Chapter 3, as we will use definitions, theorems
and even variable names from Bell’s book. The proof method is based on the analogous proofs in Chapter
4 and Chapter 5 of [2]. Let us begin with a definition.

Definition. Let x ∈ V (Γ). Then for finite J ⊆ ω, we say that J is a support of x whenever gx = x for every
g ∈ GJ . �

It is clear that every x ∈ V (Γ) has a support. For, by definition, we have that stab(x) ∈ Γ and thus there
is a finite J ⊆ ω such that stab(x) ⊆ GJ . However, to prove that LO holds in V (Γ), we need to strengthen
this result a bit.

Lemma. Every x ∈ V Γ has a least support.

Proof. We will prove this by showing that the intersection of all supports of x is itself a support of x.
First we will show that it holds for any two supports of x, and thus for any finite number. Let J1, J2 ⊆ ω

be supports of x and let J = J1 ∩ J2. In order to see that J is also a support of x, let g ∈ GJ . We will
show that g can be written as a composition of permutations in GJ1

∪ GJ2
, and thus that gx = x. Notice

that all permutations in GJ , GJ1 , GJ2 fix the elements in J , so we can assume wlog that J = ∅. We write
J1 = {x1, . . . , xn} and pick distinct a1, . . . , an ∈ ω \ (J1 ∪ J2 ∪ g(J1)). Consider the permutations

• s ∈ GJ2
that swaps xi for ai for each i.

• t1 ∈ GJ2
that swaps ai for g(xi) for each i s.t. g(xi) ∈ J1.

• t2 ∈ GJ1 that swaps ai for g(xi) for each i s.t. g(xi) /∈ J1.

Now consider the permutation h = g−1t1t2s. Let xi ∈ J1, we claim that h fixes xi and thus h ∈ GJ1
. Indeed,

• If g(xi) ∈ J1, we have xi
s−→ ai

t1−→ g(xi)
t2−→ g(xi)

g−1

−−→ xi.

• If g(xi) /∈ J1, we have xi
s−→ ai

t1−→ ai
t2−→ g(xi)

g−1

−−→ xi.

1



And thus we can write g = ghh−1 = gg−1t1t2sh
−1 = t1t2sh

−1, to obtain the required expression of g.

Exercise 1 (1 pt.). Finish the above prove by extending this result to collections of supports of x of arbitrary
length.

Now that we have gotten this out of the way, we are ready to prove our theorem.

Theorem. V (Γ) |= every set can be linearly ordered.

Proof. We will prove this theorem by constructing for each set u ∈ V (Γ) a map F : dom(u)→ ORD× I in
V (Γ) such that V (Γ) |= F is one-one, where I is the set of finite subsets of s in V (Γ).1 As a theorem of ZF,
we have that ORD can be linearly ordered in V (Γ) by the membership relation.

Exercise 2 (2 pt.). Show that the set I can also be linearly ordered in V (Γ). Hint: recall that V (Γ) |= s ⊆ Pŵ
and use the axioms of ZF. You may also use the fact that Theorem 1.23 holds in V (Γ).

Since every set u ∈ V (Γ) is the domain of another element in V (Γ) (e.g. of {〈u, 1〉} it will follow that V (Γ)

proves that every set can be linearly ordered under the induced lexicographical ordering.
The idea is to associate with each x ∈ dom(u) a finite subset of s (corresponding to the least support of

x) and an element of the set Ou := {orb(x) | x ∈ dom(u)} × {1}, where orb(x) := {gx | g ∈ G} × {1} is the
orbit of x in V (Γ). It can be easily shown that orb(x), Ou ∈ V (Γ) for x, u ∈ V (Γ).

Let us first show that Ou can be well-orderd in V (Γ) and thus that there is a one-to-one function from Ou

into ORD. Analogously to the definition of an ordered pair in V (B) on p. 52 of Bell, we define for u, v ∈ V (Γ)

{u}(Γ) = {〈u, 1〉};
{u, v}(Γ) = {u}(Γ) ∪ {v}(Γ);

〈u, v〉(Γ) = {{u}(Γ), {u, v}(Γ)}(Γ).

