Seminar on Set Theory

Hand-out Lecture 4

October 9, 2015

Subalgebras and Submodels

We show that

$$
V^{(B)} \supset V^{(2)} \cong V
$$

in a natural sense.
Definition 1. Given a complete subalgebra of a Boolean algebra B is a subalgebra B^{\prime} such that for any $X \subset B^{\prime}, \bigvee X$ and $\bigwedge X$ exist in B^{\prime} and coincide with $\bigvee X$ and $\bigwedge X$ formed in B.

Theorem 2. Let B be a Boolean algebra and B^{\prime} a complete subalgebra of B. Then $V^{\left(B^{\prime}\right)} \subset V^{(B)}$ and for any $u, v \in V^{\left(B^{\prime}\right)}$ we have

$$
\begin{aligned}
\llbracket u=v \rrbracket^{B} & =\llbracket u=v \rrbracket^{B^{\prime}} \\
\llbracket u \in v \rrbracket^{B} & =\llbracket u \in v \rrbracket^{B^{\prime}} .
\end{aligned}
$$

Corollary 3. Given a Boolean algebra B and a complete subalgebra B^{\prime}, we have for any restricted formula $\phi\left(a_{1}, \ldots, a_{n}\right)$ and any $u_{1}, \ldots, u_{n} \in B^{\prime}$ that

$$
\llbracket \phi\left(u_{1}, \ldots, u_{n}\right) \rrbracket^{B}=\llbracket \phi\left(u_{1}, \ldots, u_{n}\right) \rrbracket^{B^{\prime}} .
$$

Hence, when B^{\prime} is a complete subalgebra of B we say that $V^{\left(B^{\prime}\right)}$ is a submodel of $V^{(B)}$.

Note that $2 \subset B$ is a complete subalgebra of any Boolean algebra B, so $V^{(2)}$ is a submodel of every $V^{(B)}$.

Define \hat{x} as follows by recursion on \in :

$$
\hat{x}=\{\langle\hat{y}, 1\rangle: y \in x\}
$$

Definition 4. We say that $y \in V^{(B)}$ is a standard element if there is an $x \in V$ such that $y=\hat{x}$.

Note: this is not the same as $\llbracket y=\hat{x} \rrbracket^{B}=1$!
Theorem 5. The following properties about standard elements hold:
(i) For $x \in V, u \in V^{(B)}$,

$$
\llbracket u \in \hat{x} \rrbracket^{B}=\bigvee_{y \in x} \llbracket u=\hat{y} \rrbracket^{B} .
$$

(ii) For $x, y \in V$,

$$
\begin{aligned}
& x \in y \text { iff } V^{(B)} \models \hat{x} \in \hat{y} \\
& x=y \text { iff } V^{(B)} \models \hat{x}=\hat{y}
\end{aligned}
$$

(iii) The map $x \mapsto \hat{x}$ is one-to-one.
(iv) For each $u \in V^{(2)}$ there is a unique $x \in V$ such that $V^{(2)} \models u=\hat{x}$.
(v) For any formula $\phi\left(a_{1}, \ldots, a_{n}\right)$ and $x_{1}, \ldots, x_{n} \in V$,

$$
V \models \phi\left(x_{1}, \ldots, x_{n}\right) \text { iff } V^{(2)} \models \phi\left(\hat{x}_{1}, \ldots, \hat{x}_{n}\right)
$$

and furthermore, if ϕ is restricted,

$$
V \models \phi\left(x_{1}, \ldots, x_{n}\right) \text { iff } V^{(B)} \models \phi\left(\hat{x}_{1}, \ldots, \hat{x}_{n}\right) .
$$

