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Exercise 1.

(i) First we show that Collection implies Replacement. If ∀x ∈ u∃!yϕ(x, y) is the case, then
by Collection we can form a set v such that ∀x ∈ u∃y ∈ vϕ(x, y). We apply Separation
on v to find the set w = {y ∈ v : ∃x ∈ uϕ(x, y)}. Clearly if y ∈ w then ∃x ∈ uϕ(x, y);
on the other hand, if for some y we have ∃x ∈ uϕ(x, y), then because of uniqueness of
y we must have y ∈ v and so y ∈ w.
Now to show that Replacement implies Collection. Suppose that ∀x ∈ u∃yϕ(x, y).
Define ψ(x,w) by ∃α ∈ ORD[w = Vα ∧ ∀β ∈ α[α = β ↔ ∃y ∈ Vβϕ(x, y)]]. By
Regularity we have V =

⋃
α∈ORD Vα, hence ∀x ∈ u∃!wψ(x,w). By Replacement, there

is some u such that ∀w[w ∈ u↔ ∃x ∈ uψ(x,w)]. By Union we can form
⋃
u, of which

we recognize that ∀x ∈ u∃y ∈
⋃
uϕ(x, y), which concludes the proof. �

Points awarded: 1
2 point per correctly proven direction of the equivalence, where the

solution is required to explicitly mention the crucial axioms.

(ii) First we show that Set Induction implies Regularity. From Set Induction we can con-
clude that V =

⋃
α∈ORD Vα, so we can use the notion of rank of a set. Thus if u 6= ∅

is any set, then since the ordinals are well-founded it must have an element x ∈ u of
lowest rank, for which it must hold that x ∩ u = ∅ as required. [There are more direct
and elementary proofs as well.]
Now to show that Regularity implies Set Induction. Suppose ∀x[∀y ∈ xϕ(y) → ϕ(x)],
so that for any x we have ¬ϕ(x)→ x− 6= ∅, where x− denotes the set {y ∈ x : ¬ϕ(y)}.
Assume we have some set x such that ¬ϕ(x). Then there is some z1 ∈ x−: but then
since ¬ϕ(z1) again holds, there is in turn some z2 ∈ z−1 , which by iteration results in an
infinite sequence x 3 z1 3 z2 3 .... By Replacement these form a set which contradicts
Regularity, so we must have ∀xϕ(x), which completes the proof. �
Points awarded: 1 point per correctly proven direction of the equivalence, where the
solution is required to explicitly mention the crucial axioms.

(iii) First we show that Fullness implies Subset Collection. For u and v, let Fu,v be a full
set of total relations between u and v as given by Fullness. For any relation R between
u and v we can form by Restricted Separation the set vR = {y ∈ v : ∃x ∈ u〈x, y〉 ∈ R}.
By Strong Collection there is a set Wu,v = {vR : R ∈ Fu,v}. Now let z be arbitrary, and
suppose that ∀x ∈ u∃y ∈ vϕ(x, y, z). We would like some total relation Rz between u
and v which is based on z. We cannot straightforwardly define Rz as {〈x, y〉 : x ∈ u∧y ∈
v∧ϕ(x, y, z)} since ϕ(x, y, z) is generally not restricted. Therefore we instead obtain Rz
via Strong Collection on the formula ψ(x, p) which is ∃y ∈ v[p = 〈x, y〉 ∧ϕ(x, y, z)]. We
see that Rz thus defined is indeed a total relation between u and v, and that ϕ(x, y, z)
is the case whenever 〈x, y〉 ∈ Rz. Now there is some R ∈ Fu,v such that R ⊆ Rz, along
with corresponding vR ∈Wu,v. Since R is again total, for all x ∈ u there is some y ∈ vR
such that 〈x, y〉 ∈ R, but then also 〈x, y〉 ∈ Rz and so ϕ(x, y, z) holds. On the other
hand, if y ∈ vR, then by definition there is some x ∈ u such that 〈x, y〉 ∈ R and so
〈x, y〉 ∈ Rz, by which we again obtain ϕ(x, y, z). This shows that Subset Collection
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holds with Wu,v as witness.
Now to show that Subset Collection implies Fullness. For u and v, consider the formula
ϕ(x, p, z) given by p ∈ z ∧ ∃y ∈ v(p = 〈x, y〉). By Subset Collection we find a set
wu,u×v such that for any z we have ∀x∃p ∈ u × vϕ(x, p, z) → ∃Pz ∈ wu,u×v[∀x ∈
u∃p ∈ Pzϕ(x, p, z) ∧ ∀p ∈ Pz∃x ∈ uϕ(x, p, z)]. Now let z be any total relation between
u and v, so that for every x ∈ u there is some y ∈ v such that 〈x, y〉 ∈ z. Then
clearly ∀x∃p ∈ u × vϕ(x, p, z) is the case, hence there is some Pz ∈ wu,u×v such that
∀x ∈ u∃p ∈ Pzϕ(x, p, z) as well as ∀p ∈ Pz∃x ∈ uϕ(x, p, z). The latter tells us that
Pz ⊆ z is a relation between u and v, and the former gives us moreover that Pz is total,
thus for any total relation z the set wu,u×v contains a total relation Pz which refines
it. Since being a total relation is restricted, by Restricted Separation we may consider
fu,u×v = {R ∈ wu,u×v : TRel(R, u, v)}, which then witnesses Fullness for our arbitrary
u and v. �
Points awarded: 1 point per correctly proven direction of the equivalence, where the
solution is required to explicitly mention the crucial axioms.

Exercise 2.

(i) If α < β+, then α ∈ β ∪ {β}, so α ∈ β or α = β. In the first case, the transitivity of β
yields that α ⊂ β. In the second case, we also have α ⊂ β. We conclude that α ≤ β. �

(ii) Suppose that ∀α, β (α ≤ β → α < β+) holds. We let α = 0 and β = {0 | φ}. Then
clearly 0 ⊂ {0 | φ}, so we get 0 ∈ {0 | φ}+. That is, 0 ∈ {0 | φ} or 0 = {0 | φ}. In the
first case, it follows that φ, while in the second case, it follows that ¬φ. �
Alternatively, one may take α = {0 | φ} and β = 1.

(iii) Suppose that ∀α, β, γ (α ≤ β < γ → α < γ) holds. We let γ = β+. Since β < β+

always holds, we now get ∀α, β (α ≤ β → α < β+), which implies LEM, by exercise
(ii). �

(iv) We apply this to α = {0 | φ}. Suppose that {0 | φ} is a weak limit. Suppose we have
a β ∈ {0 | φ}, then there must also be a γ ∈ {0 | φ} such that β ∈ γ. But since β
and γ are both in {0 | φ}, we have β = γ = 0. However, we clearly do not have 0 ∈ 0,
contradiction. This shows that ¬∃β ∈ {0 | φ}, so {0 | φ} = 0, whence ¬φ holds. If
{0 | φ} = β+ for some ordinal β, then we have β ∈ {0 | φ}, so β = 0. This means that
{0 | φ} = 0+ = {0}, so φ holds. �
One point was awarded for correctly handling the case in which {0 | φ} is a successor,
and one point for the case in which it is a weak limit.
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