Seminar on Set Theory

Part 1 of Model Solution of Hand-In 11
 Anton

December 16, 2015

As always, let M be a transitive \in-model of $Z F C$ and let $B \in M$ be a complete Boolean algebra in the sense of M.

Atoms in B

An atom in B is an element $a \in B$ such that $a \neq 0$ and for all $x \in B, x \leq a$ implies $x=0$ or $x=a$.

Part a (1 point): Show that the set $U_{a}=\{x \in B \mid a \leq x\}$ is an ultrafilter in B.

Solution: Check that the properties of a filter hold:

1. $1 \in U_{a}: 1 \geq a$.
2. $0 \notin U_{a}: 0 \nsupseteq a$.
3. Upwards closed: Let $x \in U_{a}$, let $y \geq x$. Then $y \geq x \geq a$ so $y \in U_{a}$.
4. Closed under joins: Let $x, y \in U_{a}$. Since $x \geq a$ and $y \geq a, x \wedge y \geq a$, since $x \wedge y$ is the greatest upper bound of x and y. Hence $x \wedge y \in U_{a}$.

Now check that U_{a} is an ultrafilter. Suppose $x \notin U_{a}$. Then $x \nsupseteq a$, hence $x \wedge a \neq a$. Since $x \wedge a \leq a$, it follows that $x \wedge a=0$, since a is an atom. Hence $a \leq x^{*}$, and so $x^{*} \in U_{a}$.

Part b (1 point) Show that U_{a} is M-generic.
Solution: Let $\left\{b_{i} \mid i \in I\right\}$ be an M-partition of unity. It suffices to show that there is an $i \in I$ such that $b_{i} \geq a$ (Lemma 4.3). Suppose $b_{i} \nsupseteq a$ for all $i \in I$, then by the same argument as above, $b_{i} \wedge a=0$. But then

$$
a=a \wedge \bigvee_{i \in I} b_{i}=\bigvee_{i \in I}\left(a \wedge b_{i}\right)=0
$$

which contradicts the assumption that a is an atom.
Part c (1 point) Show that $U_{a} \in M$ and deduce that $M\left[U_{a}\right]=M$.
Solution: By assumption, $B \in M$. Furthermore, by transitivity we see that $B \subset M$, and in particular, $a \in M$. It follows by the axiom of separation that we can define $U_{a}^{M} \in M$ such that $M \models \forall x .\left(x \in U_{a}^{M} \leftrightarrow x \in B \wedge a \leq x\right)$. Since both U_{a} and U_{a}^{M} are subsets of B, it suffices to show that $x \in U_{a}$ iff $x \in U_{a}^{M}$ for elements of B. But since for any $x \in B, M \models x \in B \wedge x \geq a$ iff $x \in B \wedge x \geq a$, this is indeed the case.

Part d (2 points) Let U be an ultrafilter in B such that $U \in M$ and put $a=\bigwedge U$. Show that the following are equivalent: (a) $a \neq 0$, (b) a is an atom, (c) $U=U_{a}$.

Solution: We prove $(\mathrm{a}) \Rightarrow(\mathrm{c}) \Rightarrow(\mathrm{b}) \Rightarrow(\mathrm{a})$.
(a) \Rightarrow (c): Suppose $a \neq 0$ and let $x \in U$. Since $a=\bigwedge U, a \leq x$, hence $x \in U_{a}$. Thus $U \subseteq U_{a}$. By maximality of $U, U=U_{a}$.
(c) $\Rightarrow(\mathrm{b})$: Suppose $U=U_{a}$. If $a=0$ then $U_{a}=B$, contradicting the assumption that U is a filter; hence $a \neq 0$. Let $b \leq a$ and assume $b \neq 0$. Then, by the same argument as in part (a), U_{b} is a filter. For any $x \in U, x \geq a \geq b$, so $x \in U_{b}$. Thus, by maximality of $U, U=U_{b}$, so $b \in U_{a}$. Thus $b \geq a$, and since we already know $b \leq a$, we have $b=a$. Thus $b \leq a$ implies $b=a$ or $b=0$.
(b) \Rightarrow (a): By definition.

