Seminar on Set Theory Solutions to Exercise 10

Solution to Exercise 1

In this solution we will always drop the Γ-superscripts on Boolean evaluations.
(a) Induction base. Suppose ϕ is an atomic formula. Then $\phi\left(x_{1}, \ldots, x_{n}\right)$ is of the form $u=v$ or $u \in v$ with $u, v \in V^{(\Gamma)}$. That the thesis holds for ϕ now is an immediate consequence of the fact that G acts on $V^{(\Gamma)}$.
Induction step. Suppose that the thesis holds for formulas φ and ψ. Since all formulas can be written in a form that only uses connectives in $\{\wedge, \neg, \exists\}$ and, by Theorem 3.18, this does not change their truth value in $V^{(\Gamma)}$, we only consider those connectives.
Suppose ϕ can be written as $\varphi \wedge \psi$. Then we have

$$
\begin{aligned}
g \cdot \llbracket \phi\left(x_{1}, \ldots, x_{n}\right) \rrbracket & =g \cdot \llbracket \varphi\left(x_{1}, \ldots, x_{n}\right) \wedge \psi\left(x_{1}, \ldots, x_{n}\right) \rrbracket \\
& =g \cdot\left[\llbracket \varphi\left(x_{1}, \ldots, x_{n}\right) \rrbracket \wedge \llbracket \psi\left(x_{1}, \ldots, x_{n}\right) \rrbracket\right] \\
& =g \cdot \llbracket \varphi\left(x_{1}, \ldots, x_{n}\right) \rrbracket \wedge g \cdot \llbracket \psi\left(x_{1}, \ldots, x_{n}\right) \rrbracket \\
& =\llbracket \varphi\left(g x_{1}, \ldots, g x_{n}\right) \rrbracket \wedge \llbracket \psi\left(g x_{1}, \ldots, g x_{n}\right) \rrbracket \\
& =\llbracket \varphi\left(g x_{1}, \ldots, g x_{n}\right) \wedge \psi\left(g x_{1}, \ldots, x_{n}\right) \rrbracket=\llbracket \phi\left(g x_{1}, \ldots, g x_{n}\right) \rrbracket,
\end{aligned}
$$

where the third equality holds due to fact that π_{g} as defined on p .71 is an automorphism on B, and the fourth by the induction hypothesis.
Suppose that ϕ can be written as $\neg \varphi$. Then, again using the induction hypothesis and the fact that g induces an automorphism on B, we have

$$
\begin{aligned}
g \cdot \llbracket \phi\left(x_{1}, \ldots, x_{n}\right) \rrbracket & =g \cdot \llbracket \neg \varphi\left(x_{1}, \ldots, x_{n}\right) \rrbracket \\
& =g \cdot\left[\llbracket \varphi\left(x_{1}, \ldots, x_{n}\right) \rrbracket^{*} \rrbracket\right. \\
& =\left[g \cdot \llbracket \varphi\left(x_{1}, \ldots, x_{n}\right) \rrbracket\right]^{*} \\
& =\llbracket \varphi\left(g x_{1}, \ldots, g x_{n}\right) \rrbracket^{*} \\
& =\llbracket \neg \varphi\left(g x_{1}, \ldots, g x_{n} \rrbracket=\llbracket \psi\left(g x_{1}, \ldots, g x_{n}\right) \rrbracket .\right.
\end{aligned}
$$

Suppose that ϕ can be written as $\exists x \varphi$. Then, again using the same facts, we obtain

$$
\begin{aligned}
g \cdot \llbracket \phi\left(x_{1}, \ldots, x_{n}\right) \rrbracket & =g \cdot \llbracket \exists x \varphi\left(x, x_{1}, \ldots, x_{n}\right) \rrbracket \\
& =g \cdot\left[\bigvee_{u \in V^{(\Gamma)}} \llbracket \varphi\left(u, x_{1}, \ldots, x_{n}\right) \rrbracket\right] \\
& =\bigvee_{u \in V^{(\Gamma)}}\left[g \cdot \llbracket \varphi\left(u, x_{1}, \ldots, x_{n}\right) \rrbracket\right] \rrbracket \\
& =\bigvee_{u \in V^{(\Gamma)}} \llbracket \varphi\left(g u, g x_{1}, \ldots, g x_{n}\right) \rrbracket \\
& =\bigvee_{u \in V^{(\Gamma)}} \llbracket \varphi\left(u, g x_{1}, \ldots, g x_{n}\right) \rrbracket \\
& =\llbracket \exists x \varphi\left(x, g x_{1}, \ldots, g x_{n}\right) \rrbracket=\llbracket \phi\left(g x_{1}, \ldots, g x_{n}\right) \rrbracket,
\end{aligned}
$$

where the fifth equality holds due to the fact that g is a permutation of $V^{(\Gamma)}$.

