Seminar on Set Theory

Hand-in exercise 13, model solution
December 18, 2015

Exercise 1

(a) We first notice that $\emptyset \subset \mathcal{F}$, hence $p_{\emptyset} \in C$, but this is just the empty join, and therefore the zero element. So $0 \in C$. We also notice that C has a supremum, because if $A \subseteq \mathcal{F}$ it is obvious that $p_{A} \leq p_{\mathcal{F}}$. We also notice that C is closed under finite joins, because if $A, A^{\prime} \subseteq \mathcal{F}$ then $A \cup A^{\prime} \subseteq \mathcal{F}$ and

$$
p_{A} \vee p_{A^{\prime}}=\bigvee_{f \in A} p_{f} \vee \bigvee_{f \in A^{\prime}} p_{f}=\bigvee_{f \in A \cup A^{\prime}} p_{f}=p_{A \cup A^{\prime}}
$$

Now we will show that C is closed under finite meets. Suppose $f, g \in 2^{X}$ such that $f \neq g$, then there must WLOG be an element $x_{i} \in X$ such that $f\left(x_{i}\right)=0$ and $g\left(x_{i}\right)=1$. We then find that

$$
\begin{aligned}
p_{f} \wedge p_{g} & =\bigwedge_{y \in X}(p(y, f(y)) \wedge p(y, g(y))) \\
& =p\left(x_{i}, 0\right) \wedge p\left(x_{i}, 1\right) \wedge \bigwedge_{y \in X \backslash\left\{x_{i}\right\}}(p(y, f(y)) \wedge p(y, g(y))) \\
& =0 \wedge \bigwedge_{y \in X \backslash\left\{x_{i}\right\}}(p(y, f(y)) \wedge p(y, g(y))) \\
& =0
\end{aligned}
$$

In much the same way we can also conclude that $p_{f} \vee p_{g}=1$, so $\left\{p_{f} \mid f \in \mathcal{F}\right\}$ is an antichain, so in fact $p_{\mathcal{F}}=1$. We now conclude that if $A, A^{\prime} \subseteq \mathcal{F}$ then $A \cap A^{\prime} \subseteq \mathcal{F}$ and

$$
\begin{aligned}
p_{A} \wedge p_{A^{\prime}} & =\bigvee_{f \in A, g \in A^{\prime}}\left(p_{f} \wedge p_{g}\right) \\
& =\bigvee_{f \in A \backslash A^{\prime}, g \in A^{\prime}}\left(p_{f} \wedge p_{g}\right) \vee \bigvee_{f \in A \cap A^{\prime}, g \in A^{\prime}}\left(p_{f} \wedge p_{g}\right) \\
& =0 \vee \bigvee_{f \in A \cap A^{\prime}}\left(\bigvee_{g \neq f}\left(p_{f} \wedge p_{g}\right) \vee \bigvee_{g=f}\left(p_{f} \wedge p_{g}\right)\right) \\
& =\bigvee_{f \in A \cap A^{\prime}} p_{f} \\
& =p_{A \cap A^{\prime}}
\end{aligned}
$$

