Seminar on Set Theory

Hand-in exercise 1, model solution September 18, 2015

(a) Let x, y ∈ H such that x ≤ y. We know that y ≤ y** so by transitivity of ≤ we find that x ≤ y**, and this is equivalent to y* ≤ x*.
Alternative. If x ≤ y, then y = x ∨_H y. Taking complements, we find that y* =

 $(x \vee_H y)^* = x^* \wedge_H y^*$, which means exactly that $y^* \leq x^*$,

(b) First of all, notice that $x^* \in B$ for all $x \in H$, since we have $x^{***} = x^*$. Also, using exercise (a) we see that $x \leq y$ implies $y^* \leq x^*$, which in turn implies $x^{**} \leq y^{**}$. So the map $H \to H : x \mapsto x^{**}$ preserves order.

Since $0_H \leq 0_H$, we have $0_H^* = (0_H \Rightarrow 0_H) = 1_H$. Also, there is obviously only one $z \in H$ such that $z \wedge_H 1_H = 0_H$, namely $z = 0_H$. This means that $1_H^* = (1_H \Rightarrow 0_H) = 0_H$. From these facts we deduce that $0_H, 1_H \in B$, so B has a greatest and a least element, and these are induced from H.

Let us show that for all $x, y \in B$, we have $x \wedge_H y \in B$. Since $x \wedge_H y \leq x$, we have $(x \wedge_H y)^{**} \leq x^{**} = x$. Similarly, we have $(x \wedge_H y)^{**} \leq y$. From these it follows that $(x \wedge_H y)^{**} \leq x \wedge_H y$. But we also have $x \wedge_H y \leq (x \wedge_H y)^{**}$, so it is indeed the case that $x \wedge_H y \in B$. Now clearly, any $z \in B$ that is a lower bound of x and y must satisfy $z \leq x \wedge_H y$. But the latter is itself in B, so we can take $x \wedge_H y$ to be the infimum of x and y in B.

Again, let $x, y \in B$ be given. Clearly, any $z \in B$ that is an upper bound of x and y must satisfy $z \ge x \lor_H y$. From this it follows that $z = z^{**} \ge (x \lor_H y)^{**}$. But $(x \lor_H y)^{**}$, being the pseudocomplement of something, is in B. So we can take $(x \lor_H y)^{**}$ to be the supremum of x and y in B. We conclude that B is a bounded lattice.

Finally, we have $x^* \in B$ for all $x \in B \subset H$, as we already remarked. We have $x \wedge_B x^* = x \wedge_H x^* = 0_H = 0_B$ and $x \vee_B x^* = (x \vee_H x^*)^{**} = (x^* \wedge_H x^{**})^* = 0_H^* = 1_H = 1_B$. So *B* is a complemented bounded lattice, i.e. a Boolean algebra.

- (c) Suppose that H is complete and let $X \subset B$. Then X has a supremum $\bigvee X$ in (H, \leq) . Now every $z \in B$ that is an upper bound of X must certainly satisfy $z \geq \bigvee X$. From this it follows that $z = z^{**} \geq (\bigvee X)^{**}$. But $(\bigvee X)^{**}$, being the pseudocomplement of something, is itself in B. So we can take $(\bigvee X)^{**}$ to be the supremum of X in B. The existence of infima can be shown similarly. \Box
- (d) We have to prove that

$$\overset{\circ}{\overline{U}} = U \text{ iff } U = \overline{X - X - U}$$

We will do this by proving that

$$\overline{U} = X - \overbrace{X - U}^{\circ}$$

and using the fact from topology that if $A \subset B$ then $\overset{\circ}{A} \subset \overset{\circ}{B}$. We notice that

$$\begin{aligned} a \in \left(X - \overbrace{X - U}^{\circ} \right) & \text{iff} \quad \neg \left(a \in \overbrace{X - U}^{\circ} \right) \\ & \text{iff} \quad \neg \exists \delta > 0(B(a; \delta) \subset X - U) \\ & \text{iff} \quad \forall \delta > 0(B(a; \delta) \cap U \neq \emptyset) \\ & \text{iff} \quad a \in \overline{U} \end{aligned}$$

And therefore RO(X) is the regularization of O(X).

(e) We use the example from (d) to show this. Suppose $X = \mathbb{R}$, equipped with the Euclidean topology. Let U = (1, 2) and V = (2, 3). Then in O(X) the meet of these opens is just $(1, 2) \cup (2, 3)$, which does not contain the point 2. However, the meet in the regularization looks as follows. First we take the complement in \mathbb{R} of $(1, 2) \cup (2, 3)$, which is $(-\infty, 1] \cup \{2\} \cup [3, \infty)$. The interior of this is $(-\infty, 1) \cup (3, \infty)$, which has [1, 3] as complement. The interior of this is (1, 3), and that is the meet of U and V in the regularization of $O(\mathbb{R})$. It follows that the meet in the regularization of $O(\mathbb{R})$.