Students obtain 0.25 points for the induction base and for each induction step.
(b) Let $b \in B$. Then

$$
1 \cdot b=\{f \in X \mid 1 * f=f \in b\}=b
$$

and for all $f \in X$, we have

$$
\begin{aligned}
f \in(g h) \cdot b & \text { iff }(g h)^{*} f \in b \\
& \text { iff } \exists u \in b \forall m, n \in \omega[u\langle m, n\rangle=f\langle m, g h n\rangle] \\
& \text { iff } \exists u \in h \cdot b \forall m, n \in \omega[u\langle m, n\rangle=f\langle m, g n\rangle] \\
& \text { iff } \exists u \in g \cdot(h \cdot b) \forall m, n \in \omega[u\langle m, n\rangle=f\langle m, n\rangle] \\
& \text { iff } f \in g \cdot(h \cdot b),
\end{aligned}
$$

as required.
We still have to show that the induced π_{g} is, in fact, an automorphism of B. Let $x, y \in B$. Then

$$
\begin{aligned}
\pi_{g}(x \wedge y) & =\left\{f \in X \mid g^{*} f \in x \cap y\right\} \\
& =\left\{f \in X \mid g^{*} f \in x\right\} \cap\left\{f \in X \mid g^{*} f \in y\right\}=\pi_{g}(x) \wedge \pi_{g}(y)
\end{aligned}
$$

and

$$
\begin{aligned}
\pi_{g}\left(x^{*}\right) & =\left\{f \in X \mid g^{*} f \in x^{*}\right\}=\left\{f \in X \mid g^{*} f \in x^{c}\right\} \\
& =\left\{f \in X \mid g^{*} f \in x\right\}^{c}=\pi_{g}(x)^{c}
\end{aligned}
$$

as required.
Students obtain 0.5 points for showing that G acts on B as a regular set and 0.5 points for showing that the π_{g} are automorphisms, thereby showing that G acts on B as a Boolean algebra.
(c) Let $H \in \Gamma$. Then there is some finite $J \subseteq \omega$ such that $G_{J} \subseteq H$. For arbitrary $g \in G$, we consider the set $g J:=\{g j \mid j \in J\}$. Then

$$
\begin{aligned}
& u x=x \text { for all } x \in G_{g J} \\
& \text { so } u g j=g j \text { for all } j \in J \\
& \\
& \text { so } g^{-1} u g j=j \text { for all } x \in J \\
& \\
& \text { so } g^{-1} u g \in G_{J} \\
& \\
& \text { so } g^{-1} u g \in H \\
& \\
& \text { so } g g^{-1} u g g^{-1}=u \in g H g^{-1} .
\end{aligned}
$$

We see that the finite $g J \subseteq g H g^{-1}$, so $g H^{-1} \in H$, as required.
Students obtain 0.75 points for finding the correct subset of ω and 0.25 points for noting that it is finite.
(d) This proof is analogous to the proof in Theorem 2.12.

We know that $P=C(\omega \times \omega, 2)$ is a basis for B. First notice that

$$
\llbracket \hat{m} \in u_{n} \rrbracket=\bigvee_{x \in \omega}\left[u_{n}(\hat{x}) \wedge \llbracket \hat{n}=\hat{x} \rrbracket\right]=u_{n}(\hat{m})=\left\{h \in 2^{\omega \times \omega} \mid h\langle m, n\rangle=1\right\} .
$$

From here we see that for $p \in P$,

$$
\begin{aligned}
p \Vdash \hat{m} \in u_{n} & \text { iff } p \leq \llbracket \hat{m} \in u_{n} \rrbracket \\
& \text { iff }\left\{h \in 2^{\omega \times \omega} \mid p \subseteq h\right\} \subseteq\left\{h \in 2^{\omega \times \omega} \mid h\langle m, n\rangle=1\right\} \\
& \text { iff } p\langle m, n\rangle=1,
\end{aligned}
$$

and

$$
\begin{aligned}
p \Vdash \hat{m} \notin u_{n} & \text { iff } p \leq \llbracket \hat{m} \in u_{n} \rrbracket^{*} \\
& \text { iff }\left\{h \in 2^{\omega \times \omega} \mid p \subseteq h\right\} \subseteq\left\{h \in 2^{\omega \times \omega} \mid h\langle m, n\rangle=0\right\} \\
& \text { iff } p\langle m, n\rangle=0 .
\end{aligned}
$$

