Seminar on Set Theory

Hand-in exercise 1, model solution
September 18, 2015
(a) Let $x, y \in H$ such that $x \leq y$. We know that $y \leq y^{* *}$ so by transitivity of \leq we find that $x \leq y^{* *}$, and this is equivalent to $y^{*} \leq x^{*}$.
Alternative. If $x \leq y$, then $y=x \vee_{H} y$. Taking complements, we find that $y^{*}=$ $\left(x \vee_{H} y\right)^{*}=x^{*} \wedge_{H} y^{*}$, which means exactly that $y^{*} \leq x^{*}$,
(b) First of all, notice that $x^{*} \in B$ for all $x \in H$, since we have $x^{* * *}=x^{*}$. Also, using exercise (a) we see that $x \leq y$ implies $y^{*} \leq x^{*}$, which in turn implies $x^{* *} \leq y^{* *}$. So the map $H \rightarrow H: x \mapsto x^{* *}$ preserves order.
Since $0_{H} \leq 0_{H}$, we have $0_{H}^{*}=\left(0_{H} \Rightarrow 0_{H}\right)=1_{H}$. Also, there is obviously only one $z \in H$ such that $z \wedge_{H} 1_{H}=0_{H}$, namely $z=0_{H}$. This means that $1_{H}^{*}=\left(1_{H} \Rightarrow 0_{H}\right)=0_{H}$. From these facts we deduce that $0_{H}, 1_{H} \in B$, so B has a greatest and a least element, and these are induced from H.
Let us show that for all $x, y \in B$, we have $x \wedge_{H} y \in B$. Since $x \wedge_{H} y \leq x$, we have $\left(x \wedge_{H} y\right)^{* *} \leq x^{* *}=x$. Similarly, we have $\left(x \wedge_{H} y\right)^{* *} \leq y$. From these it follows that $\left(x \wedge_{H} y\right)^{* *} \leq x \wedge_{H} y$. But we also have $x \wedge_{H} y \leq\left(x \wedge_{H} y\right)^{* *}$, so it is indeed the case that $x \wedge_{H} y \in B$. Now clearly, any $z \in B$ that is a lower bound of x and y must satisfy $z \leq x \wedge_{H} y$. But the latter is itself in B, so we can take $x \wedge_{H} y$ to be the infimum of x and y in B.
Again, let $x, y \in B$ be given. Clearly, any $z \in B$ that is an upper bound of x and y must satisfy $z \geq x \vee_{H} y$. From this it follows that $z=z^{* *} \geq\left(x \vee_{H} y\right)^{* *}$. But $\left(x \vee_{H} y\right)^{* *}$, being the pseudocomplement of something, is in B. So we can take $\left(x \vee_{H} y\right)^{* *}$ to be the supremum of x and y in B. We conclude that B is a bounded lattice.
Finally, we have $x^{*} \in B$ for all $x \in B \subset H$, as we already remarked. We have $x \wedge_{B} x^{*}=x \wedge_{H} x^{*}=0_{H}=0_{B}$ and $x \vee_{B} x^{*}=\left(x \vee_{H} x^{*}\right)^{* *}=\left(x^{*} \wedge_{H} x^{* *}\right)^{*}=0_{H}^{*}=1_{H}=1_{B}$. So B is a complemented bounded lattice, i.e. a Boolean algebra.
(c) Suppose that H is complete and let $X \subset B$. Then X has a supremum $\bigvee X$ in (H, \leq). Now every $z \in B$ that is an upper bound of X must certainly satisfy $z \geq \bigvee X$. From this it follows that $z=z^{* *} \geq(\bigvee X)^{* *}$. But $(\bigvee X)^{* *}$, being the pseudocomplement of something, is itself in B. So we can take $(\bigvee X)^{* *}$ to be the supremum of X in B. The existence of infima can be shown similarly.
(d) We have to prove that

$$
\stackrel{\circ}{\bar{U}}=U \text { iff } U=\frac{\circ}{X-\widehat{\circ}} .
$$

We will do this by proving that

$$
\bar{U}=X-\frac{\circ}{X-U}
$$

and using the fact from topology that if $A \subset B$ then $\stackrel{\circ}{A} \subset \stackrel{\circ}{B}$. We notice that

$$
\begin{array}{ll}
a \in(X-\widehat{\circ-U}) \quad & \text { iff } \\
& \neg\left(a \in \widehat{\circ^{X-U}}\right) \\
& \text { iff } \neg \exists \delta>0(B(a ; \delta) \subset X-U) \\
& \text { iff } \quad \forall \delta>0(B(a ; \delta) \cap U \neq \emptyset) \\
& \text { iff } a \in \bar{U}
\end{array}
$$

And therefore $R O(X)$ is the regularization of $O(X)$.
(e) We use the example from (d) to show this. Suppose $X=\mathbb{R}$, equipped with the Euclidean topology. Let $U=(1,2)$ and $V=(2,3)$. Then in $O(X)$ the meet of these opens is just $(1,2) \cup(2,3)$, which does not contain the point 2. However, the meet in the regularization looks as follows. First we take the complement in \mathbb{R} of $(1,2) \cup(2,3)$, which is $(-\infty, 1] \cup\{2\} \cup[3, \infty)$. The interior of this is $(-\infty, 1) \cup(3, \infty)$, which has $[1,3]$ as complement. The interior of this is $(1,3)$, and that is the meet of U and V in the regularization of $O(\mathbb{R})$. It follows that the meet in the regularization of $O(\mathbb{R})$ is not induced from the meet in $O(\mathbb{R})$.

