
Seminar on Set Theory
Solutions to Exercise 10

Solution to Exercise 1

In this solution we will always drop the Γ-superscripts on Boolean evaluations.

(a) Induction base. Suppose φ is an atomic formula. Then φ(x1, . . . , xn) is
of the form u = v or u ∈ v with u, v ∈ V (Γ). That the thesis holds for
φ now is an immediate consequence of the fact that G acts on V (Γ).

Induction step. Suppose that the thesis holds for formulas ϕ and ψ.
Since all formulas can be written in a form that only uses connectives
in {∧,¬,∃} and, by Theorem 3.18, this does not change their truth
value in V (Γ), we only consider those connectives.

Suppose φ can be written as ϕ ∧ ψ. Then we have

g · [[φ(x1, . . . , xn)]] = g · [[ϕ(x1, . . . , xn) ∧ ψ(x1, . . . , xn)]]

= g · [[[ϕ(x1, . . . , xn)]] ∧ [[ψ(x1, . . . , xn)]]]

= g · [[ϕ(x1, . . . , xn)]] ∧ g · [[ψ(x1, . . . , xn)]]

= [[ϕ(gx1, . . . , gxn)]] ∧ [[ψ(gx1, . . . , gxn)]]

= [[ϕ(gx1, . . . , gxn) ∧ ψ(gx1, . . . , xn)]] = [[φ(gx1, . . . , gxn)]],

where the third equality holds due to fact that πg as defined on p. 71
is an automorphism on B, and the fourth by the induction hypothesis.

Suppose that φ can be written as ¬ϕ. Then, again using the induction
hypothesis and the fact that g induces an automorphism on B, we have

g · [[φ(x1, . . . , xn)]] = g · [[¬ϕ(x1, . . . , xn)]]

= g · [[[ϕ(x1, . . . , xn)]]∗]

= [g · [[ϕ(x1, . . . , xn)]]]∗

= [[ϕ(gx1, . . . , gxn)]]∗

= [[¬ϕ(gx1, . . . , gxn]] = [[ψ(gx1, . . . , gxn)]].
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Suppose that φ can be written as ∃xϕ. Then, again using the same
facts, we obtain

g · [[φ(x1, . . . , xn)]] = g · [[∃xϕ(x, x1, . . . , xn)]]

= g · [
∨

u∈V (Γ)

[[ϕ(u, x1, . . . , xn)]]]

=
∨

u∈V (Γ)

[g · [[ϕ(u, x1, . . . , xn)]]]]

=
∨

u∈V (Γ)

[[ϕ(gu, gx1, . . . , gxn)]]

=
∨

u∈V (Γ)

[[ϕ(u, gx1, . . . , gxn)]]

= [[∃xϕ(x, gx1, . . . , gxn)]] = [[φ(gx1, . . . , gxn)]],

where the fifth equality holds due to the fact that g is a permutation
of V (Γ).

Students obtain 0.25 points for the induction base and for each induc-
tion step.

(b) Let b ∈ B. Then

1 · b = {f ∈ X | 1 ∗ f = f ∈ b} = b

and for all f ∈ X, we have

f ∈ (gh) · b iff (gh)∗f ∈ b
iff ∃u ∈ b ∀m,n ∈ ω[u〈m,n〉 = f〈m, ghn〉]
iff ∃u ∈ h · b ∀m,n ∈ ω[u〈m,n〉 = f〈m, gn〉]
iff ∃u ∈ g · (h · b) ∀m,n ∈ ω[u〈m,n〉 = f〈m,n〉]
iff f ∈ g · (h · b),

as required.

We still have to show that the induced πg is, in fact, an automorphism
of B. Let x, y ∈ B. Then

πg(x ∧ y) = {f ∈ X | g∗f ∈ x ∩ y}
= {f ∈ X | g∗f ∈ x} ∩ {f ∈ X | g∗f ∈ y} = πg(x) ∧ πg(y),

and

πg(x
∗) = {f ∈ X | g∗f ∈ x∗} = {f ∈ X | g∗f ∈ xc}

= {f ∈ X | g∗f ∈ x}c = πg(x)c,
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as required.