Exercise 3 (1 pt.). Prove that {u}(Γ), {u, v}(Γ), 〈u, v〉(Γ) ∈ V (Γ) for all u, v ∈ V (Γ).

Now define f := {〈ẑ, z〉(Γ) | z ∈ dom(Ou)}×{1}. By the previous exercise and Lemma 3.14, we have that
dom(f) ⊆ V (Γ). Furthermore, it holds for g ∈ G, that gz = gorb(x) = orb(gx) = orb(x) = z and gẑ = ẑ and
thus

stab(f) = {g ∈ G | gf = f} = G ∈ Γ.

By the well-ordering theorem in V , we can pick an ordinal α and a bijection g of α onto dom(u). It
follows that

V (Γ) |= ĝ is a bijection of the ordinal α̂ onto ̂dom(Ou).

Consequently, we have

V (Γ) |= f ◦ ĝ is a function with domain α̂ and range extending Ou,

and thus V (Γ) proves that Ou is well-orderable.

Exercise 4 (1 pt.). It is a theorem of ZF that every infinite well-ordered set is Dedekind infinite. We
have seen in [1] that while it is infinite, the set s is not Dedekind infinite. Show that the above method
indeed fails when one tries to use it to prove the well-orderedness of s, by showing that f ′ := {〈ẑ, z〉(Γ) | z ∈
dom(s)} × {1} /∈ V (Γ).

1In other versions of this proof, the function F is constructed as a class function that has the whole universe as its domain.
In our construction this would probably also work, but the nice thing about this way is that we now have F ∈ V (Γ).
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We construct our map F : dom(u)→ ORD× I in two parts. First define the function

F1 := {〈x, orb(x)〉(Γ) | x ∈ dom(u)} × {1}.

Again, it can be readily verified that F1 ∈ V (Γ). Secondly, we define

F2 := {〈x, {un1
, . . . , unj

} × {1}〉(Γ) | x ∈ dom(u)} × {1},

where {n1, . . . , nj} is the least support of x. Once again, the straightforward verification that F2 ∈ V (Γ) is
left to the reader.

To see that the function obtained from combining F1 and F2 in V (Γ) is one-one, suppose that for x, y ∈
V (Γ), we have

V (Γ) |= F1(x) = F1(y) ∧ F2(x) = F2(y).

We claim that then V (Γ) |= x = y. Firstly, since we know that V (Γ) |= un 6= un′ for n 6= n′, it holds that x
and y have the same least support J . Furthermore, notice that

1 = [[orb(x) = orb(y)]]

≤
∧
g∈G

[[gx ∈ orb(y)]]

≤ [[x ∈ orb(y)]] =
∨
g∈G

[[x = gy]],

This means that
∧

g∈G[[x 6= gy]] = 0 and thus that for all p ∈ P we have p 6≤
∧

g∈G[[x 6= gy]]. That is, there
is a g ∈ G such that p 6≤ [[x 6= gy]] or such that p 6 x 6= y. It follows that for that g, there is a q ∈ P with
q ≤ p such that

q  x = gy.

Now suppose, by contradiction, that V (Γ) 6|= x = y. Then there is some p ∈ P such that p  x 6= y. By
the above, there is a q ≤ p and g ∈ G such that q  x = gy.

Therefore, we have that q  F2(y) = F2(x) = F2(gy). A simple calculation of Boolean truth value shows
that this must mean that gy also has least support J , for otherwise we would have [[F2(y) = F2(gy)]] = 0 6≥ q.

It can easily be verified that since J is a support of y, that gJ is a support of gy. Since J and gJ have the
same size, and J is the least support of y, we must have J = gJ and thus g ∈ GJ . But then q  x = gy = y,
which is a contradiction since q ≤ p.
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