Seminar on Set Theory

Solutions to exercise 12
January 8, 2016

$\mathcal{P} \omega \cap L$ can be countable

(a) We claim that $V^{(B)} \models P \widehat{\lambda} \cap L \subseteq \widehat{P \lambda}$. To prove our claim, we show that

$$
V^{(B)} \vDash \forall x[L(x) \rightarrow[x \in P \widehat{\lambda} \rightarrow x \in \widehat{P \lambda}]] .
$$

In other words, we want

$$
\bigwedge_{x \in V^{(B)}} \llbracket L(x) \rightarrow[x \in P \widehat{\lambda} \rightarrow x \in \widehat{P \lambda}] \rrbracket=1
$$

So take some $x \in V^{(B)}$. Then we need that

$$
\llbracket L(x) \rrbracket \Rightarrow \llbracket x \in P \widehat{\lambda} \rightarrow x \in \widehat{P \lambda} \rrbracket=1
$$

By Theorem 1.46, this expression equals

$$
\left[\bigvee_{y \in L} \llbracket x=\hat{y} \rrbracket\right] \Rightarrow \llbracket x \in P \widehat{\lambda} \rightarrow x \in \widehat{P \lambda} \rrbracket .
$$

In order for this to equal 1, we need that the inequality

$$
\left[\bigvee_{y \in L} \llbracket x=\hat{y} \rrbracket\right] \leq \llbracket x \in P \widehat{\lambda} \rightarrow x \in \widehat{P \lambda} \rrbracket
$$

holds. So the proof of our claim is done, once we manage to show that

$$
\llbracket x=\hat{y} \rrbracket \leq \llbracket x \in P \widehat{\lambda} \rightarrow x \in \widehat{P \lambda} \rrbracket
$$

for all $y \in L$. So take $y \in L$. Then

$$
\llbracket x=\hat{y} \rrbracket=\llbracket x=\hat{y} \rrbracket \wedge \llbracket \hat{y} \in P \widehat{\lambda} \rightarrow \hat{y} \in \widehat{P \lambda} \rrbracket \leq \llbracket x \in P \widehat{\lambda} \rightarrow x \in \widehat{P \lambda} \rrbracket,
$$

proving the claim. Here we used that $\llbracket \hat{y} \in P \widehat{\lambda} \rightarrow \hat{y} \in \widehat{P \lambda} \rrbracket=1$, which demands some explanation. This is because $v_{1} \subseteq v_{2} \rightarrow v_{1} \in v_{3}$ is a restricted formula and $y \subseteq \lambda \rightarrow y \in P \lambda$ is a true statement. Theorem 1.23 (v) then tells us that $\llbracket \hat{y} \subseteq \widehat{\lambda} \rightarrow \hat{y} \in \widehat{P \lambda} \rrbracket=1$ and hence $\llbracket \hat{y} \in P \widehat{\lambda} \rightarrow$ $\hat{y} \in \widehat{P \lambda} \rrbracket=1$.
Now, $|P \lambda|=\left|2^{\lambda}\right|$, so $V^{(B)} \models|\widehat{P \lambda}|=\left|\widehat{2^{\lambda}}\right|$, by (1.48). By Corollary 5.2 we have $V^{(B)} \models \widehat{2^{\lambda}}$ is countable, which therefore implies that $V^{(B)} \models$ $\widehat{P \lambda}$ is countable. Since $V^{(B)} \models P \widehat{\lambda} \cap L \subseteq \widehat{P \lambda}$ by our claim, it follows that $V^{(B)} \models P \widehat{\lambda} \cap L$ is countable.
Proving " V (B) $\models P \widehat{\lambda} \cap L \subseteq \widehat{P \lambda}$ " was worth 4 points. Using this to conclude " $V{ }^{(B)} \models P \hat{\lambda} \cap L$ is countable" was worth the remaining 2 points of this part of the exercise.
(b) In our model M, we have $\aleph_{1}=2^{\aleph_{0}}$, so that B is the collapsing $\left(\aleph_{0}, 2^{\aleph_{0}}\right)$ algebra in M. So, by part (a), we have $M^{(B)} \models$ " $\mathcal{P} \hat{\omega} \cap L$ is countable". But the formula $x=\omega$ is restricted, so $M^{B} \models$ " $\mathcal{P} \omega \cap L$ is countable". By Corollary 4.2 , this means $M^{(B)} / U \models$ " $\mathcal{P} \omega \cap L$ is countable". Since $M^{(B)} / U$ and $M[U]$ are isomorphic (by construction), we have $M[U] \models$ " $\mathcal{P} \omega \cap L$ is countable", as desired.
Showing that $M^{(B)} \models$ " $\mathcal{P} \omega \cap L$ is countable" was worth 2 points. Proving that $M[U] \models$ " $\mathcal{P} \omega \cap L$ is countable" (by using Lemma 4.11 or the above) earned you another 2 points.