Students obtain 0.5 points for showing that G acts on B as a regular
set and 0.5 points for showing that the πg are automorphisms, thereby
showing that G acts on B as a Boolean algebra.

(c) Let H ∈ Γ. Then there is some finite J ⊆ ω such that GJ ⊆ H. For
arbitrary g ∈ G, we consider the set gJ := {gj | j ∈ J}. Then

ux = x for all x ∈ GgJ so ugj = gj for all j ∈ J
so g−1ugj = j for all x ∈ J
so g−1ug ∈ GJ

so g−1ug ∈ H
so gg−1ugg−1 = u ∈ gHg−1.

We see that the finite gJ ⊆ gHg−1, so gHg−1 ∈ H, as required.

Students obtain 0.75 points for finding the correct subset of ω and 0.25
points for noting that it is finite.

(d) This proof is analogous to the proof in Theorem 2.12.

We know that P = C(ω × ω, 2) is a basis for B. First notice that

[[m̂ ∈ un]] =
∨
x∈ω

[un(x̂) ∧ [[n̂ = x̂]]] = un(m̂) = {h ∈ 2ω×ω | h〈m,n〉 = 1}.

From here we see that for p ∈ P ,

p  m̂ ∈ un iff p ≤ [[m̂ ∈ un]]

iff {h ∈ 2ω×ω | p ⊆ h} ⊆ {h ∈ 2ω×ω | h〈m,n〉 = 1}
iff p〈m,n〉 = 1,

and

p  m̂ /∈ un iff p ≤ [[m̂ ∈ un]]∗

iff {h ∈ 2ω×ω | p ⊆ h} ⊆ {h ∈ 2ω×ω | h〈m,n〉 = 0}
iff p〈m,n〉 = 0.

Now let n, n′ ∈ ω with n 6= n′ and suppose, by contradiction, that

V (Γ) 6|= un 6= u′n.

Then [[un = u′n]] 6= 0, so there is a p ∈ P such that p  un = u′n. Choose
m ∈ ω such that 〈m, l〉 /∈ dom(p) for any l ∈ ω (possible since dom(p)
is finite) and put

p′ = p ∪ {〈〈m,n〉, 1〉} ∪ {〈〈m,n′〉, 0〉}.
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Then p′  m̂ ∈ un ∧ m̂ ∈ u′n and thus p  un 6= u′n. However, since
p ≤ p′, we also have p′  un = u′n, a contradiction.

Students obtain 1 point for correctly showing the conditions under which
the relevant membership relation (and its negation) are forced, 0.5
points for constructing p′, and 0.5 points for finishing the proof.

Solution to Exercise 2

We prove the Theorem by induction on the complexity of the formula φ. The
atomic cases are immediate, as xU ∈U yU and xU = yU have been defined as
Jx ∈ yK ∈ U and Jx = yK ∈ U respectively. We carry out the induction step
for ∧,¬ and ∃, which is sufficient.
∧: Suppose that the result holds for the formulas φ(v1, ..., vn) and ψ(v1, ..., vn)
and for arbitrary x1, ..., xn ∈ M (B). We see by definition that M (B)/U |=
φ[xU1 , ..., x

U
n ] ∧ ψ[xU1 , ..., x

U
n ] precisely when both M (B)/U |= φ[xU1 , ..., x

U
n ] and

M (B)/U |= ψ[xU1 , ..., x
U
n ]. By the induction hypothesis, the latter is equiv-

alent to Jφ(x1, ..., xn)K ∈ U and Jψ(x1, ..., xn)K ∈ U . By the properties of
a filter, this is equivalent to Jφ(x1, ..., xn)K ∧ Jψ(x1, ..., xn)K ∈ U , that is,
Jφ(x1, ..., xn) ∧ ψ(x1, ..., xn)K ∈ U .
¬: Suppose that the result holds for the formula φ(v1, ..., vn) and for arbi-
trary x1, ..., xn ∈ M (B). Note that M (B)/U deals with ordinary truth values
rather than Boolean truth values, hence either M (B)/U |= φ[xU1 , ..., x