Now let $n, n^{\prime} \in \omega$ with $n \neq n^{\prime}$ and suppose, by contradiction, that

$$
V^{(\Gamma)} \notin u_{n} \neq u_{n}^{\prime} .
$$

Then $\llbracket u_{n}=u_{n}^{\prime} \rrbracket \neq 0$, so there is a $p \in P$ such that $p \Vdash u_{n}=u_{n}^{\prime}$. Choose $m \in \omega$ such that $\langle m, l\rangle \notin \operatorname{dom}(p)$ for any $l \in \omega$ (possible since $\operatorname{dom}(p)$ is finite) and put

$$
p^{\prime}=p \cup\{\langle\langle m, n\rangle, 1\rangle\} \cup\left\{\left\langle\left\langle m, n^{\prime}\right\rangle, 0\right\rangle\right\} .
$$

Then $p^{\prime} \Vdash \hat{m} \in u_{n} \wedge \hat{m} \in u_{n}^{\prime}$ and thus $p \Vdash u_{n} \neq u_{n}^{\prime}$. However, since $p \leq p^{\prime}$, we also have $p^{\prime} \Vdash u_{n}=u_{n}^{\prime}$, a contradiction.

Students obtain 1 point for correctly showing the conditions under which the relevant membership relation (and its negation) are forced, 0.5 points for constructing p^{\prime}, and 0.5 points for finishing the proof.

Solution to Exercise 2

We prove the Theorem by induction on the complexity of the formula ϕ. The atomic cases are immediate, as $x^{U} \epsilon_{U} y^{U}$ and $x^{U}=y^{U}$ have been defined as $\llbracket x \in y \rrbracket \in U$ and $\llbracket x=y \rrbracket \in U$ respectively. We carry out the induction step for \wedge, \neg and \exists, which is sufficient.
\wedge : Suppose that the result holds for the formulas $\phi\left(v_{1}, \ldots, v_{n}\right)$ and $\psi\left(v_{1}, \ldots, v_{n}\right)$ and for arbitrary $x_{1}, \ldots, x_{n} \in M^{(B)}$. We see by definition that $M^{(B)} / U \models$ $\phi\left[x_{1}^{U}, \ldots, x_{n}^{U}\right] \wedge \psi\left[x_{1}^{U}, \ldots, x_{n}^{U}\right]$ precisely when both $M^{(B)} / U \models \phi\left[x_{1}^{U}, \ldots, x_{n}^{U}\right]$ and $M^{(B)} / U \models \psi\left[x_{1}^{U}, \ldots, x_{n}^{U}\right]$. By the induction hypothesis, the latter is equivalent to $\llbracket \phi\left(x_{1}, \ldots, x_{n}\right) \rrbracket \in U$ and $\llbracket \psi\left(x_{1}, \ldots, x_{n}\right) \rrbracket \in U$. By the properties of a filter, this is equivalent to $\llbracket \phi\left(x_{1}, \ldots, x_{n}\right) \rrbracket \wedge \llbracket \psi\left(x_{1}, \ldots, x_{n}\right) \rrbracket \in U$, that is, $\llbracket \phi\left(x_{1}, \ldots, x_{n}\right) \wedge \psi\left(x_{1}, \ldots, x_{n}\right) \rrbracket \in U$.
\neg : Suppose that the result holds for the formula $\phi\left(v_{1}, \ldots, v_{n}\right)$ and for arbitrary $x_{1}, \ldots, x_{n} \in M^{(B)}$. Note that $M^{(B)} / U$ deals with ordinary truth values rather than Boolean truth values, hence either $M^{(B)} / U \models \phi\left[x_{1}^{U}, \ldots, x_{n}^{U}\right]$ or $M^{(B)} / U \models \neg \phi\left[x_{1}^{U}, \ldots, x_{n}^{U}\right]$. Thus $M^{(B)} / U \models \neg \phi\left[x_{1}^{U}, \ldots, x_{n}^{U}\right]$ is equivalent to $M^{(B)} / U \not \vDash \phi\left[x_{1}^{U}, \ldots, x_{n}^{U}\right]$, which by the induction hypothesis is equivalent to $\llbracket \phi\left(x_{1}, \ldots, x_{n}\right) \rrbracket \notin U$. Since U is an ultrafilter this in turn is equivalent to $\llbracket \phi\left(x_{1}, \ldots, x_{n}\right) \rrbracket^{*} \in U$, that is, $\llbracket \neg \phi\left(x_{1}, \ldots, x_{n}\right) \rrbracket \in U$.
\exists : Suppose that the result holds for the formula $\phi\left(u, v_{1}, \ldots, v_{n}\right)$ and for arbitrary $y, x_{1}, \ldots, x_{n} \in M^{(B)}$. By definition we have $M^{(B)} / U \models \exists y \phi\left[y, x_{1}^{U}, \ldots, x_{n}^{U}\right]$ precisely when $M^{(B)} / U \models \phi\left[y^{U}, x_{1}^{U}, \ldots, x_{n}^{U}\right]$ for some $y \in M^{(B)}$. By the induction hypothesis this is equivalent to $\llbracket \phi\left(y, x_{1}, \ldots, x_{n}\right) \rrbracket \in U$ for some $y \in M^{(B)}$. As U is a filter this implies $\bigvee_{y \in M^{(B)}} \llbracket \phi\left(y, x_{1}, \ldots, x_{n}\right) \rrbracket \in U$, which is $\llbracket \exists y \phi\left(y, x_{1}, \ldots, x_{n}\right) \rrbracket \in U$. For the converse we use the Maximum Principle to find some $y \in M^{(B)}$ such that $\llbracket \exists y \phi\left(y, x_{1}, \ldots, x_{n}\right) \rrbracket=\llbracket \phi\left(y, x_{1}, \ldots, x_{n}\right) \rrbracket$.
Points awarded: $\frac{1}{2}$ for beginning the induction by noting the triviality of the atomic cases; $\frac{1}{2}$ per what amounts to a correct and sufficiently motivated proof of one of the three required cases.

