Seminar Set Theory Handout

Christian Nesenberend

November 20, 2015

Definition 1 (Stabilizer). Let G act on $V^{(B)}$ (or alternatively B by thm 3.3). Then for $x \in V^{(B)}$ the stabilizer of x is:

$$\operatorname{stab}(x) = \{g \in G | gx = x\}$$

Definition 2 (Filter of subgroups). Let G be a group. Then $\Gamma \subseteq \{H \subseteq G | H \text{ is a subgroup of } G\}$ is a filter of subgroups of G if the following two conditions hold:

For all $H, K \in \Gamma$ the intersection $H \cap K \in \Gamma$

For all $H \in \Gamma$, if $H \subseteq K$ with K a subgroup of G, then $K \in \Gamma$.

Definition 3 (Normal filter of subgroups). If Γ is a filter of subgroups of G, then Γ is normal if for all $g \in G$, $H \in \Gamma$: $gHg^{-1} \in \Gamma$.

Definition 4 $(V^{(\Gamma)})$. Let G act on B, and Γ be a filter of subgroups of G. Then define the sets $V_{\alpha}^{(\Gamma)}$ recursively:

$$V_{\alpha}^{(\Gamma)} = \{x | \operatorname{Fun}(x) \wedge \operatorname{ran}(x) \subseteq B \wedge \operatorname{stab}(x) \in \Gamma \wedge \exists \xi < \alpha [\operatorname{dom}(x) \subseteq V_{\xi}^{(\Gamma)}] \}$$

Now write:

$$V^{(\Gamma)} = \{ x | \exists \alpha (x \in V_{\alpha}^{(\Gamma)}) \}$$

We turn $V^{(\Gamma)}$ into a *B*-valued structure by defining for $u, v \in V^{(\Gamma)}$ $[\![u \in v]\!]^{\Gamma}$ and $[\![u = v]\!]^{\Gamma}$ recursively (recursion on $V_{\alpha}^{(\Gamma)}$):

$$\llbracket u \in v \rrbracket^{\Gamma} = \bigvee_{x \in \operatorname{dom}(v)} [v(x) \land \llbracket x = u \rrbracket^{\Gamma}]$$
$$\llbracket u = v \rrbracket^{\Gamma} = \bigwedge_{x \in \operatorname{dom}(u)} [u(x) \Rightarrow \llbracket x \in v \rrbracket^{\Gamma}] \land \bigwedge_{y \in \operatorname{dom}(v)} [v(y) \Rightarrow \llbracket y \in u \rrbracket^{\Gamma}]$$

and by defining for $\mathcal{L}^{(\Gamma)}$ -sentences $\sigma, \tau(\mathcal{L}^{(\Gamma)})$ is $\mathcal{L}^{(B)}$ without constants that are not in $V^{(\Gamma)}$), and $\phi(x) \in \mathcal{L}^{(\Gamma)}$ -formula.

$$\begin{split} \llbracket \sigma \wedge \tau \rrbracket^{\Gamma} &= \llbracket \sigma \rrbracket^{\Gamma} \wedge \llbracket \tau \rrbracket^{\Gamma} \\ \llbracket \neg \sigma \rrbracket^{\Gamma} &= (\llbracket \sigma \rrbracket^{\Gamma})^{*} \\ \llbracket \exists x \phi(x) \rrbracket^{\Gamma} &= \bigwedge_{u \in v^{(\Gamma)}} \llbracket \phi(u) \rrbracket^{\Gamma} \end{split}$$

Lemma 5 (Lemma 3.14). For every $x \in V$ $\hat{x} \in V^{(\Gamma)}$.

From now on, Γ is assumed to be a **normal** filter of subgroups of G.

Lemma 6 (Lemma 3.15). G acts on $V^{(\Gamma)}$.

Definition 7 (Truth and forcing in $V^{(\Gamma)}$). If P is a basis for B, then $p \in P$ $p\Gamma$ -forces the $\mathcal{L}^{(\Gamma)}$ -sentence σ by

$$p \Vdash_{\Gamma} \sigma \leftrightarrow p \leq \llbracket \sigma \rrbracket^{\Gamma}$$

Any $\mathcal{L}^{(\Gamma)}$ -sentence σ is called true in $V^{(\Gamma)}$ (we write $V^{(\Gamma)} \vDash \sigma$) if $[\![\sigma]\!]^{\Gamma} = 1$

Theorem 8 (Theorem 3.18). Theorem 1.17(from Bell) holds when B is replaced by Γ .

Theorem 9 (Theorem 3.19). All the axioms - and hence all the theorems - of ZF are true in $V^{(\Gamma)}$