U
n ] or

M (B)/U |= ¬φ[xU1 , ..., x
U
n ]. Thus M (B)/U |= ¬φ[xU1 , ..., x

U
n ] is equivalent to

M (B)/U 6|= φ[xU1 , ..., x
U
n ], which by the induction hypothesis is equivalent to

Jφ(x1, ..., xn)K 6∈ U . Since U is an ultrafilter this in turn is equivalent to
Jφ(x1, ..., xn)K∗ ∈ U , that is, J¬φ(x1, ..., xn)K ∈ U .
∃: Suppose that the result holds for the formula φ(u, v1, ..., vn) and for arbi-
trary y, x1, ..., xn ∈M (B). By definition we have M (B)/U |= ∃yφ[y, xU1 , ..., x

U
n ]

precisely when M (B)/U |= φ[yU , xU1 , ..., x
U
n ] for some y ∈ M (B). By the

induction hypothesis this is equivalent to Jφ(y, x1, ..., xn)K ∈ U for some
y ∈ M (B). As U is a filter this implies

∨
y∈M(B)Jφ(y, x1, ..., xn)K ∈ U , which

is J∃yφ(y, x1, ..., xn)K ∈ U . For the converse we use the Maximum Principle
to find some y ∈M (B) such that J∃yφ(y, x1, ..., xn)K = Jφ(y, x1, ..., xn)K.
Points awarded: 1

2
for beginning the induction by noting the triviality of the

atomic cases; 1
2

per what amounts to a correct and sufficiently motivated
proof of one of the three required cases.

Solution to Exercise 3

Consider {x̂i : i ∈ I}, and take x to be the mixture
∑

i∈I ai · x̂i. By the
Mixing Lemma we have ai ≤ Jx = x̂iK for all i ∈ I, so this leaves us to

4



show that Jx = x̂iK ≤ ai for all i ∈ I. We see that dom(x) =
⋃

i∈I{ŷ :
y ∈ xi} and x(ŷ) =

∨
i∈I [ai ∧ Jŷ ∈ x̂iK] =

∨
i∈I
y∈xi

ai. For arbitrary i ∈ I we

similarly find that
∧

ŷ∈dom(x)[x(ŷ) ⇒ Jŷ ∈ x̂iK] =
∧

ŷ∈dom(x)
y 6∈xi

x(ŷ)∗, and for

any y ∈ xi we have x̂i(ŷ) ⇒ Jŷ ∈ xK = x(ŷ). By combining these results
we find that Jx = x̂iK =

∧
ŷ∈dom(x)

y 6∈xi

x(ŷ)∗ ∧
∧

y∈xi
x(ŷ). At this point we note

that
∧

y∈xi
x(ŷ) =

∧
y∈xi

∨
j∈I
y∈xj

aj ≤
∨

j∈I
xi⊆xj

aj. On the other hand we have∧
ŷ∈dom(x)

y 6∈xi

x(ŷ)∗ =
∧

ŷ∈dom(x)
y 6∈xi

∧
j∈I
y∈xj

a∗j =
∧

j∈I
xj 6⊆xi

a∗j ≤
∧

j∈I
xi⊂xj

a∗j . Thus we find

that Jx = x̂iK ≤
∧

j∈I
xi⊂xj

a∗j ∧
∨

j∈I
xi⊆xj

aj ≤ ai as xi is the unique xj such that

xi ⊆ xj and xi 6⊂ xj because we did not allow duplicates, and we are done.
Points awarded: 1 for taking the mixture x and unpacking its definition; 1
for intelligibly arriving at an intermediate step such as “results combined”;
finally, 1 for motivating the inequalities necessary for completing the proof.
Credit to those who do not use the Mixing Lemma and the estimates for the
other direction and instead prove Jx = x̂iK = ai straight from the definition!
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