Solution to Exercise 3

Consider $\left\{\hat{x}_{i}: i \in I\right\}$, and take x to be the mixture $\sum_{i \in I} a_{i} \cdot \hat{x}_{i}$. By the Mixing Lemma we have $a_{i} \leq \llbracket x=\hat{x}_{i} \rrbracket$ for all $i \in I$, so this leaves us to
show that $\llbracket x=\hat{x}_{i} \rrbracket \leq a_{i}$ for all $i \in I$. We see that $\operatorname{dom}(x)=\bigcup_{i \in I}\{\hat{y}$: $\left.y \in x_{i}\right\}$ and $x(\hat{y})=\bigvee_{i \in I}\left[a_{i} \wedge \llbracket \hat{y} \in \hat{x}_{i} \rrbracket\right]=\bigvee_{\substack{i \in I \\ y \in x_{i}}} a_{i}$. For arbitrary $i \in I$ we similarly find that $\bigwedge_{\hat{y} \in \operatorname{dom}(x)}\left[x(\hat{y}) \Rightarrow \llbracket \hat{y} \in \hat{x}_{i} \rrbracket\right]=\bigwedge_{\substack{\hat{y} \in \operatorname{dom}(x) \\ y \notin x_{i}}} x(\hat{y})^{*}$, and for any $y \in x_{i}$ we have $\hat{x}_{i}(\hat{y}) \Rightarrow \llbracket \hat{y} \in x \rrbracket=x(\hat{y})$. By combining these results we find that $\llbracket x=\hat{x}_{i} \rrbracket=\bigwedge_{\substack{\hat{y} \in \operatorname{dom}(x) \\ y \notin x_{i}}} x(\hat{y})^{*} \wedge \bigwedge_{y \in x_{i}} x(\hat{y})$. At this point we note that $\bigwedge_{y \in x_{i}} x(\hat{y})=\bigwedge_{y \in x_{i}} \bigvee_{\substack{y \in I \\ y \in x_{j}}}^{y \not x_{i}} a_{j} \leq \bigvee_{\substack{j \in I \\ x_{i} \subseteq x_{j}}} a_{j}$. On the other hand we have $\bigwedge_{\hat{y} \in \operatorname{dom}_{y \notin x_{i}}(x)} x(\hat{y})^{*}=\bigwedge_{\hat{y} \in \operatorname{dom}_{y \notin x_{i}}(x)}^{\substack{y \in x_{j}}} \bigwedge_{\substack{j \in I_{j} \\ y \in x_{j}}} a_{j}^{*}=\bigwedge_{\substack{j \in I \\ x_{j} \nsubseteq x_{i}}}^{x_{i} \subseteq x_{j}} a_{j}^{*} \leq \bigwedge_{x_{i} \subset x_{j}}^{j \in I} a_{j}^{*}$. Thus we find that $\begin{array}{r}y \notin x_{i} \\ \llbracket x\end{array}=\hat{x}_{i} \rrbracket \leq \bigwedge_{\substack{j \in I \not x_{i} \\ x_{i} \subset x_{j}}}^{y \not a_{j}^{*}} \wedge \bigvee_{\substack{y \in x_{j} \\ j \in I}}^{x_{i} \subseteq x_{j}} a_{j} \leq a_{i}$ as x_{i} is the unique x_{j} such that $x_{i} \subseteq x_{j}$ and $x_{i} \not \subset x_{j}$ because we did not allow duplicates, and we are done. Points awarded: 1 for taking the mixture x and unpacking its definition; 1 for intelligibly arriving at an intermediate step such as "results combined"; finally, 1 for motivating the inequalities necessary for completing the proof. Credit to those who do not use the Mixing Lemma and the estimates for the other direction and instead prove $\llbracket x=\hat{x}_{i} \rrbracket=a_{i}$ straight from the definition!

