Hand-in Exercise 14 Solutions
 Student Seminar on Set Theory

January 21, 2016

Exercise 1

- (i) Because P and Q commute, P and Q^{c} commute and thus $P Q$ and $P Q^{c}$ commute. We then have
$P \wedge Q=P+Q-P Q$ and $P \vee Q=P Q$
Then $(P \wedge Q) \vee\left(P \wedge Q^{c}\right)=P Q+P Q^{c}-P Q P Q^{c}$ because P and Q and $P Q$ and $P Q^{c}$ commute (1 point)
$=P\left(Q+Q^{c}\right)-P^{2} Q Q^{c}$ because $P Q$ and Q commute
$=P$ because $Q+Q^{c}=1$ and $Q Q^{c}=0$ (1 point)
- (ii) Proof of lemma:

Let P, Q commute. Then $P=(P \wedge Q) \vee\left(P \wedge Q^{c}\right)$, with $P \wedge Q \leq Q$ and $P \wedge Q^{c} \leq Q^{c}$, which proves one part of the lemma.
Now let there be P_{1}, P_{2} such that $P=P_{1} \vee P_{2}, P_{1} \leq Q$ and $P_{2} \leq Q^{c}$.
Now as $P_{1} \vee P_{2} \geq P_{1}$ and $P_{2}^{c} \wedge Q=Q\left(\right.$ as $\left.P_{2}^{c} \geq Q\right)$ and as $P_{1} \leq Q, P_{1}$ is compatable with Q :

$$
\begin{aligned}
Q \geq(Q \wedge P) \vee\left(Q \wedge P^{c}\right) & =\left(Q \wedge\left(P_{1} \vee P_{2}\right)\right) \vee\left(Q \wedge P_{1}^{c} \wedge P_{2}^{c}\right) \\
& \geq\left(Q \wedge P_{1}\right) \vee\left(Q \wedge P_{1}^{c}\right)=Q
\end{aligned}
$$

Similarly:

$$
\begin{aligned}
P \geq(Q \wedge P) \vee\left(Q^{c} \wedge P\right) & =\left(Q \wedge\left(P_{1} \vee P_{2}\right)\right) \vee\left(Q^{c} \wedge\left(P_{1} \vee P_{2}\right)\right) \\
& \geq\left(Q \wedge P_{1}\right) \vee\left(Q^{c} \wedge P_{2}\right) \\
& =P_{1} \vee P_{2}=P
\end{aligned}
$$

which completes the proof of the lemma (3 points for a correct proof of the lemma, or alternatively if a correct proof has been given without it)
Now set (using the lemma) $Q_{i, 1}$ and $Q_{i, 2}$ such that $Q_{i, 1} \leq P$ and $Q_{i, 2} \leq P^{c}$ with $Q_{i}=Q_{i, 1} \vee Q_{i, 2}$.
Then $\bigvee_{i \in I} Q_{i}=\bigvee_{i \in I} Q_{i, 1} \vee \bigvee_{i \in I} Q_{i, 2}$ and $\bigvee_{i \in I} Q_{i, 1} \leq P, \bigvee_{i \in I} Q_{i, 2} \leq$ P^{c}, so P is compatible with $\bigvee_{i \in I} Q_{i}$ by the proved lemma. Now as P is compatible with all Q_{i}, it is also compatible with all Q_{i}^{c}, so by the previous argument P is compatible with $\bigvee_{i \in I} Q_{i}^{c}$, so P is compatible with $\left(\bigvee_{i \in I} Q_{i}^{c}\right)^{c}=\bigwedge_{i \in I} Q_{i} .(1$ point to finish the proof)

Exercise 2

$\llbracket u \leq v \rrbracket=1$, iff $\llbracket \forall x \in v x \in u \rrbracket=1$ as u, v are defined by left Dedekind cut.
$\llbracket \forall x \in v x \in u \rrbracket=1$ iff $\llbracket \forall x \in \mathbb{Q}(x \in v \rightarrow x \in u) \rrbracket=\bigwedge_{x \in \mathbb{Q}} \llbracket(x \in v \rightarrow x \in u) \rrbracket=1$ as $\llbracket u, v \in \mathbb{Q} \rrbracket=1$ (1 point).
Now this is equivalent to $\forall x \in \mathbb{Q} \llbracket \hat{x} \in v \rightarrow \hat{x} \in u \rrbracket=1$ (1 point).
Writing this out gives $\forall x \in \mathbb{Q} E_{x}^{\prime} \Rightarrow E_{x}=1$
This is equivalent to $\forall x \in \mathbb{Q} E_{x}^{\prime} \leq E_{x}$.
This is obviously implied by $\forall x \in \mathbb{R} E_{x}^{\prime} \leq E_{x}$ and if $x \in \mathbb{R}$, then this implies $E_{x}^{\prime}=\bigwedge_{x<q} E_{q}^{\prime} \leq \bigwedge_{x<q} E_{q}=E_{x}$ (2 points). This completes the proof.