So C is closed under taking finite meets. Now denote $\mathcal{F} \backslash A$ with A^{c} for any $A \subseteq \mathcal{F}$. We notice that $A^{c} \subseteq \mathcal{F}$ for any $A \subseteq \mathcal{F}$. We also notice that for any $A \subseteq \mathcal{F}: p_{A} \wedge p_{A^{c}}=$ $p_{\emptyset}=0$, and $p_{A} \vee p_{A^{c}}=p_{\mathcal{F}}$. So every element p_{A} of C has an inverse $p_{A^{c}}$ in C. From these results it follows that C is a Boolean algebra.
The zero- and one-element is worth $\frac{1}{2}$ point, and so is the join. The complement is worth 1 point and the meet is worth 2 points.
(b) First we will prove that $C \subseteq B^{\prime}$. Suppose $b \in C$, then we notice that $b=\bigvee_{f \in A} \bigwedge_{y \in X} p(y, f(y))$ for some $A \subseteq \mathcal{F}$. So b is a finite join of a finite meet of elements of B^{\prime}, because every $p(y, f(y))$ is a generator or the complement of a generator. And this implies that $b \in B^{\prime}$, hence $C \subseteq B^{\prime}$.
We will now show that $B^{\prime} \subseteq C$ by showing that $X \subseteq C$. To do this we will prove the following: Suppose $Y \subseteq X$ and $f \in 2^{Y}$. Let $p_{f}=\bigwedge_{z \in Y} p(z, f(z))$. Then $p_{f}=\bigvee\left\{p_{g}|g \in \mathcal{F}, g|_{Y}=f\right\}$. Because if $g \in \mathcal{F}$ such that $\left.g\right|_{Y}=f$, then we notice that if $z \in Y$, we must have $p(z, g(z))=p(z, f(z))$, hence

$$
p_{g}=\bigwedge_{z \in X} p(z, g(z)) \leq \bigwedge_{z \in Y} p(z, f(z))=p_{f}
$$

So $p_{g} \wedge p_{f}=p_{g}$ for all such g. Now suppose that $g \in \mathcal{F}$ such that $\left.g\right|_{Y} \neq f$, then there must be some $z \in Y$ such that $g(z) \neq f(z)$, hence $p(z, f(z)) \neq p(z, g(z))$, hence the meet of these two elements is $z \wedge z^{*}=0$. So if $\left.g\right|_{Y} \neq f$ then $p_{g} \wedge p_{f}=0$. So we now combine these two ingredients to find

$$
\begin{aligned}
p_{f} & =p_{f} \wedge \bigvee_{g \in \mathcal{F}} p_{g} \\
& =\bigvee_{g \in \mathcal{F}}\left(p_{g} \wedge p_{f}\right) \\
& =\bigvee_{g \in \mathcal{F},} \bigvee_{\left.g\right|_{Y}=f}\left(p_{g} \wedge p_{f}\right) \\
& =\bigvee\left\{p_{g}|g \in \mathcal{F}, g|_{Y}=f\right\}
\end{aligned}
$$

So every element of the form p_{f} if a finite join of elements of C, hence it is an element of C.
We will now apply this to our problem. Let $x_{i} \in X$, and let $f \in 2^{\left\{x_{i}\right\}}$ such that $f\left(x_{i}\right)=1$. Then we have just established that $p_{f} \in C$, but we notice that $p_{f}=p\left(x_{i}, f\left(x_{i}\right)\right)=x_{i}$. Hence $x_{i} \in C$, so $X \subseteq C$, and because C is a Boolean algebra the Boolean algebra generated by X must be contained in C as well, hence $B^{\prime} \subseteq C$.
So now we have found that $B^{\prime}=C$.
The following components are each worth one point: proving that $C \subseteq B^{\prime}$, proving that $p_{f} \wedge p_{g}=p_{g}$ for g extending f and 0 for g not extending f, proving that p_{f} is in C, concluding that $B^{\prime} \subseteq C$.
(c) Suppose that $p_{A} \in C$, then p_{A} can be written in a unique way as a join of elements of the form p_{f}. Also, every join of elements of the form p_{f} is in C. So the elements of C are determined by the subsets of \mathcal{F}, hence the number of elements of C is at most the number of subsets of \mathcal{F}. Every element of \mathcal{F} is determined by a function in 2^{X}, hence $|\mathcal{F}| \leq 2^{n}$ if $|X|=n$. And therefore $|C| \leq|\mathcal{P}(\mathcal{F})|=2^{2^{n}}$. So a Boolean algebra generated by $n>0$ elements contains at most $2^{2^{n}}$ elements.
Concluding that $|C| \leq|\mathcal{P}(\mathcal{F})|$ is worth one point, and the conclusion is worth one point.

