Hand-in Exercise 14 Solutions Student Seminar on Set Theory

January 21, 2016

Exercise 1

- (i) Because P and Q commute, P and Q^c commute and thus PQ and PQ^c commute. We then have $P \wedge Q = P + Q - PQ$ and $P \vee Q = PQ$ Then $(P \wedge Q) \vee (P \wedge Q^c) = PQ + PQ^c - PQPQ^c$ because P and Q and PQ and PQ^c commute(1 point) $= P(Q + Q^c) - P^2QQ^c$ because PQ and Q commute = P because $Q + Q^c = 1$ and $QQ^c = 0$ (1 point)
- (ii) Proof of lemma:

Let P, Q commute. Then $P = (P \land Q) \lor (P \land Q^c)$, with $P \land Q \le Q$ and $P \land Q^c \le Q^c$, which proves one part of the lemma.

Now let there be P_1, P_2 such that $P = P_1 \vee P_2, P_1 \leq Q$ and $P_2 \leq Q^c$. Now as $P_1 \vee P_2 \geq P_1$ and $P_2^c \wedge Q = Q$ (as $P_2^c \geq Q$) and as $P_1 \leq Q$, P_1 is compatable with Q:

$$Q \ge (Q \land P) \lor (Q \land P^c) = (Q \land (P_1 \lor P_2)) \lor (Q \land P_1^c \land P_2^c)$$
$$\ge (Q \land P_1) \lor (Q \land P_1^c) = Q$$

Similarly:

$$P \ge (Q \land P) \lor (Q^c \land P) = (Q \land (P_1 \lor P_2)) \lor (Q^c \land (P_1 \lor P_2))$$
$$\ge (Q \land P_1) \lor (Q^c \land P_2)$$
$$= P_1 \lor P_2 = P$$

which completes the proof of the lemma (3 points for a correct proof of the lemma, or alternatively if a correct proof has been given without it) Now set (using the lemma) $Q_{i,1}$ and $Q_{i,2}$ such that $Q_{i,1} \leq P$ and $Q_{i,2} \leq P^c$ with $Q_i = Q_{i,1} \vee Q_{i,2}$.

Then $\bigvee_{i \in I} Q_i = \bigvee_{i \in I} Q_{i,1} \lor \bigvee_{i \in I} Q_{i,2}$ and $\bigvee_{i \in I} Q_{i,1} \le P$, $\bigvee_{i \in I} Q_{i,2} \le P^c$, so P is compatible with $\bigvee_{i \in I} Q_i$ by the proved lemma. Now as P is compatible with all Q_i , it is also compatible with all Q_i^c , so by the previous argument P is compatible with $\bigvee_{i \in I} Q_i^c$, so P is compatible with $(\bigvee_{i \in I} Q_i^c)^c = \bigwedge_{i \in I} Q_i.(1 \text{ point to finish the proof})$

Exercise 2

$$\begin{split} & \llbracket u \leq v \rrbracket = 1, \text{ iff } \llbracket \forall x \in vx \in u \rrbracket = 1 \text{ as } u, v \text{ are defined by left Dedekind cut.} \\ & \llbracket \forall x \in vx \in u \rrbracket = 1 \text{ iff } \llbracket \forall x \in \mathbb{Q}(x \in v \to x \in u) \rrbracket = \bigwedge_{x \in \mathbb{Q}} \llbracket (x \in v \to x \in u) \rrbracket = 1 \\ & \text{as } \llbracket u, v \in \mathbb{Q} \rrbracket = 1 \ (1 \text{ point}). \\ & \text{Now this is equivalent to } \forall x \in \mathbb{Q} \llbracket \hat{x} \in v \to \hat{x} \in u \rrbracket = 1 \ (1 \text{ point}). \\ & \text{Writing this out gives } \forall x \in \mathbb{Q} E'_x \Rightarrow E_x = 1 \\ & \text{This is equivalent to } \forall x \in \mathbb{Q} E'_x \leq E_x. \\ & \text{This is obviously implied by } \forall x \in \mathbb{R} E'_x \leq E_x \text{ and if } x \in \mathbb{R}, \text{ then this implies } \\ & E'_x = \bigwedge_{x < q} E'_q \leq \bigwedge_{x < q} E_q = E_x \ (2 \text{ points}). \\ & \text{This completes the proof.} \end{split}$$