Seminar on Set Theory

Hand-out lecture 7
November 6, 2015

Part I - Refined posets and Boolean completions

Definition 1. For $u, v \in V^{(B)}$ define $\{u\}^{(B)}=\{\langle u, 1\rangle\}$, $\{u, v\}^{(B)}=\{u\}^{(B)} \cup\{v\}^{(B)}$ and $\langle u, v\rangle^{(B)}=\left\{\{u\}^{(B)},\{u, v\}^{(B)}\right\}^{(B)}$.

Theorem 2. For all $u, v \in V^{(B)}$ there exists an $f \in V^{(B)}$ such that

$$
\left.V^{(B)} \models \operatorname{Fun}(f) \wedge \operatorname{dom}(f)=\widehat{\operatorname{dom}(u}\right) \wedge u \subseteq \operatorname{ran}(f) .
$$

Definition 3. Let (P, \leq) be a poset. Elements $p, q \in P$ are called compatible, written $\operatorname{Comp}(p, q)$, if $\exists r \in P(r \leq p \wedge r \leq q)$, and (P, \leq) is called refined if

$$
\forall p, q \in P\left(q \not \leq p \rightarrow \exists p^{\prime} \leq q \neg \operatorname{Comp}\left(p, p^{\prime}\right)\right) .
$$

The sets $O_{p}=\{q \in P: q \leq p\}$ form a basis for the left order topology on P. A set $X \subseteq P$ is open in this topology iff $\forall p, q((p \leq q \wedge q \in X) \rightarrow p \in X)$.

Theorem 4. P is refined iff $O_{p} \in \operatorname{RO}(P)$ for all $p \in P$.
Definition 5. $X \subseteq B$ is called dense in B if $0 \notin X$ and for all $0 \neq b \in B$ there exists an $x \in X$ such that $x \leq b$.

Theorem 6. P is refined iff it is order-isomorphic to a dense subset of a complete Boolean algebra.

Definition 7. A pair $\langle B, e\rangle$ is called a Boolean completion of P if B is a complete Boolean algebra and e is an order-isomorphism of P onto a dense subset of B.

Theorem 8. Boolean completions are unique up to isomorphism of Boolean algebra's.

Part II - Forcing and the consistency of $V \neq L$

Definition. Let P be a refined poset an let (B, e) be a Boolean completion of P. We identify the image $e(P) \subseteq B$ with P itself. For $p \in P$ and a B-sentence σ, we define the relation $p \Vdash \sigma$ by

$$
p \Vdash \sigma \quad \text { iff } \quad p \leq \llbracket \sigma \rrbracket^{B}
$$

We say that p forces σ.
Properties. Let σ and τ be B-sentences. Then:
(i) For all $p, q \in P$, we have: if $q \leq p$ and $p \Vdash \sigma$, then $q \Vdash \sigma$.
(ii) If $\llbracket \sigma \rrbracket^{B}=1$, then $p \Vdash \sigma$ for all $p \in P$.
(iii) For all $p \in P$, we have: $p \Vdash \sigma \wedge \tau$ if and only if $p \Vdash \sigma$ and $p \Vdash \tau$.
(iv) $\llbracket \sigma \rrbracket^{B}=0$ if and only if there are no $p \in P$ such that $p \Vdash \sigma$.
(v) For all $p \in P$, we have: $p \Vdash \neg \sigma$ if and only if $\neg \exists q \leq p(q \Vdash \sigma)$.
(vi) For all $p \in P$, we have: if $p \Vdash \neg \sigma$, then $p \nVdash \sigma$. Equivalently, if $p \Vdash \sigma$, then $p \nVdash \neg \sigma$.
(vii) For all $p \in P$, we have: $p \Vdash \sigma \rightarrow \tau$ if and only if $\forall q \leq p(q \Vdash \sigma \rightarrow q \Vdash \tau)$.

Theorem 1. (Bell 2.6) Let $B=\operatorname{RO}\left(2^{\omega}\right)$. Then

- $V^{(B)} \models \widehat{\mathcal{P} \omega} \neq \mathcal{P} \hat{\omega}$.
- $V^{(B)} \vDash \mathcal{P} \hat{\omega} \nsubseteq L$.

Theorem 2. (Bell 1.19) Let T and T^{\prime} be extensions of ZF such that Consis(ZF) \rightarrow Consis $\left(T^{\prime}\right)$, and suppose that in the language of set theory, we can define a constant term B such that
$T^{\prime} \vdash B$ is a complete Boolean algebra and, for each axiom τ of T, we have $T^{\prime} \vdash \llbracket \tau \rrbracket^{B}=1_{B}$. Then Consis(ZF) \rightarrow Consis(T).

Corollary 3. (Bell 2.7) If ZF is consistent, then so is $\mathrm{ZFC}+(\mathcal{P} \omega \nsubseteq L)$.
Theorem 4. (Bell 2.8) Suppose the GCH holds and that B is a complete Boolean algebra satisfying the ccc and $|B|=2^{\aleph_{0}}$. Then

$$
V^{(B)} \models \mathrm{GCH}
$$

Corollary 5. (Bell 2.9) If ZF is consistent, then so is $\mathrm{ZFC}+\mathrm{GCH}+(\mathcal{P} \omega \nsubseteq L)$.

